
ECE 6980
Algorithmic and Information-Theoretic Methods in Data Science

Instructor: Jayadev Acharya Lecture #7
Scribe: Cody Freitag 20th September, 2017

1 Introduction

In this lecture, we will show a general proper learning algorithm. We start by solving a simpler
problem of approximating an unknown distribution by the closest distribution in a known set. Then
we use that algorithm as a black box for general learning.

2 Choosing a Density Estimate
1For the standard distribution learning problem, you are given samples from some unknown
distribution p, and you want to estimate any p̂ that is “close” to p. In developing a general algorithm
for this problem, we first focus our attention on a restricted version of this problem where we must
choose p̂ from a known set of distributions. We formalize this idea in Problem 1.

Problem 1 (Choosing a Density Estimate).
Given:
• Distributions p1, . . . , pM (known)
• Samples x1, . . . , xn ∼ p (unknown)

Goal:
• Output arg mini dTV(p, pi)

For general distributions, we can’t solve this problem, so we instead try to find an approximate
solution. The approximate solution should still be one of the original distributions and be within
some multiplicative factor α and additive factor of β within the optimal solution. Also, we want to
succeed with at least some fixed constant probability, say 0.95.

Approximate Goal:
• Output p∗ ∈ {p1, . . . , pM} such that w.p. > 0.95, dTV(p, p∗) ≤ α ·mini dTV(p, pi) + β.

We will show in this section that we can achieve this approximate goal for any possible inputs
for α = 9 and β = O(

√
logM
n). We’ll first solve a simpler case where M = 2 and extend this to the

case of general M .

2.1 The Case of M = 2
Given two known possible distributions, p1 and p2, we first define A = {x : p1(x) > p2(x)}. We
draw x1, . . . , xn ∼ p, and compute a test statistic of what fraction of the drawn sample are in A.

1Almost all of the material in this section comes from Chapter 6 of Devroye and Lugosi’s book, Combinatorial
Methods in Density Estimation [DL01].

Finally, we output the distribution whose probability mass on the elements in A is closest to our
test statistic. Intuitively, if p is closer in total variation distance to p1, it should have a greater mass
on A than p2. We explicitly state this idea, which we call Scheffé’s Estimator, in Algorithm 1.

Algorithm 1 Scheffé’s Estimator
Input: p1, p2 (known), p (unknown)

1: Let A = {x : p1(x) > p2(x)}.
2: Draw n samples x1, . . . , xn ∼ p.
3: Compute µn(A) = 1

n |{j : xj ∈ A}|.

4: Output p∗ =
{
p1 if |p1(A)− µn(A)| < |p2(A)− µn(A)|
p2 o.w.

.

Theorem 1. Let ∆ = min{dTV(p, p1), dTV(p, p2)}. Given x1, . . . , xn ∼ p, Scheffé’s Estimator of
Algorithm 1 computes p∗ ∈ {p1, p2} such that w.p. > 0.95,

dTV(p, p∗) ≤ 3∆ +O

(1√
n

)
.

Proof. We first show that dTV(p, p∗) ≤ 3∆ + 2|p(A)− µn(A)|.
Let

ξ =
{
p1 if dTV(p, p1) < dTV(p, p2)
p2 o.w.

,

then dTV(p, p∗) ≤ dTV(p, ξ) + dTV(ξ, p∗) by the triangle inequality. Note that by definition
dTV(p, ξ) = ∆, so we need to show that dTV(ξ, p∗) ≤ 2∆ + 2|p(A)− µn(A)|.

Note that when ξ = p∗, dTV(xi, p∗) = 0. So we need to bound the events when ξ = p1, p
∗ = p2

or ξ = p2, p
∗ = p1. Let E be the event that ξ = p1, p

∗ = p2.

dTV(ξ, p∗) · IE = (p1(A)− p2(A)) · IE

= (p1(A)− µn(A)) · IE + (µn(A)− p2(A)) · IE

≤ 2(p1(A)− µn(A)) · IE (3)
= 2(p1(A)− p(A)) · IE + 2(p(A)− µn(A)) · IE

≤ 2∆ + 2|p(A)− µn(A)|

Line (3) follows because p1(A) ≥ p2(A) and p∗ = p2. This implies that µn(A) ≤ 1
2 · (p1(A) + p2(A)).

Thus, µn(A)− p2(A) ≤ p1(A)− µn(A).
We now make a similar argument for the case when ξ = p2 and p∗ = p1. Let E′ be the

corresponding event.

dTV(ξ, p∗) · IE′ = (p1(A)− p2(A)) · IE′

= (p1(A)− µn(A)) · IE′ + (µn(A)− p2(A)) · IE′

≤ 2(µn(A)− p2(A)) · IE′ (4)
= 2(p(A)− p2(A)) · IE′ + 2(µn(A)− p(A)) · IE′

≤ 2∆ + 2|p(A)− µn(A)|.

2

Line (4) follows because p1(A) ≥ p2(A) and p∗ = p1, so µn(A) ≥ 1
2 · (p1(A) + p2(A)). Thus,

µn(A)− p2(A) ≥ p1(A)− µn(A).
Putting these pieces together, we get that

dTV(p, p∗) ≤ dTV(p, ξ) + dTV(ξ, p∗)
≤ ∆ + dTV(ξ, p∗) · (IE + IE′)
≤ 3∆ + 2|p(A)− µn(A)|

We now briefly argue why 2|p(A) − µn(A)| ≤ O(1√
n

). Note n · µn(A) is the sum of n i.i.d.
Bernoulli random variables with mean p(A). Using Chebyshev’s inequality, we get

Pr(|n · µn(A)− n · p(A)| > c ·
√
n) ≤ n · p(A) · (1− p(A))

c2 · n
≤ 1

4c2

where the second inequality follows because p(A) · (1 − p(A)) ≤ 1
4 for any value of p(A) ∈ [0, 1].

Normalizing by a factor of n implies that |p(A)− µn(A)| ≤ O(1√
n

) with probability at least 1− δ
for any constant δ > 0. In particular, with probability at least 0.95, we have that

dTV(p, p∗) ≤ 3∆ + 2|p(A)− µn(A)|

≤ 3∆ +O

(1√
n

)
.

2.2 The Case of General M

We will use Scheffe’s Estimator for M = 2 as a black box to construct an estimator for general M ,
which we will call the General Scheffé’s Estimator.

The high level idea is that we run a “match” using Scheffé’s Estimator between every pair of
M known probability distributions. We say that a distribution pi “wins” the match against pj if
Scheffé’s Estimator outputs pi. The algorithm then outputs the distribution with the most wins.
Intuitively, any distribution close to p should win against many other distributions, so this should
find a good approximation. We explicitly state the General Scheffé’s Estimator in Algorithm 2.

Algorithm 2 General Scheffé’s Estimator
Input: p1, . . . , pM (known), p (unknown)

1: For each i 6= j, run Scheffé’s Estimator on pi, pj for p.
2: Let Wi be the number of times pi is output by Scheffé’s estimator.
3: Output pi such that i = arg maxiWi.

Theorem 2. Let ∆ = mini dTV(p, pi). Given x1, . . . , xn ∼ p, General Scheffé’s Estimator of
Algorithm 2 computes p∗ ∈ {p1, . . . , pM} such that w.p. > 0.95,

dTV (p, p∗) ≤ 9∆ +O

√ logM
n

 .
3

Proof. For the match between pi and pj , let ∆i,j = min{dTV(p, pi), dTV(p, pj)} and Ai,j = {x :
pi(x) > pj(x)}. In the proof of Theorem 1, we showed that for a single “match” between pi, pj , the
winner p∗ must satisfy

dTV(p, p∗) ≤ 3∆i,j + 2|p(Ai,j)− µn(Ai,j)|.

However, note the match between pi and pj depends on the random variable |p(A)− µn(A)|. Thus,
we need a bound that holds for all

(M
2
)

matches rather than just a single match. This means the
general bound we get for any match between pi, pj is

dTV(p, p∗) ≤ 3 min{dTV(p, pi), dTV(p, pj)}+ 2 max
Ai,j
{|p(Ai,j)− µn(Ai,j)|}.

Each random variable µn(Ai,j) is a binomial distribution with mean p(Ai,j), so it is subgaussian.
Subtracting p(A) and taking the absolute value to get |p(A)−µn(A)| doesn’t affect the tail behavior,
so |p(Ai,j − µn(Ai,j)| is also subgaussian. In particular, this implies that the expectation of the
maximum of M2 such random variables is at most

√
logm times the expected value of a single

random vairable, which we showed was 1√
n

. This implies there is some constant c such that for any
constant δ > 0,

dTV(p, p∗) ≤ 3 min{dTV(p, pi), dTV(p, pj)}+ c ·

√
logm
n

with probability at least 1− δ for all matches run in the General Scheffe’s Estimator.
Let ∆min = mini,j ∆i,j . We define the following four groups that the distributions p1, . . . , pM

can fall into.
• G1 = {pi : dTV(p, pi) = ∆}
• G2 = {pi : dTV(p, pi) ∈ (∆, 3∆ + c ·

√
logm
n]}

• G3 = {pi : dTV(p, pi) ∈ (3∆ + c ·
√

logm
n , 9∆ + 4c ·

√
logm
n]}

• G4 = {pi : dTV(p, pi) ∈ (9∆ + 4c ·
√

logm
n ,∞)}

Note that any distribution pi in G1 must win against any pj in G3 or G4. Furthermore, there must
be at least one distribution in G1 by definition of ∆. This means that some distribution pi wins
at least |G3| + |G4| matches. Now consider any distribution p` in G4. p` must lose against any
distribution in G1 or G2. In particular, any p` in G4 can win at most |G3|+ |G4| − 1 matches. This
means that any distribution that wins the most matches must be in G1, G2, or G3, so

dTV(p, p∗) ≤ 9∆ +O

√ logm
n

 .

Note this theorem implies that for our algorithm to output p∗ ∈ {p1, . . . , pM} with dTV(p, p∗) ≤
9∆ +O(ε), we requires that n = Ω(logM

ε2).

3 A General Learning Algorithm

Using the General Scheffé’s Estimator for choosing a density estimate given in the previous section,
we construct a general learning algorithm. The main idea is to first sample a set of points from

4

p that allows you to construct a lot of candidate distributions. Then you can use the result of
Theorem 2 to pick one that is closest to p. As long as some candidate distribution is close to p, this
will yield a good distribution.

We’ll see how this method is applied to learning mixtures of k 1-dimensional Gaussians. We
start with the easier case of k = 1 and then show how this can be generalized to learn a mixture of
k Gaussians. We’ll finish with a discussion of how this can be applied to arbitrary distributions.

3.1 Learning a Single Gaussian

Suppose we want to learn a single Gaussian p = N (µ, σ2). If we can estimate the mean µ by µ̂ and
variance σ2 by σ̂2, then that gives an estimate p̂ = N (µ̂, σ̂2) close to p. Our algorithm will sample
n1 points from p. We will consider every sampled point as possible values for µ and use the squared
distance between every pair of points as possible values for σ2. We consider all distributions with
those mean and variance values, and apply the General Scheffé’s Estimator on those distributions
to find one close to p. We explicitly state this idea in Algorithm 3.

Algorithm 3 Learning Algorithm for a Single Gaussian
Input: p = N (µ, σ2) (known Gaussian with unknown parameters)

1: Draw n1 samples x1, . . . , xn1 ∼ p.
2: Let µ̄ = {x1, . . . , xn1} and σ̄2 = {(xi − xj)2 : i 6= j ∈ [n1]}.
3: Let P = {N (µ′, σ′2) : µ′ ∈ µ̄, σ′2 ∈ σ̄}.
4: Let p∗ ∈ P be the output of General Scheffé’s Estimator on P for p.
5: Output p̂ = p∗.

We first start off by showing that if n1 is large enough, then some choice of N (µ′, σ′2) for µ′ ∈ µ̄
and σ′2 ∈ σ̄2 is close to N (µ, σ2).

Lemma 1. There exists a constant c such that if n1 ≥ c
ε2 , then with probability > 0.95 some µ′ ∈ µ̄

and σ′2 ∈ σ̄2 from Algorithm 3 satisfy

dTV(N (µ′, σ′2),N (µ, σ2)) ≤ ε.

Proof. With n1 = O(1
ε2) samples, you can ensure with probability > 0.95 that there are some

i 6= j ∈ [n1] such that xi ∈ [µ− σε2

4 , µ+ σε2

4] and xj ∈ [µ+ σ − σε2

4 , µ+ σ + σε2

4]. Let µ′ = xi and
σ′ = xj − xi.

You can show that the KL divergence between two gaussians is

KL(N (µ1, σ
2
1),N (µ2, σ

2
2)) = log σ2

σ1
+ σ2

1 + (µ2 − µ1)2

2σ2
2

− 1
2

We use the fact that |µ′−µ| ≤ σε2

4 , σ′ < (1 + ε2

2)σ, and ε < 1. Then plugging in µ1 = µ′, σ1 = σ′,
µ2 = µ, and σ2 = σ to the above equation, we get

KL(N (µ′, σ′2),N (µ, σ2)) ≤ ε4

16 + ε2

2 + log(1 + ε2

2)

≤ 2ε2

5

Applying Pinsker’s inequality, this implies that

dTV(N (µ′, σ′2),N (µ, σ2)) ≤
√

1
2KL(N (µ′, σ′2),N (µ, σ2))

≤
√

1
2(2ε2)

≤ ε

Theorem 3. There exists some constant c such that with n ≥ c log 1
ε

ε2 samples, Algorithm 3 computes
p̂ such that dTV(p, p̂) ≤ ε with probability at least 0.9.

Proof. Lemma 1 implies that there is some constant c′ such that after n1 ≥ c′

ε′2 samples, some pi in
P has dTV(p, pi) ≤ ε′ with probability at least 0.95.

Let M be the number of distributions in P . Then M = n3
1 ≥ c′3

ε′6 . Then with probability at least
0.9, running the General Scheffé’s Estimator for M distributions returns a distribution p∗ ∈ P such
that dTV(p, p∗) ≤ 9ε′+O(

√
logM
n). Note that there exists some constant c′′ such that if n > c′′ logM

ε2 ,

then O(
√

logM
n) is bounded by ε/2. Also, we can set ε′ = ε/18. This implies that dTV(p, p∗) ≤ ε.

The total number of samples used n must be at least

n ≥ n1 + c′′ logM
ε2

≥ c′

ε′2
+
c′′ log c′3

ε′6

ε2

= Ω
(

log 1
ε

ε2

)
The probability of success is at least 0.9 by a union bound since there will be a good distri-

bution pi ∈ P with probability at least 0.95 and the General Scheffé’s Estimator will find a good
approximation with at least probability 0.95.

3.2 Learning a Mixture of k Gaussians

We now briefly show how this general learning algorithm can be applied to estimating a mixture
of k Gaussians. There are two main differences between this algorithm and the case where k = 1.
First, our proposed distributions P must now be a sum of k Gaussians with unknown parameters
and possible weights. This means we need to estimate 3k parameters instead of just 2. The second
difference is that to account for this, we need to use more initial samples n1 to construct the set P .
We highlight these differences in Algorithm 4.

We state the following Lemma without proof for sake of brevity and because the idea is similar
to the proof of Lemma 1.

Lemma 2. If n1 = Ω(k
ε2), then with probability > 0.95 some wx1 , . . . , wxk ∈ w̄, µi1 , . . . , µik ∈ µ̄

and σ2
j1 , . . . , σ

2
jk
∈ σ̄2 from Algorithm 4 satisfy

dTV

(
k∑
`=1

wx` · N (µi` , σ
2
j`

), p
)
≤ ε.

6

Algorithm 4 Learning Algorithm for a Single Gaussian
Input: p (known to be a sum of k Gaussians with unknown parameters)

1: Draw n1 samples x1, . . . , xn1 ∼ p.
2: Let µ̄ = {x1, . . . , xn1}, σ̄2 = {(xi − xj)2 : i 6= j ∈ [n1]}, and w̄ = { εk ,

2ε
k , . . . , 1}.

3: Let P = {
∑k
`=1wx` · N (µi` , σ2

j`
) : wx` ∈ w̄, µi` ∈ µ̄, σ2

j`
∈ σ̄2}.

4: Let p∗ ∈ P be the output of General Scheffé’s Estimator on P for p.
5: Output p̂ = p∗.

Theorem 4. If n = Ω(k log k
ε

ε2) samples, Algorithm 4 computes p̂ such that dTV(p, p̂) ≤ ε with
probability at least 0.9.

Proof. The proof is very similar to Theorem 3 except for the number of distributions input to the
Genreal Scheffé’s Estimator, M , so we focus only on that.

From Lemma 2, n1 = Ω(k
ε2) samples suffice to find a good distribution with probability at least

0.9. Given this, there are nk1 choices for µ, n2k
1 choices for σ2, and (kε)k choices for w. This means in

total there are M = (n3
1
k
ε)k = Ω((k4

ε7)k) total distributions input to the General Scheffé’s Estimator.
Thus, the total number of samples used n must be at least

n ≥ n1 + Ω
(logM

ε2

)
= Ω

(
k log k

ε

ε2

)
.

3.3 Learning Arbitrary Distributions

We have seen two examples of how to use a solution to Problem 1 to construct a general learning
algorithm. What about for arbitrary distributions?

The general learning algorithm depends on the “complexity” of the distribution to be learned.
Intuitively, a mixture of k > 1 Gaussians is more complex than a single Gaussian, so learning k > 1
Gaussians requires more samples. This notion of “complexity” is related to the metric entropy of a
set of distributions.

3.3.1 Metric Entropy

We define the metric entropy by first introducing the concepts of an ε-cover and the covering number
of a space.

Definition 1 (ε-Cover). Let (X , d) be a metric space. A set C = {x1, . . . , xm} is an ε-cover if for
every x ∈ X there is some xi ∈ C such that d(x, xi) < ε.

Definition 2 (Covering Number). The covering number for a metric space (X , d), Nε, is the smallest
M such that there exists an ε-cover of size M .

In our application, we consider the metric space of probability distributions from some class, say
a mixture of gaussians, under total variation distance. We then define the metric entropy to be the
logarithm of the covering number.

7

Definition 3 (Metric Entropy). Let (X , d) be a metric space with covering number Nε. The metric
entropy is defined to be logNε.

3.3.2 The Metric Entropy Learning Algorithm

We now give the high level of the general learning algorithm. Suppose we know that we are trying
to learn a distribution p from a space of distributions P. Then we can use an ε-cover of Nε different
distributions covering P. We plug all of these distributions into the General Scheffé’s Estimator for
p and get back a close distribution. This gives the following theorem.

Theorem 5. Let p be an unknown distribution in a space P. Let logNε be the metric entropy
of P under dTV. There exists an algorithm using n = Ω(logNε

ε2) samples that outputs p̂ such that
dTV(p̂, p) ≤ ε.

Note that the above theorem only gives good guarantees on space complexity. However, the
algorithm as given requires N2

ε calls to Scheffé’s Estimator given in Algorithm 1. This means that
when Nε is large, the algorithm isn’t very practical. Unfortunately, this is the best known learning
algorithm in many cases.

In general, there exists an ε-cover on distributions over k elements of size O(1
εk

), but this may
be hard to find. By quantizing the probabilities on each element up to ε/k, we can give a cover of
size O((kε)

k). This implies an algorithm with space complexity O(k log(k/ε)
ε2) and time complexity

O((kε)
2k). For space complexity, this is tight up to log factors. For time complexity, it is open to

even prove poly(k, 1
ε) lower bounds.

3.3.3 Application to Bernoulli Distributions

We’ll conclude with a corollary of Theorem 5 applied to learning Bernoulli distributions.

Corollary 1. There exists an algorithm using O(1
ε2 log k

ε) samples for learning a Bernoulli distri-
bution.

Proof. Let P be the space of Bernoulli distributions. C = {Bern(εik) : i ∈ [0..k]} is an ε-cover of P of
size k

ε + 1. Then the corollary follows immediately from Theorem 5.

In essence, we’ve reduced the problem of proper learning to the problem of finding an ε-cover
for the space our distribution can come from.

4 References

[DL01] L. Devroye and G. Lugosi, Choosing a Density Estimate, Combinatorial Methods in
Density Estimation Springer New York, 2001. 47–57.

8

	Introduction
	Choosing a Density Estimate
	The Case of M=2
	The Case of General M

	A General Learning Algorithm
	Learning a Single Gaussian
	Learning a Mixture of k Gaussians
	Learning Arbitrary Distributions
	Metric Entropy
	The Metric Entropy Learning Algorithm
	Application to Bernoulli Distributions

	References

