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1 Introduction

In the last lecture, we covered Le Cam’s two-point theorem.

In this lecture, we will continue the proof of the lower bound for uniformity testing.

We claimed that, because we are sampling Xi,..., X, independently, it is enough to look at
Ny, ..., Nk (these are called sufficient statistics), the number of times each symbol i appears.
Recall we constructed 2572 distributions by generating a string Z = Z; ... Zg /2, With Prob(Z; =

1) = Prob(Z; = —1) = 1/2, where Z;’s are independent. Note that there are 2K/2 such strings.
Given Z, we construct a distribution p over K elements such that:
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Note that dry (pz,u) = 5¢,VZ.
We will show that we need Q(‘i—?) samples if we sample uniformly at random from the set of Z.
2 Lower bound for uniformity testing

Theorem 1. Q(g) is a lower bound for uniformity testing.

Proof. Throughout the rest of the proof, we assume Poisson sampling.
We first consider the case where p = u, so N; ~ Poi(n - +). Then:

Probp:u(lenl,...,NK— = —nH
In general,we have:
1
PTOb(Nl :nl,...,NK = TLK) = WZPTObPZ(Nl = nl,...,NK = nK)
Z

We leave it as an exercise to the reader to show that we also have:
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Let’s first compute Prob(N; = ny, No = ngy). By conditioning on Z;, we get that:
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We can extend this to obtain an expression for Prob(Ny = ny,...,Nx = ng):
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Note that if you set € = 0, then you obtain exactly the expression for when p = u.

Let ©*" denote the process obtained from picking n samples independently from the uniform distribu-
tion, and p7" the process obtained from picking n samples from the distribution constructed, given Z.

Recall from Assignment 1 that the optimal testing scheme gives us a probability of error
P = 1 dTV (p, q) for arbitrary distribution p,q. Assume we want P* < 0.1, then we need
drv (P} *” *") > 0.8, and consequently (p ,u*) > 1.28 (see Appendix for explanation).
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We compute x*(p3", u*") = E,_.., [u” -1

*N o /
PP (N1 =n1,...,Ng = 1
— 1 n1 ng 1 o ni 1 na
w(Ny =nq,...,Ng = 1;[2( + 5¢) —56)" + (1 — 5¢)™ (1 + 5¢) )
P K/2 1
e L‘Z"] R l [T (456 (1= 56" + (1= 5™ (1 + 5&“)]
=1
K/2 .
- %, l2 ((1+56)™ (1 = 5e)"™ + (1 = 5e)™ (1 + 56)”2)]
=1
B2y
= H 5 2( (5e)n(1+5e)/K | o(=5e)n(1=5¢)/K 4 o(=5¢)n(1+5¢)/K _ ,(5¢)n(1=5¢)/K
i=1

+ €(5e)~n(1—56)/K . e(—5e)~n(1—i—55)/K +€(—5e)~n(1—55)/K . e(5e)~n(1+56)/K>

B 650n€2/K + e—50n62/K
B 2
K/2

50ne2 /K + —50ne2 /K
— XQ(pEn7U*n) :<€ 26 > 1

K/2




where the third equality follows from the fact that each Z; is drawn independently, so we can pull
the product outside of the expectation.

By Taylor series expansion, we have that # < e*"/2. We use this to obtain the upper bound on
the Xz(p*Z”, w):
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3 Mixture Models

We now change gears to discuss mixture models, used to characterized more complex distributions
than those we’ve seen thus far. The high-level explanation is that there are K underlying distributions,
one is chosen according to some probability distribution, and samples are generated according to
the chosen distribution.

3.1 Motivation

The motivation for mixture models arose around 1895, with Karl Pearson’s crab experiment. In his
experiment, he collected 1,000 crabs and took the ration of their height and their weight, expecting
to observe a normal distribution. However, what he observed was a bimodal distribution, resembling
the figure below:

Mixture models have more recently been used for tasks such as digit recognition, and have found
applications in such things as housing prices.

3.2 Setup

e K distributions p1,...,px
e K corresponding weights wy, ..., wg, w; > 0,>,w; =1
o p(x) = S wipi(z)



e Problem: You don’t get to see which distribution p; each observation was drawn from.

3.3 Gaussian Mixture Model

We consider the most simple case, a mixture of K Gaussian distributions, with d = 1. We have two
goals:
1. Goal 1: Given nj samples, output (1, p1), ..., (Wx, Pr) such that dTV(Zfil Wi, Zfil wip;) <
€.
2. Goal 2: Given ngy samples, output p such that dry(p,p) < €/2.

Clearly, accomplishing goal 2 is easier than accomplishing goal 1. However, it turns out that the
sample complexity of these two goals is the same (up to order €). It is the time complexity of goal 1
that is much greater than that of goal 2.To be more precise, the time complexity of goal 2 is linear
in the sample size, whereas for goal 1, there is no known algorithm that does better than solving it
in time that is exponential in K.

Claim 1. n; < ng

Proof. Let ng be such that dry (p,p) < €/2.

Once we have our distribution p the problem simply becomes approximating p through a mixture of
K Gaussians. That is, we can construct all possible mixtures of K Gaussians by going through all
possible tuples (wj, p;), i € [K], and find the mixture which best approximates p.

Let p* be that mixture, with dry (p*,p) < €/2. By the triangle inequality, dry (p*,p) < e. O

We do not show the following claim:

Claim 2. The sample complexity of goals 1 and 2 is (:)(652)

Appendix

We used the following facts in our proof of the lower bound for uniformity testing:
e For any two distributions p,¢: x(p,q) > D(p,q) > 2 - drv(p,q)>.

e An alternative expression for x%(p, q):

e Suppose X ~ Poi()\), and a > 0. Then, E[a¥] = eMo—1),
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