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1 Scheffe Estimator

1 [Recap] Given M distribtuions, with logM
ε2 samples from p, we can find a distribution close to

p.
2 P is a collection of distributions (e.g. all distributions over [k]). Let Nε be the covering

number of P, which is the minimum value of M such that ∃p1, p2, p3, ..., pM ∈ P such that
∀p ∈ P,∃pj such that d(p, pj) ≤ ε (d is a metric). Then we can learn a distribution from P
with logNε

ε2 samples using Scheffe estimators.
3 logNε is called the metric entropy of P with respect to metric d.
4 For distributions ove [k], Nε ∼ ( cε )

k, so the complexity of the learner is logNε
ε2 ∼ klog(k/ε)

ε2 .

2 Learning a distribution with exponentially tiny error

As from previous lectures, we can learn a distribution over [k] using O( k
ε2 ) samples with probability

larger than 0.9. Using boosting technique, we can make the failure probability an arbitrary δ by
adding an multiplicative factor of log 1

δ . However, with the following analysis, we can show the
complexity is O(k+log(1/δ)

ε2 ).

Theorem 1. Mcdiarmid’s Inequality
Suppose f : X n → R is c- bounded difference, which means |f(x1, x2, ..., xn)− f(x1, ..., x

′
i, ..., xn)| ≤

c,∀x1, ..., xn, x
′
i ∈ X . Further suppose X1, X2, ..., Xn are independent, then we have:

Pr (f(X1, X2, ..., Xn)− E [f(X1, X2, ..., Xn)] > ε) ≤ exp(− 2ε2

nc2 ) (1)

For reference, see http://cs.nyu.edu/˜rostami/ml/2007/ashish-mcdiarmid.pdf.
Let f(x1, x2, ..., xn) =

∑k
x=1 |Nxn − Pr (x)|. Then f(x1, x2, ..., xn) is 2

n - bounded difference. So
we have:

Pr (f(X1, X2, ..., Xn)− E [f(X1, X2, ..., Xn)] > ε) ≤ exp(− 2(ε/2)2

n(2/n)2 ) = exp(−nε
2

8 ) (2)

1 From previous lectures, with O( k
ε2 ) samples, E [f(X1, X2, ..., Xn)] ≤ ε/2.

2 From Mcdiarmid’s Inequality, with O( log(1/δ)
ε2 ) samples, we can make the failure probability

less than δ.
Hence the total sample complexity is O( log(1/δ)+k

ε2 ). So for δ = e−k, the sample complexity will
remain O( k

ε2 ).

http://cs.nyu.edu/~rostami/ml/2007/ashish-mcdiarmid.pdf


3 Property Estimation

Let f : P → R be a property of a distribution, which includes:
1 E [X]
2 Entropy

∑
x p(x) log 1

p(x)
3 Mode
4 Support size
5 Distance to uniformity

∑
x |p(x)− 1

k |
6 Number of heavy hitters
7
∑
p2
x.

Definition 1. Learning the property of a distribution
Let p be a distribution over [k] and x1, x2, x3, ..., xn ∼ p are independent samples. The goal is to find
an estimator of the property f̂ such that with probability > 0.9, we have |f̂(x1, x2, ..., xn)−f(p)| < ε.

Definition 2. Symmetric Property
A property f is symmetric if f(pσ) = f(p)∀σ ∈ Sk where Sk is all the permutation over [k].

Next we consider the problem of entropy estimation. H(p) =
∑
x p(x) log( 1

p(x)) and the prefor-
mance of the empirical estimator.

Empirical estimatior of entropy:

Ĥ(p) = H(p̂n) =
∑
x

Nx

n
log( n

Nx
) (3)

It can be shown that H(p) ≥ E [H(p̂n)]. Now we consider the expectation of the bias and the
variance of Ĥ.

H(p)− E[H(p̂n)] =
∑
x

[p(x) log 1
p(x) − E [p̂n(x)] log 1

p̂n(x) ] (4)

=
∑
x

E
[
p(x) log 1

p(x) − p̂n(x) log 1
p̂n(x)

]
(5)

=
∑
x

E
[
(p(x)− p̂n(x)) log 1

p(x)

]
+
∑
x

E
[
p̂n(x) log p̂n(x)

p(x)

]
(6)

=
∑
x

E
[
p̂n(x) log p̂n(x)

p(x)

]
(7)

=
∑
x

E [DKL(p̂n(x), p(x))] (8)

≤ E
[∑
x

(p̂n(x)− p(x))2

p(x)

]
(9)

=
∑
x

E
[
(p̂n(x)− p(x))2]

p(x) (10)

=
∑
x

p(x)(1− p(x))
np(x) (11)

= k − 1
n

(12)
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We can also show that V ar(p̂n(x)) < log2 n
n .

Definition 3. Bias-Variance Decomposition of an Estimator
Suppose ẑ is an estimator for a random variable z, then we have:

E
[
(z − ẑ)2

]
= (z − E [ẑ])2 + E

[
(ẑ − E [ẑ])2

]
(13)

Hence if we want to estimate the entropy with high probability, we need H(p)−E[H(p̂n)] = O(ε)
and V ar[H(p̂n)] = O(ε2). Hence we need O(kε + log2 k

ε2 ) samples
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