ECE 6980 Algorithmic and Information-Theoretic Methods in Data Science

Instructor: Jayadev Acharya Scribe: Qian Zhang Lecture #6 September 13, 2017

1 Review

- Reduction from learning to testing,
- Lower bound of $O(\frac{k}{\epsilon^2})$ for learning distributions over [k],
- Coding theoretic: $p_1, \cdots, p_{2^{ck}}, d_{\text{TV}}(p_i, p_j) > 3\varepsilon$ for any i, j, j
- KL divergence adds up over product distribution,
- Proving lower bound on learning Gaussian

2 Le Cam's two point method

Given \mathbb{P} and \mathbb{Q} as two distribution collections, the goal is to prove lower bounds on testing \mathbb{P} and \mathbb{Q} . Uniformity testing is a special case when $\mathbb{P} = \{U\}, \mathbb{Q} = \{q \mid d_{\mathrm{TV}}(q, U) \geq \varepsilon\}$ where U is uniform distribution over support [k].

An easy attempt is to take one distribution $p \in \mathbb{P}$ and $q \in \mathbb{Q}$. Intuitively, lower bound on testing p and q should be a lower bound for testing \mathbb{P} and \mathbb{Q} . With p, q and $d_{\text{TV}}(p,q) = \epsilon$, we have

$$\Omega(\frac{1}{\varepsilon}) < n_{\text{test}} < O(\frac{1}{\varepsilon^2})$$

The easy attempt above may run into trouble in complexity when the dimension of the problem increases.

A more sophisticated attempt:

Consider any distribution (priors) μ over \mathbb{P} and ν over \mathbb{Q} , with probability $\frac{1}{2}$, pick $\mathbb{P}(u)$ or $\mathbb{Q}(u)$. For \mathbb{P} , we will pick $p \in \mathbb{P}$ according to μ . Then, we generate n samples from p. Similarly, for \mathbb{Q} , we will pick $q \in \mathbb{Q}$ according to ν . Then, we generate n samples from q.

Given X_1, \dots, X_n i.i.d, we have

$$\mathbb{P}(X_1,\cdots,X_n) = \sum_{p\in\mathbb{P}} p(X_1,\cdots,X_n)\mu(p) = \mu\mathbb{P}^{\otimes n}$$

Similarly,

$$\mathbb{Q}(X_1,\cdots,X_n) = \sum_{q\in\mathbb{Q}} q(X_1,\cdots,X_n)\nu(q) = \nu\mathbb{Q}^{\otimes n}$$

Now, we formally define Le Cam's two points method:

Definition 1. For any u, v, the number of samples needed to test between $\mu \mathbb{P}^{\otimes n}$ and $\nu \mathbb{Q}^{\otimes n}$ is a lower bound on the number of samples to test \mathbb{P}, \mathbb{Q} .

Example in uniform testing 3

Given $\mathbb{P} = \{U\}, \mathbb{Q} = \{q : d_{\mathrm{TV}}(q, U) \geq \varepsilon\}$. We can set $\mu(U) = 1$. However for q(i), we have following two constructions:

We can set a distribution with q(i) for $i = 1, \dots, k$ such that

$$q(i) = \{ \frac{1+2\varepsilon}{k} \quad \text{or} \quad \frac{1-2\varepsilon}{k} \}$$

We can also set $\overline{Z} = Z_1, Z_2, \cdots, Z_{\frac{k}{2}} \in \{\pm 1\}^{\frac{k}{2}}$ such that

$$q_{\bar{Z}}(2i-1) = \frac{1+2\varepsilon Z_i}{k}, \quad q_{\bar{Z}}(2i) = \frac{1-2\varepsilon Z_i}{k}$$

Based on the second construction of q, we have $\mu \to \{U\}$, $\nu \to \{2^{\frac{k}{2}} \text{ distributions}\}$. Unless $n > \sqrt{k}/\varepsilon^2$ with $(\varepsilon < 0.2)$, $d_{\text{TV}}(U^{\otimes n}, \nu q_{\bar{Z}}^{\otimes n})$ is small. Now, we will introduce χ^2 -distance since d_{TV} does not have nice property with product distribution. Given p, q over \mathcal{X} , χ^2 -distance is

$$\chi^2(p,q) := \sum_{x \in \mathcal{X}} \frac{(p(x) - q(x))^2}{q(x)} = \left(\sum_x \frac{p(x)^2}{q(x)}\right) - 1$$