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1 Recap

|X | = k, ε is an accuracy parameter, and δ is an error parameter.

2 Learning discrete distributions

TV-Estimation Problem: Given X1, X2, ..., Xn independent samples drawn from an unknown
distribution p over [k], we need to output p̂ s.t. with probability at least 1− δ, dTV (p, p̂) < ε. Here
we assume δ = 0.1 (for now).

Suppose we observe Xn
1

def
= X1, X2, ..., Xn from a distribution p over X . Let

Nx
def
= {#times symbol x appears in Xn

1 }.
We define the empirical estimator p̂n(x) = Nx

n .

Theorem 1. The empirical estimator satisfies

EXn
1

[
`1(p, p̂n)

]
≤
√
k

n

Lemma 2 (Cauchy-Schwarz Inequality). let a1, ..., am, b1, ..., bm ∈ R, we have

(
m∑
i=1

ai · bi)2 ≤ (
m∑
i=1

a2i ) · (
m∑
i=1

b2i )

The two sides are equal if and only if for all i, ai/bi = c.

Proof. Using CSI with ax = |p(x)− p̂n(x)|, bx=1,(
`1(p, p̂n)

)2
≤
(∑
x∈X

(p(x)− p̂n(x))2
)
· k

If we take expectation for both sides, we have

E
[
`1(p, p̂n)2

]
≤ k · E

[∑
x∈X

(
Nx

n
− p(x))2

]
(1)

=
k

n2
· E
[∑
x∈X

(Nx − np(x))2
]

(2)

=
k

n2
·
∑
x∈X

np(x)(1− p(x)) (3)

≤ k

n
(4)



The last two lines come from the fact that Nx ∼ Bin(n, p(x)). So we have E[Nx] = np(x) and
Var(Nx) = np(x)(1− p(x)).

Because f(x) = x2 is a convex function, according to Jensen’s inequality, we get

E
[
`1(p, p̂n)

]2
≤ E

[
`1(p, p̂n)2

]
≤ k

n

Lemma 3 (Markov’s Inequality). If X is a nonnegative random variable and a > 0, then

Prob(X ≥ a) ≤ E[X]

a

Using Markov’s Inequality,

Prob
(
`1(p, p̂n) > ε

)
≤ 1

ε

√
k

n

Let 1
ε

√
k
n ≤ 0.1, we can get n ≥ 100 · k

ε2
. So if we use an empirical estimator, we get an upper

bound of O( k
ε2

).

3 Poisson Sampling

Poisson Sampling is a sampling method that produces independent Nx’s without too much loss.

3.1 Properties of Poisson Distribution

If X ∼ Poi(λ1), Y ∼ Poi(λ2)

1 PMF: P(X = i) = e−λ1 · λ
i
1
i! ,

2 Mean and Variance: E[X] = Var(X) = λ1,

3 When n · p is fixed and p → 0, Bin(n, p) goes to Poi(n · p). To be specific, when n · p = λ,

lim
p→0

(
n

i

)
· pi(1− p)n−i = e−λ · λ

i

i!

4 X + Y ∼ Poi(λ1 + λ2)

3.2 Procedure for Poisson sampling

Fixed length sampling: We have a fixed sample size n and we draw X1, X2, ..., Xn iid samples from
distribution p, Nx ∼ Bin(n, p(x))

Poisson length sampling:

1 n′ ∼ Poi(n)

2 Generate n′ independent samples from p.
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3.2.1 Properties of Poisson Sampling

1 N ′x ∼ Poi(n · p(x)).

Proof.

Pr(N ′x = j) =
∑
n′

Pr
(
N ′x = j, n′

)
=
∑
n′≥j

e−n
nn

′

n′!

(
n′

j

)
(p(x))j(1− p(x))n

′−j

=e−n
(np(x))j

j!

∑
n′≥j

nn
′−j(1− p(x))n

′−j

(n′ − j)!

=e−n
(np(x))j

j!

∑
n′≥j

(n(1− p(x)))n
′−j

(n′ − j)!

=e−n
(np(x))j

j!
· en(1−p(x))

=e−np(x)
(np(x))j

j!
.

2 Condition on n′, the distribution becomes fixed length with respect to parameter n′.

3 P(N ′x = nx, N
′
y = ny) = P(N ′x = nx) · P(N ′y = ny)

4 Testing Problem

Given description of a probability distribution q over [k], parameter ε and n independent samples
from an unknown distribution p, we want to know whether p = q or dTV (p, q) > ε. The following
picture illustrates the case when q = u[k]. We need to distinguish between p is the origin or p lies
outside the square.

Now we consider a special case when q is uniform. Given ε > 0 and n independent samples
from p, we want to figure out, with probability at least 0.9, whether p = q or dTV (p, q) > ε.
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Theorem 4. Testing uniformity requires Ω(
√
k) samples for any fixed ε.

Before we look at the argument for this theorem, let us see the following lemma first.

Lemma 5 (Birthday Paradox). At least Ω(
√
k) samples from u[k] are needed before you can find

a repeated symbol with some constant probability.

You can prove this lemma by showing E[#symbols appear more than 1 time] < n2

k . Don’t
forget under Poisson Sampling, for every x, Nx ∼ Poi(n/k).

You can also try to prove the following result: At least Ω(k1−1/α) samples from u[k] are needed
before you can find a symbol appear α times with some constant probability.

Now let us go back to the theorem. Recall that P = u[k] is the uniform distribution on [k].
Let u[k/2] be the collection of all distributions that are uniform over a subset of k/2 elements of
k. There are

(
k
k/2

)
distributions. Then note that: For any q ∈ u[k/2], dTV (q, u[k]) = 0.5. Let Q be

the distribution uniformly drawn from u[k/2]. Then if we sample from P = u[k] by
√
k/10 number

of samples, all symbols are distinct. The same is true for Q. Hence we can’t distinguish between
P and Q with a constant probability.

4.1 Goldreich-Ron Algorithm

The algorithm is as follows: Let T
def
=
∑

i<j I{xi = xj}. If T ≥
(
n
2

)
( 1k + ε2

2k ), we output dTV (p, q) > ε
else we output p = q.

Theorem 6. The coincidence based test solves uniformity testing problem with O(
√
k
ε4

)

Proof. When p is a uniform distribution, the expectation of statistics T is:

E[T |p = u] =

(
n

2

)
·
∑
x

p2(x) (5)

=

(
n

2

)
· 1

k
(6)

When dTV (p, q) > ε, by using Jenson’s inequality and Cauchy-Schwarz inequality,∑
x

(
p(x)− 1

k

)2
· k ≥

(∑
x

|p(x)− 1

k
|2
)
≥ ε2

Besides, ∑
x

(
p(x)− 1

k

)2
=
∑
x

p2(x)− 2
∑
x

p(x)

k
+

1

k2
(7)

=
∑
x

p2(x)− 1

k
(8)

Then we have ∑
x

p2(x) ≥ 1 + ε2

k
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So the expectation of the statistics is:

E[T |`1(p, u)] =

(
n

2

)
·
∑
x

p2(x) (9)

≥
(
n

2

)
· 1 + ε2

k
(10)

The following proof about bounding variance and using Chebychev’s inequality will be covered
in the next lecture. In the next lecture we will look at a statistic that gives an upper bound of
O(
√
k/ε2) samples.
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