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1 Introduction

Let ∆K = {distributions defined over [K]}. n∗learn is the minimum number of samples needed to
learn a distribution p ∈ ∆K , while n∗test is the minimum number of samples to distinguish between
M distributions in ∆K . We have found the upper-bounds for n∗learn and n∗test so far. For the
following two lectures, we will focus on the lower-bounds.

Previously we proved O(K
ε2 ) is a upper-bound for n∗learn; however, we have no idea about the

tightness of this upper-bound. In this lecture, we show the lower-bound for n∗learn is Ω(K
ε2 ), which

means both the upper-bound and lower-bound are tight.

2 Fano’s Inequality Revisited

2.1 General Case

Suppose we have a Markov chain X → Y → X̂, where X is a random variable over [K], Y are
our observations or samples, and X̂ is the estimate for X. Let perror = Pr(X̂ 6= X). Then Fano’s
inequality says,

H(X | Y ) ≤ perror · logK + log 2

or equivalently,
I(X;Y ) ≥ H(X)− perror · logK − log 2

2.2 A special case

If X is uniformly distributed over [K], then H(X) = logK. Substitute it into Fano’s inequality,
and let pcorrect = 1− perror,

I(X;Y ) ≥ pcorrect · logK − log 2

or
pcorrect ≤

I(X;Y ) + log 2
logK

2.3 Fano 2.0

Testing Problem (Multiway classification):
i) Given M distributions {p1, p2, . . . , pM} in ∆K which satisfy ∀i, j ∈ [M ],D(pi, pj) ≤ β
ii) sample i∗ uniformly from [M ]
iii) generate samples X1, X2, . . . , Xn from pi∗

iv) predict î such that P (̂i 6= i∗) < 0.1



Model the testing problem as a Markov chain i∗ → X → î, where X = {X1, X2, . . . , Xn}.

I(i∗;X) =
∑

i∗∈[M ]
Pr(i∗)

∑
X

Pr(X | i∗) log Pr(X | i
∗)

Pr(X)

=
∑

i∗∈[M ]

1
M
D
(
Pr(X | i∗), P r(X)

)

=
M∑
l=1

1
M
D
(
Pr(X | i∗ = l), P r(X)

)
where

Pr(X | i∗) =
n∏
j=1

pi∗(Xj)

Pr(X) =
∑

i∗∈[M ]
Pr(X, i∗) =

∑
i∗∈[M ]

1
M
Pr(X | i∗) =

M∑
k=1

1
M
Pr(X | i∗ = k)

D
(
Pr(X | i∗ = l), P r(X)

)
≤

M∑
k=1

1
M
D
(
Pr(X | i∗ = l), P r(X | i∗ = k

)
(convexity of D)

=
M∑
k=1

1
M

n∑
j=1
D
(
pl(Xj), pk(Xj)

)
(addictivity of D)

≤
M∑
k=1

1
M
nβ = nβ

thus,

I(i∗;X) ≤
M∑
i=1

1
M
nβ = nβ

According to Fano’s inequality, we have

pcorrect ≤
nβ + log 2

logM
For convenience, we call the above inequality Fano 2.0.

3 Learning is Harder than Testing

In this section, we show that n∗learn ≥ n∗test, which can be intuitively explained as ’Learning is harder
than testing in terms of sample complexity’.

3.1 Description of the Learning and Testing Problem

First, we give a short description of the learning and testing problem we would like to solve.
* Learning: learn p̂ such that w.p. > 0.9, dTV (p, p̂) < ε
* Testing: suppose p1, p2, . . . , pM satisfy dTV (pi, pj) > 3ε,∀j 6= i, the goal is to identify the right

distribution
Note that the distributions we want to learn or identify are all defined over [K].
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3.2 Solving Testing through Learning

The method to prove n∗learn ≥ n∗test is to show that we can actually solve the testing problem through
learning. Put it another way, n∗learn samples are sufficient for the testing problem, and as a result,
n∗learn ≥ n∗test.

Algorithm: Let pi∗ be the chosen distribution in testing problem. We first estimate pi∗ by some
learning algorithm. Denote the estimated distribution as p̂. Then we output arg minj∈[M ]dTV (pj , p̂)
as the solution for the testing problem.

Proof of Correctness: Learning algorithm ensures that w.p. > 0.9, dTV (pi∗ , p̂) < ε. For any
j 6= i∗, we have

dTV (pj , p̂) ≥ dTV (pj , pi∗)− dTV (p̂, pi∗) (triangle inequality)
≥ 3ε− ε = 2ε

thus we can conclude that i∗ = arg minj∈[M ]dTV (pj , p̂), which means that w.p. > 0.9, we find the
right distribution.

4 Design a Hardest Possible Testing Problem

As is shown in previous section, n∗test forms a lower-bound for n∗learn. We would therefore like to de-
sign a hardest possible testing problem so as to achieve as tighter a lower-bound for n∗learn as possible.

In Fano 2.0, if β = cε2, then
n∗testcε

2 + log 2
logM > pcorrect ≥ 0.9

which means,
n∗test >

0.9 logM − log 2
cε2

Here comes the Intuition: If we can design a testing problem with M = 2c1K , then we will achieve
a lower-bound Ω(K

ε2 ) for n∗test, which is also a lower-bound for n∗learn. Previously, we showed that
n∗learn has a upper-bound O(K

ε2 ). As a consequence, the lower-bound and upper-bound for n∗learn
will both be tight as they are equal.

The question remains to be how to design a set of distributions {p1, p2, . . . , pM} which satisfy
p1, p2, . . . , pM are defined over [K]
dTV (pi, pj) > 3ε,∀i 6= j

D(pi, pj) < cε2,∀i 6= j

M is exponential to K

We borrow ideas from coding theory to accomplish our design goal. A code C is a subset of {0, 1}K .
c ∈ C is a binary string of length K. Let c[i], 1 ≤ i ≤ K be its ith bit. The distance of a code is
defined as the minimum Hamming distance between two codewords, namely

d(C) , min
c,d∈C

dH(c, d)
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.

Claim: There exists a C such that
|C| = 2K/2

d(C) > K
8

∀c ∈ C,
∣∣{i : c[i] = 0}

∣∣ = K
2

The proof of this claim is left to reader. Next, we design a mechanism to map every codeword c ∈ C
to a distribution pc over [K]. The mapping is ∀i ∈ [K],

pc(i) =
{1+30ε

K if c[i] = 1
1−30ε
K if c[i] = 0

Clearly, pc is a valid distribution as there are K
2 zeros in c. Additionally, for c, d ∈ C, c 6= d, we have

dTV (pc, pd) = 1
2 l1(pc, pd)

≥ 1
2dH(c, d) · 60ε

K

>
1
2
K

8
60ε
K

> 3ε

The proof of D(pa, pb) < cε2, for some constant c is left to the reader as an exercise. Therefore, we
have designed a set of distributions with all desired properties, which then can be used to form a
hardest possible testing problem.

5 Appendix

1. Convexity of D
Let p(1), p(2), q(1), q(2) be 4 distributions over the same domain, and 0 ≤ λ ≤ 1. Let p =

λp(1) + (1− λ)p(2), q = λq(1) + (1− λ)q(2), then we have

D(p, q) ≤ λD(p(1), q(1)) + (1− λ)D(p(2), q(2))

2. Additivity of D
Let P,Q be two joint distributions with independent marginals defined over domain X × Y,

namely p(x, y) = p(x)p(y), q(x, y) = q(x)q(y), then we have

D
(
p(x, y), q(x, y)

)
= D

(
p(x), q(x)

)
+D

(
p(y), q(y)

)
Remark: The proof for the above two properties is not hard, so I omit it here for simplicity. Also
note that they can be easily generalized to the case of n distributions.
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