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1 Introduction

Let Ay = {distributions defined over [K]}. nj},,,, is the minimum number of samples needed to
learn a distribution p € Ak, while nj,, is the minimum number of samples to distinguish between
M distributions in Ag. We have found the upper-bounds for nj,,,., and nj,; so far. For the
following two lectures, we will focus on the lower-bounds.

Previously we proved O(§> is a upper-bound for nj,, .; however, we have no idea about the

tightness of this upper-bound. In this lecture, we show the lower-bound for n;, .. is Q(g), which
means both the upper-bound and lower-bound are tight.

2 Fano’s Inequality Revisited

2.1 General Case

Suppose we have a Markov chain X —» Y — X , where X is a random variable over [K], Y are
our observations or samples, and X is the estimate for X. Let Perror = Pr(X # X). Then Fano’s
inequality says,

H(X ’ Y) < Perror - IOgK + 10g2

or equivalently,
I(X;Y) > H(X) = perror - log K — log2

2.2 A special case

If X is uniformly distributed over [K], then H(X) = log K. Substitute it into Fano’s inequality,
and let DPcorrect = 1- DPerror
I(X, Y) 2 Peorrect log K — IOg 2
o I(X:Y) + log 2
; + lo
DPcorrect < logK g

2.3 Fano 2.0

Testing Problem (Multiway classification):
i) Given M distributions {p1,pa,...,pnm} in Ag which satisfy Vi, j € [M], D(pi,pj) < B
ii) sample ¢* uniformly from [M]
iii) generate samples X1, Xo,..., X, from p;
) predict i such that P(z # i*) < 0.1
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Model the testing problem as a Markov chain i* — X — 72, where X = {X1, Xo,..., X}

. Pr(X | i)
I(i%X) = Pr(X | i*)log ———
PIRLLEDY B Pr(x)
1
= Y —D(Pr(X | i), Pr(X))
i*E[M] M

:Z DPrX\z =1), Pr(X))
l:1

where
Pr(X | ) =[] pe(X;)
j=1
M
Pr(X):A Pr(X,i*):‘Z MPT‘XH Z Pr(X |i* =k)
i*€[M] i*e[M] k=1
Mo
D(Pr(X |i*=1),Pr(X)) <) MD(Pr(X |i* =1), Pr(X | i* = k) (convexity of D)
k=1
M n
1 e
= Z i Z D(pi(X;), pr(X;)) (addictivity of D)
k=1"" j=1
Mo
< Z M”ﬁ =np
k=1
thus,
M1
I(i*;X) < —nf =
(13X) < 3 gpnf = np
According to Fano’s inequality, we have
nfB +log2

Pcorrect > log M

For convenience, we call the above inequality Fano 2.0.

3 Learning is Harder than Testing

In this section, we show that nj, .. > nj., which can be intuitively explained as 'Learning is harder
than testing in terms of sample complexity’.

3.1 Description of the Learning and Testing Problem

First, we give a short description of the learning and testing problem we would like to solve.
* Learning: learn p such that w.p. > 0.9,dpry (p,p) < €
* Testing: suppose p1,p2, . .., pm satisfy dry (p;i, pj) > 3€,Vj # 4, the goal is to identify the right
distribution
Note that the distributions we want to learn or identify are all defined over [K].



3.2 Solving Testing through Learning

The method to prove nj,, ., > njf,q is to show that we can actually solve the testing problem through
learning. Put it another way, n*learn samples are sufficient for the testing problem, and as a result,

* *
Nearn > Niest-

Algorithm: Let p;x be the chosen distribution in testing problem. We first estimate p;» by some
learning algorithm. Denote the estimated distribution as p. Then we output arg min;c;pqdrv (p;, P)
as the solution for the testing problem.

Proof of Correctness: Learning algorithm ensures that w.p. > 0.9,dry (pi+,p) < €. For any
j # 1", we have

drv(pj, D) > drv(pj, pir) — drv (D, i) (triangle inequality)
>3 —e=2¢

thus we can conclude that i* = arg mian[M]dTV(pj,]ﬁ), which means that w.p. > 0.9, we find the
right distribution.

4 Design a Hardest Possible Testing Problem

As is shown in previous section, nj, ; forms a lower-bound for nj, ... We would therefore like to de-
sign a hardest possible testing problem so as to achieve as tighter a lower-bound for nj,,,.,, as possible.

In Fano 2.0, if 5 = ce2, then
* 2
ny ce” + log 2
testhgM & > DPcorrect Z 0.9

which means,
. 0.91log M — log 2

n >
test
€es C62

Here comes the Intuition: If we can design a testing problem with M = 21X then we will achieve
a lower-bound Q(g) for nj,y, which is also a lower-bound for n;,_ .. Previously, we showed that

NJourn has a upper-bound O(g) As a consequence, the lower-bound and upper-bound for nj,,,.,,
will both be tight as they are equal.

The question remains to be how to design a set of distributions {pi,p2,...,pa} which satisfy

P1,D2, ..., pym are defined over [K]
drv (pi,pj) > 3¢,Yi # j

D(pi, pj) < c€*,Yi # j

M is exponential to K

We borrow ideas from coding theory to accomplish our design goal. A code C is a subset of {0,1}%.
c € C is a binary string of length K. Let c[i],1 < i < K be its i*" bit. The distance of a code is
defined as the minimum Hamming distance between two codewords, namely

A .
d(C) = min dy(c, d)

)



Claim: There exists a C such that
c] = 22
ae) > &
VeeC,|{i:clij=0} =%

The proof of this claim is left to reader. Next, we design a mechanism to map every codeword ¢ € C
to a distribution p. over [K]. The mapping is Vi € [K],

30 if ¢f]
1-80¢ if cfy]

pc(i) = (1)

Clearly, p. is a valid distribution as there are % zeros in c¢. Additionally, for ¢,d € C, ¢ # d, we have

drv (pe,pd) =

The proof of D(pa,py) < ce?, for some constant c is left to the reader as an exercise. Therefore, we
have designed a set of distributions with all desired properties, which then can be used to form a
hardest possible testing problem.

5 Appendix

1. Convexity of D
Let p(),p3) ¢ ¢() be 4 distributions over the same domain, and 0 < A < 1. Let p =
AW 4+ (1= XN)p® g = Ag™M + (1 — N)¢®?), then we have

D(p,q) < AD(pW,¢M) + (1 - NDp®P, ¢?)

2. Additivity of D
Let P,Q be two joint distributions with independent marginals defined over domain X x ),

namely p(z,y) = p(x)p(y), ¢(z,y) = q(x)q(y), then we have
D(p(z,y),a(z,y)) = D(p(x),q(z)) + D(p(y), a(y))

Remark: The proof for the above two properties is not hard, so I omit it here for simplicity. Also
note that they can be easily generalized to the case of n distributions.
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