ECE 6980

Algorithmic and Information-Theoretic Methods in Data Science
Instructor: Jayadev Acharya
Lecture \#5
Scribe: Kai Zhang
11st September, 2017

1 Introduction

Let $\Delta_{K}=\{$ distributions defined over $[K]\} . n_{\text {learn }}^{*}$ is the minimum number of samples needed to learn a distribution $p \in \Delta_{K}$, while $n_{\text {test }}^{*}$ is the minimum number of samples to distinguish between M distributions in Δ_{K}. We have found the upper-bounds for $n_{\text {learn }}^{*}$ and $n_{\text {test }}^{*}$ so far. For the following two lectures, we will focus on the lower-bounds.

Previously we proved $O\left(\frac{K}{\epsilon^{2}}\right)$ is a upper-bound for $n_{\text {learn }}^{*}$; however, we have no idea about the tightness of this upper-bound. In this lecture, we show the lower-bound for $n_{\text {learn }}^{*}$ is $\Omega\left(\frac{K}{\epsilon^{2}}\right)$, which means both the upper-bound and lower-bound are tight.

2 Fano's Inequality Revisited

2.1 General Case

Suppose we have a Markov chain $X \rightarrow Y \rightarrow \hat{X}$, where X is a random variable over $[K], Y$ are our observations or samples, and \hat{X} is the estimate for X. Let $p_{\text {error }}=\operatorname{Pr}(\hat{X} \neq X)$. Then Fano's inequality says,

$$
H(X \mid Y) \leq p_{\text {error }} \cdot \log K+\log 2
$$

or equivalently,

$$
I(X ; Y) \geq H(X)-p_{\text {error }} \cdot \log K-\log 2
$$

2.2 A special case

If X is uniformly distributed over $[K]$, then $H(X)=\log K$. Substitute it into Fano's inequality, and let $p_{\text {correct }}=1-p_{\text {error }}$,

$$
I(X ; Y) \geq p_{\text {correct }} \cdot \log K-\log 2
$$

or

$$
p_{\text {correct }} \leq \frac{I(X ; Y)+\log 2}{\log K}
$$

2.3 Fano 2.0

Testing Problem (Multiway classification):
i) Given M distributions $\left\{p_{1}, p_{2}, \ldots, p_{M}\right\}$ in Δ_{K} which satisfy $\forall i, j \in[M], \mathcal{D}\left(p_{i}, p_{j}\right) \leq \beta$
ii) sample i^{*} uniformly from $[M]$
iii) generate samples $X_{1}, X_{2}, \ldots, X_{n}$ from $p_{i^{*}}$
iv) predict \hat{i} such that $P\left(\hat{i} \neq i^{*}\right)<0.1$

Model the testing problem as a Markov chain $i^{*} \rightarrow X \rightarrow \hat{i}$, where $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.

$$
\begin{aligned}
I\left(i^{*} ; X\right) & =\sum_{i^{*} \in[M]} \operatorname{Pr}\left(i^{*}\right) \sum_{X} \operatorname{Pr}\left(X \mid i^{*}\right) \log \frac{\operatorname{Pr}\left(X \mid i^{*}\right)}{\operatorname{Pr}(X)} \\
& =\sum_{i^{*} \in[M]} \frac{1}{M} \mathcal{D}\left(\operatorname{Pr}\left(X \mid i^{*}\right), \operatorname{Pr}(X)\right) \\
& =\sum_{l=1}^{M} \frac{1}{M} \mathcal{D}\left(\operatorname{Pr}\left(X \mid i^{*}=l\right), \operatorname{Pr}(X)\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\operatorname{Pr}\left(X \mid i^{*}\right)=\prod_{j=1}^{n} p_{i^{*}}\left(X_{j}\right) \\
\operatorname{Pr}(X)=\sum_{i^{*} \in[M]} \operatorname{Pr}\left(X, i^{*}\right)=\sum_{i^{*} \in[M]} \frac{1}{M} \operatorname{Pr}\left(X \mid i^{*}\right)=\sum_{k=1}^{M} \frac{1}{M} \operatorname{Pr}\left(X \mid i^{*}=k\right) \\
\begin{aligned}
\mathcal{D}\left(\operatorname{Pr}\left(X \mid i^{*}=l\right), \operatorname{Pr}(X)\right) & \leq \sum_{k=1}^{M} \frac{1}{M} \mathcal{D}\left(\operatorname{Pr}\left(X \mid i^{*}=l\right), \operatorname{Pr}\left(X \mid i^{*}=k\right) \quad \quad \text { (convexity of } \mathcal{D}\right) \\
& \left.=\sum_{k=1}^{M} \frac{1}{M} \sum_{j=1}^{n} \mathcal{D}\left(p_{l}\left(X_{j}\right), p_{k}\left(X_{j}\right)\right) \quad \quad \text { (addictivity of } \mathcal{D}\right) \\
\leq & \sum_{k=1}^{M} \frac{1}{M} n \beta=n \beta
\end{aligned}
\end{gathered}
$$

thus,

$$
I\left(i^{*} ; X\right) \leq \sum_{i=1}^{M} \frac{1}{M} n \beta=n \beta
$$

According to Fano's inequality, we have

$$
p_{\text {correct }} \leq \frac{n \beta+\log 2}{\log M}
$$

For convenience, we call the above inequality Fano 2.0.

3 Learning is Harder than Testing

In this section, we show that $n_{\text {learn }}^{*} \geq n_{\text {test }}^{*}$, which can be intuitively explained as 'Learning is harder than testing in terms of sample complexity'.

3.1 Description of the Learning and Testing Problem

First, we give a short description of the learning and testing problem we would like to solve.

* Learning: learn \hat{p} such that $w . p .>0.9, d_{T V}(p, \hat{p})<\epsilon$
* Testing: suppose $p_{1}, p_{2}, \ldots, p_{M}$ satisfy $d_{T V}\left(p_{i}, p_{j}\right)>3 \epsilon, \forall j \neq i$, the goal is to identify the right distribution
Note that the distributions we want to learn or identify are all defined over $[K]$.

3.2 Solving Testing through Learning

The method to prove $n_{\text {learn }}^{*} \geq n_{\text {test }}^{*}$ is to show that we can actually solve the testing problem through learning. Put it another way, n^{*} learn samples are sufficient for the testing problem, and as a result, $n_{\text {learn }}^{*} \geq n_{\text {test }}^{*}$.

Algorithm: Let $p_{i^{*}}$ be the chosen distribution in testing problem. We first estimate $p_{i^{*}}$ by some learning algorithm. Denote the estimated distribution as \hat{p}. Then we output arg $\min _{j \in[M]} d_{T V}\left(p_{j}, \hat{p}\right)$ as the solution for the testing problem.

Proof of Correctness: Learning algorithm ensures that w.p. $>0.9, d_{T V}\left(p_{i^{*}}, \hat{p}\right)<\epsilon$. For any $j \neq i^{*}$, we have

$$
\begin{aligned}
d_{T V}\left(p_{j}, \hat{p}\right) & \geq d_{T V}\left(p_{j}, p_{i^{*}}\right)-d_{T V}\left(\hat{p}, p_{i^{*}}\right) \\
& \geq 3 \epsilon-\epsilon=2 \epsilon
\end{aligned}
$$

(triangle inequality)
thus we can conclude that $i^{*}=\arg \min _{j \in[M]} d_{T V}\left(p_{j}, \hat{p}\right)$, which means that $w . p .>0.9$, we find the right distribution.

4 Design a Hardest Possible Testing Problem

As is shown in previous section, $n_{\text {test }}^{*}$ forms a lower-bound for $n_{\text {learn }}^{*}$. We would therefore like to design a hardest possible testing problem so as to achieve as tighter a lower-bound for $n_{\text {learn }}^{*}$ as possible.

In Fano 2.0, if $\beta=c \epsilon^{2}$, then

$$
\frac{n_{\text {test }}^{*} c \epsilon^{2}+\log 2}{\log M}>p_{\text {correct }} \geq 0.9
$$

which means,

$$
n_{\text {test }}^{*}>\frac{0.9 \log M-\log 2}{c \epsilon^{2}}
$$

Here comes the Intuition: If we can design a testing problem with $M=2^{c_{1} K}$, then we will achieve a lower-bound $\Omega\left(\frac{K}{\epsilon^{2}}\right)$ for $n_{\text {test }}^{*}$, which is also a lower-bound for $n_{\text {learn }}^{*}$. Previously, we showed that $n_{\text {learn }}^{*}$ has a upper-bound $O\left(\frac{K}{\epsilon^{2}}\right)$. As a consequence, the lower-bound and upper-bound for $n_{\text {learn }}^{*}$ will both be tight as they are equal.

The question remains to be how to design a set of distributions $\left\{p_{1}, p_{2}, \ldots, p_{M}\right\}$ which satisfy

$$
\left\{\begin{array}{l}
p_{1}, p_{2}, \ldots, p_{M} \text { are defined over }[K] \\
d_{T V}\left(p_{i}, p_{j}\right)>3 \epsilon, \forall i \neq j \\
\mathcal{D}\left(p_{i}, p_{j}\right)<c \epsilon^{2}, \forall i \neq j \\
M \text { is exponential to } K
\end{array}\right.
$$

We borrow ideas from coding theory to accomplish our design goal. A code \mathcal{C} is a subset of $\{0,1\}^{K}$. $c \in \mathcal{C}$ is a binary string of length K. Let $c[i], 1 \leq i \leq K$ be its $i^{t h}$ bit. The distance of a code is defined as the minimum Hamming distance between two codewords, namely

$$
d(\mathcal{C}) \triangleq \min _{c, d \in \mathcal{C}} d_{H}(c, d)
$$

Claim: There exists a \mathcal{C} such that

$$
\left\{\begin{array}{l}
|\mathcal{C}|=2^{K / 2} \\
d(\mathcal{C})>\frac{K}{8} \\
\forall c \in \mathcal{C},|\{i: c[i]=0\}|=\frac{K}{2}
\end{array}\right.
$$

The proof of this claim is left to reader. Next, we design a mechanism to map every codeword $c \in \mathcal{C}$ to a distribution p_{c} over $[K]$. The mapping is $\forall i \in[K]$,

$$
p_{c}(i)= \begin{cases}\frac{1+30 \epsilon}{K} & \text { if } c[i]=1 \\ \frac{1-30 \epsilon}{K} & \text { if } c[i]=0\end{cases}
$$

Clearly, p_{c} is a valid distribution as there are $\frac{K}{2}$ zeros in c. Additionally, for $c, d \in \mathcal{C}, c \neq d$, we have

$$
\begin{aligned}
d_{T V}\left(p_{c}, p_{d}\right) & =\frac{1}{2} l_{1}\left(p_{c}, p_{d}\right) \\
& \geq \frac{1}{2} d_{H}(c, d) \cdot \frac{60 \epsilon}{K} \\
& >\frac{1}{2} \frac{K}{8} \frac{60 \epsilon}{K}>3 \epsilon
\end{aligned}
$$

The proof of $\mathcal{D}\left(p_{a}, p_{b}\right)<c \epsilon^{2}$, for some constant c is left to the reader as an exercise. Therefore, we have designed a set of distributions with all desired properties, which then can be used to form a hardest possible testing problem.

5 Appendix

1. Convexity of \mathcal{D}

Let $p^{(1)}, p^{(2)}, q^{(1)}, q^{(2)}$ be 4 distributions over the same domain, and $0 \leq \lambda \leq 1$. Let $p=$ $\lambda p^{(1)}+(1-\lambda) p^{(2)}, q=\lambda q^{(1)}+(1-\lambda) q^{(2)}$, then we have

$$
\mathcal{D}(p, q) \leq \lambda \mathcal{D}\left(p^{(1)}, q^{(1)}\right)+(1-\lambda) \mathcal{D}\left(p^{(2)}, q^{(2)}\right)
$$

2. Additivity of \mathcal{D}

Let P, Q be two joint distributions with independent marginals defined over domain $\mathcal{X} \times \mathcal{Y}$, namely $p(x, y)=p(x) p(y), q(x, y)=q(x) q(y)$, then we have

$$
\mathcal{D}(p(x, y), q(x, y))=\mathcal{D}(p(x), q(x))+\mathcal{D}(p(y), q(y))
$$

Remark: The proof for the above two properties is not hard, so I omit it here for simplicity. Also note that they can be easily generalized to the case of n distributions.

