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1 Introduction

Lower bounds help in getting relevant results such as sample complexity and time complexity (For
example, we prefer O(n) to O(2")). We have shown the following lower bounds for the order of
required samples in the past lectures:

1. Hypothesis testing between two distributions: €( 6%)

2. Learning distribution p over [k]: Q(E%)

3. Uniformity testing: Q(g)
In this lecture, we are going to review some basics about information theory, which will be helpful
in proving lower bounds.

2 Information Theory Basics

Note: Please refer to Chapter 2 of Cover & Thomas [1] for more information.

2.1 Entropy
Definition 1. Given a probability distribution p, the entropy of that distribution H(p) is Y, p(x) log, Wlw).

Entropy is used to describe the amount of randomness for a given probability distribution. Note
that H(p) = E,(log Wlx))l according to the convexity of f(z) = log 1.

The following theorem shows that for all distributions over [k], the uniform distribution has the
largest entropy.
Theorem 1. Given a distribution with k elements, we have 0 < H(p) < log(k).

Proof. According to the concavity of f(z) = log(z), H(p) < 10g(Ep[Wlx)]) = log(Zp(x)ﬁ) =

log(k). n

2.2 Kullback-Leibler (KL) Divergence

Definition 2. Given two probability distributions p and ¢, the KL divergence of these two distri-
butions KL(p,q) (or D(pllq)) is 32, p(w) log Z2.

If ¢ is a uniform distribution w over [k|, then D(p|lu) = Y p(x) log(p(x)k) = log(k) — H(p)

1We omit the base of log from now on.



Theorem 2. D(p||q) is convex in p and q, i.e. YA € [0,1], AD(p1||lq1) + (1 — N)D(p2|lg2) >
D(Ap1 + (1 = N)p2[|Ag1 + (1 — N)gz).

Theorem 3. V probability distributions p,q, D(p||q) > 0

Proof.
p(z)
D(pllq) = Zp )log 2227 e
q(x)
=) p(x)(—log ==
rla)-log i) 0
—log) q()
=0
The inequality holds due to the convexity of f(x) = —log(z). O

2.3 Conditional Entropy
Definition 3. Given random variables X, Y and distributions X, ), the conditional entropy of X

given Y is

1
P(X = a]Y = y)

H(X|Y) & ZP HX|Y =y)=> PY =y)Y P(X =uz|Y =y)log

:ZP(X:x,Y:y)log PX

:ZP(X:x,Y:y)logP(X:
= H(X,Y) - H(Y)
(2)

From the above we know H(X|Y) = H(X,Y) — H(Y). Intuitively, this means conditional
entropy of X given Y captures the remaining randomness in X after knowing Y.

Theorem 4. Chain Rule of Entropy: H(X,Y)=H(X)+ H(Y|X)=H(Y)+ H(X|Y)

Specifically, if X is independent of Y, then P(X|Y) = P(X), H(X,Y)=H(X)+ H(Y). The
latter equality is equivalent to H(X|Y) = H(X).

For a series of random variables X,Y, Z, ..., we have H(X,Y, Z) = H(X)+ H(Y|X)+H(Z|X,Y )+

2.4 Mutual Information

Mutual information of two random variables X and Y tells how much information the random
variable Y (or X)) gives about X (or Y).



Definition 4. Mutual information of X and Y is
I(X;Y)2 HX) - H(X|Y)
(Y) - H(Y|X) (3)
(X)+H(Y)-H(X,)Y)

I
Tz
_|_

Theorem 5. I(X;Y) > 0.
Proof.
I(X;Y)=H(X)+H(Y)—-H(X,Y)

1
;y (X =2,V =y) %8 BX = 1)
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; (X =Y =y)log g pmr 5 20

The last inequality holds since the left-hand-side of the last line is actually the KL Divergence of
probability distributions P(X,Y") and P(X)P(Y). O

2.5 Multiway Classification and Channel Capacity

First, let’s have a look at the multiway classification problem. Its settings are:

1. Given m possible messages (distributions) p1, p2, ..., Dm.-

2. The true distribution M is selected uniformly at random from {1,...,m}.

3. Observe output Y from source distribution p,.

4. Predict M from M(Y).

This can be regarded as a message passing problem M —Y — M. Generally, given the message
passing procedure X —Y — Z. If this is a Markov chain, then we have P(Z|Y) = P(Z|Y, X),
H(Z|Y)=H(Z|Y,X).

We can formulate a simple message passing problem, which is from one Bernoulli distribu-
tion {0,1} to the other. Denote the random variables in the two distributions as X and Y. If
P(Y =0/X =0) = P(Y = 1|X = 0) = 1, then no information can be sent from X to Y; If
P(Y =0/X =0)=0.9, P(Y =1|X =0) = 0.1, then some amount of information can be sent.

We often use the mutual information I(X;Y") to quantify the channel capacity.

2.6 Data Processing Inequality

Theorem 6. Given a data processing procedure X —Y — Z, we have 1(X;Z) < I(Y, Z) if this
procedure is a Markov chain.

Proof.
I(X;2) = H(Z) - H(ZIX) < H(Z) - H(ZIX,Y) = H(Z) - HZ|]Y) = I1(Y;Z)  (5)
O



2.7 Fano’s Inequality
Definition 5. Given a message passing procedure M — Y — M , we have
I(M;Y) > P(correct)log(m — 1) — log 2
Proof. Denote C £ I{M = N }.
H(M,C|M) = H(M|M) + H(C|M, M)
= H(M|M)
The last equality holds since we can get C unambiguously when knowing M and M.

Note that we also have

H(M,C|M) = H(C|M) + H(M|M,C)
< H(C)+ P(C=1)H(M|M,C =1) (7)
+ P(C=0)H(M|M,C =0)

Since C is a Bernoulli random variable, H(C) < log2. Also, H(M|M,C = 1) = 0 since we can know
M for sure given M and C. H(M|M,C = 0) <log(m — 1) from concavity of f(z) = log(x). Thus
we have

H(M|M) < log?2 + P(error)log(m — 1) (8)

Thus the mutual information

I(M;M)=H(M)— H(M|M)
> log(m) — P(error) log(m — 1) — log 2 9)
> P(correct) log(m — 1) — log 2

Finally, using the data processing inequality, we have
I(M;Y) > I(M; M) > P(correct) log(m — 1) — log 2
O

In the next lecture, we are going to show that ”testing” a multiway classification problem not
more difficult than "learning” it, in the sense that njearm = Mtest, in which n denotes the number of
required samples.
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