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1 Recap

In the previous lecture, we saw

1. Empirical estimator for TV-Estimation problem
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2. Poisson Sampling: If a problem can be solved in O (n) samples, it can be solved in
O (Poi (n)) samples.

2 Hypothesis Testing

Hypothesis testing is a statistical inference technique wherein, based on observations from a phe-
nomenon, a choice is made between two or more hypotheses which are concerned with the origins
of the observed phenomenon. It finds applications in diverse areas; for example, testing whether a
lottery is fair or not. A real-life example of such a lottery is the Polish Multilotek where the initial
machine was found to be biased against the number 50-59.

2.1 Problem Formulation

Let P and Q be two collections of probability distributions. In most cases, we will assume that
PNQ = (. Let p € PUQ be an unknown probability distribution and let X7 --- X,, be sampled
from p. Note that these may or may not be independently sampled. The goal of hypothesis testing
is as follows :

Goal : Decide if p € P or p € Q with probability atleast 1 —§ = 0.9.
We are primarily interested in the setting where P and Q are defined over a large domain compared
to the number of samples.

2.2 Test statistic

In order to capture the differences between P and Q, a useful approach is to design a test statistic,
T: X1, --,X, — R. For a fixed threshold ¢, compare T' (X1, --- , X,,) with ¢ and make a decision.
We will henceforth abuse notation and refer to 7' (X1, -+, X,,) as T.

Example 1. Fix t =0 and let T be a test statistic designed such that we decide

pePiIf T <0
peQifT >0



The goal of hypothesis testing is achieved if
Pr(T>0|peP)<0.1,Pr(T<0|peQ)<0.1

The following example illustrates hypothesis testing between two Bernoulli distributions.
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Let p e PUQ. Given Xq,---, X, ~ p, we choose T'= Ny where N, is defined to be the number of
times the symbol = appears in X1, ---, X™. Therefore,

Example 2.

E[Typem:ne—e)

1
E[T|p€@]:n<2+e>
We now find an upper bound on Pr (T >5lpe IP’) by applying the Chebyshev’s inequality (see
Appendix).
1 1 1 n
Var (T | p € P) n<2 e)( <2 e>> n<4 e>_4

For a = /10, by Chebyshev’s inequality, we have

<0.1

Pr(\T—E(T|p€IP’) > ‘/1207”>

When ne > —”20”,

V10
Pr<T>;L|p€P)<Pr<\T—E(T|p€P) > 2”) <0.1
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We can therefore conclude that n > 22 = 0] <2> samples are sufficient for hypothesis testing
€ €

between two Bernoulli distributions.

3 Uniformity Testing

The uniformity testing problem is equivalent to a hypothesis testing problem when
P={p:li(p,u)>e},Q = u, where u is the uniform distribution and p is any discrete distribution
over [k]. Our objective is to find the minimum number of samples required to meet the hypothesis
testing goal.

A naive approach to achieve the hypothesis testing goal is to take a lot of samples and learn
the distribution. More formally, the plug-in estimator p can be learned such that we decide

pEIP)ifll(ﬁ,U) >

pe(@lfll(ﬁ7u> <
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It can be shown that the above approach requires atleast €2 <2> samples. We now prove that for
€

the setting in which we are interested i.e. large domain size compared to the number of samples,
it is possible to do better in terms of number of samples required.

Remark : As the number of samples n — 0o, the naive approach can indeed be shown to be the
best we can do. This is a general theme that is applicable to multiple problems and will be revisited
later in the course.

k
Theorem 3. O ({) samples are necessary and sufficient to solve the uniformity testing problem
€

This lecture contained the proof of the sufficiency part alone. We state the following lemma
that will be used in the proof.
Lemma 4. Let X ~ Poi (\), u € R. Define Z to be (X — p)* — X If
E[Z] = (A - p)’

then
Var(Z) = 202 44X (A — p)?

Before presenting the proof of Theorem (3), we first present some intuition behind the approach.
Observe that if we can design a test statistic 7" such that

E[T] =1 (p,u)

the following test suffices
pePifT >

PR

peQifT<5

It turns out that designing the above test statistic is harder. Therefore, we relate the test statistic
to the Iy distance instead of the {; distance.

Proof. Take Poi(n) independent samples from p. For x € [k], let N, denote the number of times
symbol z occurs in the data. Define T as follows,

=3 (N g)
z€E[k]

We can prove that E [T] = n? (I5 (p, u))?. See Appendix for the proof of a generalized version of T.
By Cauchy-Schwarz inequality, we have

k (lz (p, U)Q) > 1 (p, u)?

Therefore,

n2e?

BT | (pu) > e =




2.2
n-e
As a result, we choose t to be on The upper bound on the minimum number of samples is
2.2

obtained by comparing Var (T | p = u) and Var (T' | Iy (p,u) > €) with t = ”2; '

By applying Lemma (4) to N,, we have

Var ((Nr - %)2 - N:B) =2n2p (2)? + 4np () (np (z) — %)2

Since N,’s are independent under Poisson sampling, we have
Var (T |p=u) =2 Z n? <u(1‘)2> = %
k
z€e[k]

We now use the same reasoning that we used in Example 2 to obtain the upper bound on n using
Chebyshev’s inequality. Therefore, when

n2e? 2n2
1 -
o O(\/ k;>

n>4vV5 (f)

ne?

== Pr(T>2k|p:u><0.1

n2e?

Note that we still have to find a condition on n such that Pr (T < on | 1 (p,u) > e) < 0.1 by

computing Var (T | I (p,u) > €) and applying Chebyshev’s inequality. This will be done in the next

class.
O

4 Appendix

We now state the Chebyshev’s inequality and some lemmas with proofs that were not included in
the main scribe.

4.1 Chebyshev’s Inequality

Proposition 5. Let X be a random variable with finite mean p and finite non-zero variance o>.

Then for any real number a > 0,

1
Pr(| X —p[2a0) <



4.2 Property of Poisson Sampling

Lemma. Generate Poi(n) samples independently from p. Let N, denote the number of times
symbol x € k| appears in the data. For any discrete distribution q over [k],

E Z (Nz —ng (w))g — N, | =n? Z (p(x) —q ($))2
z€[k] z€[k]
Proof.
E Y (Ne—ng(x)®=Ne| =Y E[N, (No = 1)] +n°(q())* - 2E[No] ¢ ()
z€lk] zelk]
= > (np(x)” + (ng (x))* — 2n%p (z) q ()
z€|k]
=n’ > (p(x) —q(x)’
z€e[k]



