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1 Recap

|X| =k, € is an accuracy parameter, and 0 is an error parameter.

2 Learning discrete distributions

TV-Estimation Problem: Given X;, Xo, ..., X, independent samples drawn from an unknown
distribution p over [k], we need to output p s.t. with probability at least 1 — 0, dry (p,p) < €. Here

we assume § = 0.1 (for now).

Suppose we observe X7 def X1,Xo, ..., X, from a distribution p over X. Let

N, def {#times symbol x appears in X7'}.
We define the empirical estimator p,(x) = %

Theorem 1. The empirical estimator satisfies

Exp [01(p,Pn)] < \/E

Lemma 2 (Cauchy-Schwarz Inequality). let aq, ..., am, b1, ..., by, € R, we have
O ai-bi)? < (D af)- (O b)
i=1 i=1 i=1
The two sides are equal if and only if for all i, a;/b; = c.
Proof. Using CSI with a, = |p(x) — pn(2)|, bx=1,
(4.5)” < (X 0@) — pul@)?) - &

reX
If we take expectation for both sides, we have

E[0(p. 5] < kB[ X (0 — p(a))] )
reX
= %E[Z(Naj—np(x))ﬂ (2)
zeX
= S )1~ p)) (3)
reX
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The last two lines come from the fact that N, ~ Bin(n,p(x)). So we have E[N;| = np(x) and
Var(Nz) = np(z)(1 — p(z)).
Because f(x) = 22 is a convex function, according to Jensen’s inequality, we get
< \12 2] K
E[ﬁl(p,pn)} < E{&(p,pn) } <=
Lemma 3 (Markov’s Inequality). If X is a nonnegative random variable and a > 0, then

E[X]

Prob(X >a) <
Using Markov’s Inequality,

Prob(41(p, ) > €) < é %

Let %\/% < 0.1, we can get n > 100 - 8% So if we use an empirical estimator, we get an upper
bound of O(%). O

3 Poisson Sampling

Poisson Sampling is a sampling method that produces independent N,’s without too much loss.

3.1 Properties of Poisson Distribution

If X ~ Poi()\;), Y ~ Poi(As)

1 PMF: P(X =i) = e M . AL

il

2 Mean and Variance: E[X] = Var(X) = Ay,
3 When n - p is fixed and p — 0, Bin(n,p) goes to Poi(n - p). To be specific, when n - p = A,
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4 X +Y ~Poi(Ar + \o)

3.2 Procedure for Poisson sampling

Fixed length sampling: We have a fixed sample size n and we draw X1, Xo, ..., X, iid samples from
distribution p, N, ~ Bin(n, p(z))
Poisson length sampling:

1 n’ ~ Poi(n)

2 Generate n’ independent samples from p.



3.2.1 Properties of Poisson Sampling
1 N, ~ Poi(n - p(z)).
Proof.

Pr(N, = j) =Y Pr(Nj =j,n)
n/
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2 Condition on n’, the distribution becomes fixed length with respect to parameter n'.

3 P(N, =y, N = ) = PN, = n,) - P(N) = m,)

4 Testing Problem

Given description of a probability distribution g over [k], parameter ¢ and n independent samples
from an unknown distribution p, we want to know whether p = q or dry(p,q) > €. The following
picture illustrates the case when ¢ = u[k]. We need to distinguish between p is the origin or p lies
outside the square.

Now we consider a special case when q is uniform. Given € > 0 and n independent samples
from p, we want to figure out, with probability at least 0.9, whether p = q or drv(p,q) > €.



Theorem 4. Testing uniformity requires Q(\/E) samples for any fixed €.
Before we look at the argument for this theorem, let us see the following lemma first.

Lemma 5 (Birthday Paradox). At least Q(vk) samples from u[k] are needed before you can find
a repeated symbol with some constant probability.

You can prove this lemma by showing E[#symbols appear more than 1 time] < "—,: Don’t

forget under Poisson Sampling, for every x, N, ~ Poi(n/k).

You can also try to prove the following result: At least Q(k'~1/®) samples from u[k] are needed
before you can find a symbol appear « times with some constant probability.

Now let us go back to the theorem. Recall that P = u[k] is the uniform distribution on [k].
Let u[k/2] be the collection of all distributions that are uniform over a subset of k/2 elements of
k. There are (k%) distributions. Then note that: For any ¢ € ulk/2], drv(q, ulk]) = 0.5. Let Q be

the distribution uniformly drawn from u[k/2]. Then if we sample from P = u[k] by v/k/10 number
of samples, all symbols are distinct. The same is true for (). Hence we can’t distinguish between
P and @) with a constant probability.

4.1 Goldreich-Ron Algorithm

The algorithm is as follows: Let T' = def dicj Hzi =} HT > (5 )(% + 2k) we output dry (p,q) > €

else we output p = gq.
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Theorem 6. The coincidence based test solves uniformity testing problem with O(

Proof. When p is a uniform distribution, the expectation of statistics 7" is:
s == () S )

o

When dry (p, q) > €, by using Jenson’s inequality and Cauchy-Schwarz inequality,

Z(p(x)—l) k><2\p >>5
Besides,

S (b)) =St -2 M L ™

Then we have




So the expectation of the statistics is:
n
Birlael = (5) - X e 0

> (3) = (10

The following proof about bounding variance and using Chebychev’s inequality will be covered

in the next lecture. In the next lecture we will look at a statistic that gives an upper bound of
O(Vk/<?) samples. O
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