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ABSTRACT
This paper presents a novel secure hardware description language
(HDL) that uses an information flow type system to ensure that
hardware is secure at design time. The novelty of this HDL lies in
its ability to securely share hardware modules and storage elements
across multiple security levels. Unlike previous secure HDLs, the
new HDL enables secure sharing at a fine granularity and without
implicitly adding hardware for security enforcement; this is impor-
tant because the implicitly added hardware can break functionality
and harm efficiency. The new HDL enables practical hardware de-
signs that are secure, correct, and efficient. We demonstrate the
practicality of the new HDL by using it to design and type-check a
synthesizable pipelined processor implementation that support pro-
tection rings and instructions that change modes.

1. INTRODUCTION
Modern processors are complex systems that implement a large

number of instructions and features, rely on subtle optimizations,
and are built by large teams. In such complex systems, bugs and
security vulnerabilities are inevitable. Processor errata [4] and se-
curity attacks exploiting these bugs [12] illustrate the problem. Se-
curity vulnerabilities in hardware are often subtle, and difficult to
amend after fabrication. Therefore, there is need for formal and au-
tomated methods for catching and preventing vulnerabilities during
the hardware design process. With increasing interest in hardware
accelerators, specialization, and external IPs, the need for effective
design-time tools for security verification is growing.

This paper presents a new version of the secure hardware de-
scription language (HDL) SecVerilog [15] with novel type system
extensions. We refer to this new version of SecVerilog as SecVer-
ilogLC. SecVerilog uses an information flow control (IFC) type
system to check security properties of hardware implementations
at design time. Previously proposed secure HDLs [5, 6, 15] do not
provide sufficient support for sharing hardware resources among
security levels. This sharing is essential for building efficient and
practical systems. We show that this limitation can be addressed by
making clock cycles explicit in the HDL and redesigning the type
system accordingly. We demonstrate the capabilities of our new
version of SecVerilog through a prototype hardware design.

Information flow control (IFC) constrains the movement of data
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in HDL code based on a security policy provided by the hardware
designer. A security policy is expressed by annotating variables in
the code with security labels (such as “trusted” or “untrusted”) and
specifying how information can be propagated among these labels
(e.g., untrusted signals cannot affect trusted ones). The constraints
are enforced by a type system, which is fast, detects vulnerabilities
without simulations, and can ensure a formal security property [8].
Previous studies show that information flow control (IFC) at the
HDL level is a promising approach for statically and automatically
checking security properties of hardware at design time [5, 6, 15].

HDL-level IFC is lightweight in terms of both designer effort
and hardware overhead. By contrast, the effort required for conven-
tional verification methods is often significant. For example, veri-
fying an Intel Pentium 4 processor took a dedicated team with spe-
cialized verification knowledge multiple years [1]. Writing security
policies in SecVerilog is similar to writing type declarations—it
does not require manual proofs as with theorem provers or tempo-
ral logic specifications as with model checkers. Because checking
is done statically, overhead in the final design is minimal.

However, a naive application of IFC to an HDL would lead to
inefficient hardware implementations. Each hardware component
would be able to handle information of only a single security level,
so hardware would need to be duplicated for the trusted and un-
trusted parts of the system. Prior secure HDLs support shared hard-
ware by using either nested states [5, 6] or dependent types [15].
Nested states can only support coarse-grained sharing; execution
can be time-multiplexed between trusted and untrusted instantia-
tions of hardware, but physical duplication (e.g., of registers) is
still required.

Dependent types enable fine-grained sharing of registers by al-
lowing the security level of individual registers to depend on the
run-time value of another signal. However, the previous dependently-
typed secure HDL, SecVerilog [15], limits expressiveness and has
serious practical limitations. First, it does not reason about cycle-
by-cycle updates to registers, and this often causes the type system
to reject secure designs. Second, unless the type system is care-
fully designed, using dependent types for information flow labels
can lead to subtle security vulnerabilities because they allow secu-
rity labels to change at run time. If the label of a register changes
(such as from untrusted to trusted), but the value stored in the regis-
ter does not also change, the label no longer describes the register’s
content accurately. In this case, the label change could allow the
untrusted value to corrupt critical signals. This incorrect change in
labeling is known as implicit downgrading [15].

The state-of-the-art solution to the implicit downgrading prob-
lem in secure HDLs is dynamic clearing [15]. Dynamic clearing
is a compiler mechanism that inserts run-time logic that clears a
register when its security label changes. Unfortunately, dynamic
clearing has significant practical limitations: 1) it precludes practi-
cal hardware designs where either hardware is shared by multiple
security levels or the initial state must be controlled by the hard-
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ware designer, 2) it produces hardware that differs from what is
described by the HDL code, and 3) it may damage integrity.

In this paper, we propose novel extensions to secure HDLs [15]
to address the implicit downgrading problem. Addressing this prob-
lem requires fundamental changes to the design of hardware de-
scription languages. In particular, the proposed language is re-
designed to explicitly distinguish sequential and combinational vari-
ables, and the propagation of values on clock edges is made ex-
plicit in the language. This version of SecVerilog allows designers
to specify how label changes should be handled, and is expressive
enough to describe a secure implementation of mode switches.

Our novel type system relies on two key observations: 1) im-
plicit downgrading occurs only for sequential variables, and 2) the
signals which determine both the labels and the values of registers
during the next clock cycle (i.e., on updates to registers and their
labels) are available statically. Given these observations, we intro-
duce an explicit notion of cycle-by-cycle transitions into the syntax,
semantics, and type system of our language in a way that is natu-
ral to hardware designers. The type system statically checks that
changes in the security level of a module (i.e., label changes) are
handled in the code. The language allows the designer to describe
how label changes should be handled when explicit intervention is
required, and label changes often require no new code to be written.
Because the designer must explicitly describe how to handle inse-
cure label changes, the behavior of the code is clear to the designer
and matches that of the synthesized hardware.

The main contributions of this paper are as follows:

• A novel secure HDL that avoids implicit downgrading, yet is
powerful enough to express practical hardware designs.

• The introduction of clock-cycle updates into the syntax, se-
mantics, and type system that improves expressiveness.

• The first dependent type system for information flow con-
trol which supports types that refer to mutable variables and
verifies label changes fully statically at design time. Our ap-
proach is also applicable to software IFC systems.

• A demonstration of the new language through a processor
pipeline design that includes support for mode switches be-
tween security levels.

2. NEW TYPE SYSTEM

2.1 Background
In hardware description languages (HDLs) that use information

flow control (IFC) [5, 6, 15], the types of variables (signals) are
annotated with security labels such as T (for trusted) or U (for un-
trusted). The hardware designer also provides a security policy that
expresses how information is permitted to flow among these secu-
rity levels. For example, a security policy may specify that flow is
allowed from trusted (T) signals to untrusted (U) ones, but flow is
not allowed in the other direction. This policy protects the integrity
of signals labeled T. The security type system then enforces the
security policy based on the annotations (security labels). In this
integrity protection example, the type system can statically guaran-
tee that untrusted signals do not affect trusted ones. Confidentiality
protection can be provided by preventing secret (S) signals from
affecting public (P) ones. Figure 1 shows an example in which the
signals creg and trst are labeled T and the signal untr is labeled
U. The assignment on line 3 is rejected by the type system because
it would cause an illegal flow U→T, but the assignment on line 5 is
permitted since both signals are trusted.

1 reg [31:0] {T} creg, [31:0] {U} untr, [31:0] {T} trst;
2 ...
3 creg <= untr; // not allowed
4 creg <= trst; // allowed
5 ...
6 reg {T} mode;
7 // mode_to_lb(0) = T, mode_to_lb(1) = U
8 reg [31:0] {mode_to_lb(mode)} gpr;
9 ...
10 if (mode == 1’b0) creg <= gpr;
11 ...

Figure 1: SecVerilog code example.

1 reg {f(label)} data;
2 reg {f(next_label)} next_data;
3 always@(posedge clk)
4 data <= next_data;
5 label <= next_label;
6 end

Figure 2: A label propogation example.

However, many practical hardware designs cannot be implemented
efficiently with such simple labels. Labeling a component T means
it can only be used exclusively by one security level. If the same
functionality were needed for another security level, the hardware
module would have to be duplicated. To design efficient hardware,
it is essential that hardware resources can be shared among multiple
security levels over time. In SecVerilog [15], sharing is permitted
through dependent types such as the label of gpr on line 10. This
label, mode_to_lb(mode), is a function of the signal mode; the
label is T when the mode bit is 0 and U otherwise. Even though
the label of gpr depends on the run-time value of mode, the assign-
ment on line 10 can still be type-checked statically. Because the
assignment happens under a branch in which mode is 0, the type
system can infer that the label of gpr is mode_to_lb(0) = T in
this context. Prior secure HDLs [5, 6] also used nested states to al-
low sharing among levels. However, nested states cannot be used
to describe registers like the gpr which are shared by different se-
curity levels over time. We use a dependent type system since it
permits fine-grained sharing.

SecVerilog [15] has limited expressive power because it does not
reason about updates to values on clock edges. Figure 2 illustrates
the problem through a simple example in which a variable and its
corresponding label are updated at the same time. In the example,
the label of data depends on the value of the variable label (since
it is f(label)). The label of next_data similarly depends on
next_label. The code is obviously secure because both value and
label change together. Propogating labels in this way is necessary
for components such as pipeline registers and on-chip networks.

However, SecVerilog fails to typecheck this secure code because
it does not distinguish between updates that occur in the current
clock cycle and the next clock cycle. The assignment on line 4 is
rejected because it is handled as though the update to data happens
immediately. Indeed, if data were updated without propogating its
label, security could be violated. However, by the time the contents
of data are updated (i.e., on the clock edge), its label has also been
updated. Our new version, SecVerilogLC, introduces a notion of
cycle-by-cycle updates to registers. SecVerilogLC can detect that
on clock edges label is updated to next_label and can conclude
on line 4 that it is safe to allow next_data to be stored in data.

Unfortunately, dependent types introduce subtle security vulner-
abilities when the variables on which they depend can change. Fig-
ure 3 illustrates this problem. The signal shared has dependent
label mode_to_lb(v), v is trusted, and trst and untr are labeled
in the same way as before. This code is clearly insecure; on line 5,
an untrusted value is stored in the shared register and this untrusted



1 // mode_to_lb(0) = T, mode_to_lb(1) = U
2 reg {T} v, {T} trst, {U} untr;
3 reg {mode_to_lb(v)} shared;
4 ...
5 if (v == 1’b1) shared <= untrusted;
6 else trusted <= shared;
7 ...

Figure 3: Implicit downgrading example.

value is directly copied into the trusted variable on line 6. These
lines can be executed in sequence over two clock cycles. This type
of leakage through changes in dependent types is known as implicit
downgrading [15]. In information flow control, secret information
may be explicitly downgraded, i.e., released to the public, when
the designer deems this release necessary and secure [9]. However,
when downgrading is implicit, it represents a potential security vul-
nerability that the designer is unaware of.

The state-of-the-art solution to the implicit downgrading prob-
lem is dynamic clearing [15] — the compiler automatically inserts
logic to clear dependently labeled registers whenever the labels of
these registers are changed [14]. Dynamic clearing has severe prac-
tical limitations. It can cause hard-to-detect functional errors be-
cause it adds extra logic in the background that is not specified in
the code. The added clearing logic causes the simulations and syn-
thesized hardware to differ from what the designer would expect.

Dynamic clearing also makes it impossible to describe many
hardware designs. We illustrate these limitations by describing
the complications that dynamic clearing causes for the design of
a widely-used processor feature — a privileged kernel mode and
a user mode. Naturally, the labels for many processor resources
will depend on the control register that indicates the current mode.
General purpose registers (GPRs) should have labels that depend
on the mode, since the trustworthiness of their contents depends
on the mode that wrote them last. The program counter (pc) will
also have a label that depends on the mode. Pipeline registers
should have the same mode-dependent labels to reflect the privi-
lege level of in-flight instructions. When the mode switches from
user (U) to privileged (T), all of these registers would be dynami-
cally cleared—whether the hardware designer wants this behavior
or not.

Dynamic clearing prevents legitimate communication between
security levels. For example, a system call instruction in the above
processor example will trigger a label change from U (user) to T
(privileged). Typically, some of the GPRs are used to pass infor-
mation such as a system call number or arguments from the user
mode to the privileged supervisor mode. Automatically clearing
the GPRs during this mode switch breaks the functionallity of sys-
tem calls. Instead, the secure design language should allow the
designer to explicitly downgrade the label of a register in certain
cases so that its value can be preserved on a label change.

Here, and in other cases, dynamic clearing damages integrity. If
the pipeline registers were automatically cleared on a mode change,
in-flight instructions would likely be converted erroneously into
NOPs. More generally, dynamic clearing can remove secrets and
protect confidentiality, but when a trusted register is expected to
contain a specific value, replacing it with a zero violates integrity.

Ideally, the security type system must be precise enough so that
it only requires explicit handling of label changes only if necessary
for security. Dynamic clearing conservatively erases data on any
label change. For example, a label switch from T to U on a return
from a system call is not a concern for integrity; restoring a PC
value from a saved one (in the epc register in MIPS) should not
require explicit downgrading.

Our novel dependent type system is expressive enough to de-

1 wire com {T} mode_switch;
2 assign mode_switch = decode_out[4];
3
4 reg seq {U} epc;
5 reg seq {T} mode;
6 reg seq {mode_to_lb(mode)} pc;
7 // mode_to_lb(0) = T, mode_to_lb(1) = U
8 always@(seq) begin
9 if (rst) pc <= 16’b0;
10 else if (mode_switch && (next mode == 1’b0))
11 pc <= ‘SYSCALL_PC_VAL; //switch to kernel mode
12 else if (mode_switch)
13 pc <= epc; //return to user mode
14 ...
15 end

Figure 4: PC during mode switches.

scribe all of the above hardware while securely avoiding the im-
plicit downgrading problem. Communication among security lev-
els in the GPRs is permitted by explicit downgrading. The type
system precisely tracks the direction of label changes allowing our
design to load a trusted value into the pc on entry to the kernel, and
restore a saved pc on re-entry to userspace. The new type system
permits design choices. For example, we can think of two correct
implementations of mode switching: 1) pipeline the labels along
with the regular pipeline registers, and 2) stall the pipeline until all
in-flight instructions are drained. Our type system supports both
designs.

2.2 Approach
Our type system securely supports changes in dependent labels

1) by making the propagation of signals on clock edges explicit in
the syntax, semantics, and type system, 2) by introducing a syn-
tax for testing labels for the next clock cycle, and 3) by using the
type system to statically establish that registers are securely up-
dated along with their labels. Figure 4 shows code for a PC reg-
ister that securely handles mode changes in the concrete syntax of
SecVerilogLC.

Notably, only sequential logic can be implicitly downgraded through
label changes since combinational logic is not stateful [15]. For this
reason, combinational and sequential logic are separated in the lan-
guage. In SecVerilogLC, sequential and combinational variables
are explicitly separated through type annotations com (on line 1)
and seq (on lines 4–6). Sequential and combinational signals are
type-checked differently. For example, an assignment to a trusted
combinational signal such as mode_switch defined on line 2 is se-
cure as long as the value that is assigned is also trusted.

However, sequential signals (registers) such as pc, are type-checked
in a different way. The values assigned to registers must be type-
checked based on the new label of the register for the next clock
cycle. This ensures that the new label of the register accurately
reflects the security level of its contents. As an example, for the
assignment on line 11 to type-check, the type system must prove
that the label of ‘SYSCALL_PC_VAL is permitted to flow into the
new label of pc, which is dependent upon the value of mode in the
next clock cycle. In the example, the label can be statically deter-
mined to be mode_to_lb(0) (T) as we explain in the following
paragraph.

SecVerilogLC supports a new operator, next, which when ap-
plied to a variable, gives the value it will take during the next cycle.
For example, it is applied to mode on line 10, where it evaluates
to the value of mode during the next cycle. The branch on line 10
is taken when there is a mode switch and the next-cycle value of
mode is 0, indicating a switch to kernel mode. The type system
can thus infer that on line 11, the label of pc during the next cy-
cle is T, and the assignment is safe as long as ‘SYSCALL_PC_VAL



is trusted. On line 13, the branch was not taken, so the next-cycle
label of pc must be U, and the assignment is safe. When the next
operator is applied to registers (declared seq), the next-cycle value
is available from the combinational input to the register. The next
operator is useful both for implementing necessary access controls
and assisting the type system.

Since type checking depends on whether variables are sequen-
tial or combinational, the syntax and semantics of SecVerilogLC
ensure that the com/seq labels are accurate (i.e., that variables la-
beled com are not sequential). In SecVerilogLC, the clock signal is
implicit, and sequential logic is written by describing its combina-
tional input, as is done on lines 8–15. In the semantics, the state-
ments describing sequential logic are treated as the combinational
input to a register. Restrictions are then placed on combinational
wires which ensure that they are in fact combinational: 1) there are
no combinational loops, and 2) there are no inferred latches (see
Section 2.3 for more details).

2.3 Language
Figure 5 shows a core abstract language capturing the essential

elements of SecVerilogLC programs. SecVerilogLC supports most
of the implementation of Verilog. Expressions e include integer lit-
erals (n), combinational variables (w, declared com in the concrete
syntax), sequential variables (r), the next operator applied to ex-
pressions (written next e), and binary (e ⊕ e) and unary (uop e)
operators. The syntax also includes special symbols denoting the
next-cycle values of sequential variables (r ′), that are not written
explicitly by the programmer, but are used in the semantics and
typing rules. Programs Prog contain a combinational statement c
and a list of sequential statements s. Combinational statements per-
mit sequential composition since their meaning is order-dependent,
and sequential statements do not. The syntax of both kinds of state-
ments is otherwise standard.

e ::= n | w | r | r ′ | next e | e ⊕ e | uop e

c ::= skip | if(e) c else c | w := e | c; c

s ::= skip | if(e) s else s | r := e

Prog ::= c,~s

Figure 5: SecVerilogLC core syntax.

Formally, security labels represent security levels ` ∈ L where
L is a lattice with relation v [3]. Labels T and U introduced earlier
are examples of security levels. Information is permitted to flow
from T to U if and only if T v U. The syntax of security labels is

τ ::= l | f (~w,~r) | τ t τ

and includes levels `, pure (side-effect free) functions of variables
f (~w,~r), and the join of labels τtτ, where the join is the least upper
bound of its arguments. The dependent labels are the functions f
which are applied to program variables.

Aside from the next operator, which has already been intro-
duced (and simply substitutes occurrences of r with r ′ in e for
next e), the semantics of expressions is standard. The small-step
semantics of sequential commands is defined on configurations 〈σ, r〉.
Here, σ is a mapping from (sequential and combinational) vari-
ables (r and w) and symbols identifying next-cycle values of se-
quential variables(r ′). This semantics of commands is standard
other than the rule for assignment to sequential variable r , which
updates the value of r ′ in σ rather than r directly.

The small-step semantics of programs shown in Figure 6 is de-
fined on configurations 〈σ, c,~s〉 where σ is a global store, c is the
next combinational command to be evaluated, and ~s is the list of se-

c = stop ∀s ∈ ~s.s = stop
σ′ = σ[r1 7→ σ(r ′1)]...[rn 7→ σ(r ′n)]

〈σ, c,~s〉 → 〈σ′, C,S〉
TICK

c , stop 〈σ, c〉 → 〈σ′, c′〉

〈σ, c,~s, 〉 → 〈σ′, c,~s〉
COMB

c = stop ∃si ∈ ~s.si , stop
〈σ, si〉 → 〈σ′, s′i〉 ~s′ = {s′1, ..., s

′
n}

〈σ, c,~s〉 → 〈σ′, c, ~s′〉
SEQ

Figure 6: Program semantics.

quential commands to be evaluated in parallel. Rule TICK applies
when the commands have been fully evaluated. Here, C and S are
the commands as written in the original program before execution.
The notation σ[r 7→ v] denotes the substitution of value v for r in
σ. This rule propagates the next-cycle values to registers by sub-
stituting each sequential value ri with its corresponding next-cycle
value r ′i . This rule also copies C and S back into the configuration,
so that the logic is re-evaluated during the next clock cycle.

Rule COMB evaluates the command c and applies until it has
been fully evaluated. Rule SEQ applies when c has been evaluated,
but there is some sequential command which has not been fully
evaluated. In this rule, each of the sequential commands that have
not been fully evaluated simultaneously take a single step.

Programs c,~s have three well-formedness requirements not cap-
tured by the typing rules. First, for every combinational variable w
assigned in c, w must be assigned in some node along some path
to each node: 1) which is a postdominator of c, and 2) in which
c is live. This ensures that there are no inferred latches and that
variables are defined before they are read. Second, to prevent com-
binational loops, each sequential variable w is assigned a depth in
the circuit graph denoted depth(w). If w is assigned from e and
vars(e) are the variables in e, then for all v in vars(e), depth(v)
must be lower than depth(w). Third, each sequential variable r is
assigned in at most one s ∈ ~s. This ensures that the program is
deterministic.

Typing judgments for sequential commands have the form
Γ,C, pc ` s, meaning that s is well-typed under type environment
Γ, constraint context C, and program counter label pc.1 Type judg-
ments for combinational commands have nearly the same form.
Here Γ maps variables to labels. The program counter label is used
to prevent implicit flows, as is standard in language-based IFC [8].
To make reasoning about dependent types more precise, typing
judgments use a context C that keeps track of constraints known
to hold during execution of the programs. For a control-flow graph
(CFG) node η, C(•η) signifies constraints that hold before execut-
ing node η. Hence, C(•η) ⇒ P means that these constraints entail
proposition P. Context C is determined by the Hoare rules in [15],
straightforwardly extended to also reason about symbols r ′. The
form and meaning of type judgments for expressions is standard.

The most interesting typing rules of SecVerilogLC are for as-
signments, shown in Figure 7. In the rule T-ASGNCOM for assign-
ment to combinational variables, assignment :=η is annotated with
its CFG node η, and the constraint context C must entail that the
label of the expression from which w is assigned (τ) can flow into
the label of w (that is, Γ(w)). The pc label is used to prevent im-
plicit flows in the standard way [8]. For brevity, we show only the

1 The label pc is an abstraction used by the type system, and is not
the program counter register. We use pc to refer to the label and pc
to refer to the register.



cases in which dependent labels are not self-referential, hence the
premise that w is not a free variable in its own type: w < fv(Γ(w)).
In SecVerilogLC, self-referential labels are supported in the same
way as they are in SecVerilog [15]. Cyclic dependencies through
dependent labels are prevented by a well-formedness requirement
for type environments as in SecVerilog [14].

w < fv(Γ(w))
Γ ` e : τ C(•η) ⇒ τ t pc @ Γ(w)

Γ,C, pc ` w :=η e
T-ASGNCOMB

Γ ` e : τ r < fv(Γ(r)) ~r = fv(Γ(r))
τ′ = Γ(r){~r ′/~r } C(•η) ⇒ τ t pc @ τ′

Γ,C, pc ` r :=η e
T-ASGNSEQ

Figure 7: Interesting typing rules for commands.
Rule T-ASGNSEQ for sequential assignments differs subtly from

the rule for combinational assignments. Assignments to sequential
variables describe the values which they store at the start of the
next clock edge. Therefore, the label of the expression τ should
be permitted to flow into the label of the sequential variable during
the next clock cycle τ′. This new label may depend on the new
values of other sequential variables. Since the actual values of vari-
ables are not known a priori, τ′ is determined by simultaneously
substituting each sequential variable in Γ(r) with its correspond-
ing next-cycle value symbol r ′. Thus, τ′ = Γ(r){~r ′/~r }, and C(•η)
must contain sufficient facts to fulfill the proof obligation that this
flow is safe.

3. EVALUATION

3.1 Methodology
We evaluated SecVerilogLC by using it to type-check the pro-

cessing pipeline of a processor that implements a subset of the
MIPS ISA. The processor has four cores that communicate over
a ring network. Each processor has a five-stage bypassing pipeline
with private data and instruction caches. The processor was func-
tionally evaluated with 166 unit test vectors. Our processor sup-
ports a privileged kernel mode and a unprivileged user mode.

The security policy protects the integrity of the kernel mode
and ensures that the only point of entry into kernel mode is the
SYSCALL instruction. The security policy only requires the two
security levels discussed in examples throughout this paper: T v U.
The implementation is similar to the one described in Section 2.1.
The trusted (T) status register mode indicates the current privilege
mode. We chose an implementation with a single mode register
rather than one which uses per-stage mode bits, as this most closely
resembles conventional implementations. The pipeline registers,
GPRs, and the PC have labels that depend on the value of mode;
the label is T when mode is 0 and it is U when mode is 1. Note that
no previosly proposed security type system for HDLs [5, 6,15] can
support mode changes both securely and correctly.

Our prototype uses explicit downgrading in three places. The
first is to modify the trusted (T) mode bit during the SYSCALL in-
struction, which takes place in user mode. During a SYSCALL,
a control signal indicating that mode should change is propagated
from the decode stage, through the intermediate stages, to the write-
back stage, where the mode switch actually takes place. The in-
put to mode depends on outputs from the memory stage, which are
untrusted since the processor is in user mode. The statement that
downgrades the mode bit is guarded by a branch (i.e., access con-
trol) that checks for the control signal that indicates that a SYSCALL

is actually taking place. This access control permits entry to ker-
nel mode only through the SYSCALL instruction. The other two
uses of downgrading permit the contents of two general purpose
registers to remain intact on a SYSCALL so they can be used as
arguments to the system call handler. The other GPRs are cleared.2

3.2 Type Checking
Our labeled processor as described above passes type-checking

suggesting that the implementation conforms to the specified secu-
rity policy. Before building the labeled implementation, we first de-
signed a comparable processor that is not labeled or type-checked,
but which we felt was secure. We use this unlabeled implementa-
tion for comparisons pertaining to annotation burden and overhead
in the final, synthesized hardware.

The process of labeling and type-checking the processor revealed
a potential security vulnerability that we did not identify while
implementing the unlabeled version of the processor. We imple-
mented checks on an update to the pc register to ensure that the
program counter is set only to a predefined constant when there is
a switch to the kernel mode, and restored to the epc register on a
return to the user mode. However, the update to pc was also con-
trolled by an enable signal that depends on the fetch (F) stage; the
design allowed the F stage to stall the pc update on cases such as
an instruction cache miss. Unfortunately, because this enable sig-
nal depends on the current mode, it means that untrusted instruc-
tions from the F stage may possibly delay updates to the pc value.
More alarmingly, our initial implementation allowed the delayed
enable signal to prevent the update to the pc entirely while still es-
calating the privilige level. To remove this security vulnerability,
our labeled implementation always updates the pc register on label
changes. This is both secure and functionally correct because any
stalls from the F stage during a label change are spurious. For the
evaluation, we modified the unlabeled processor so that it is secure
and the comparisons are fair.

The prototype shows that the restrictions placed on label changes
by SecVerilogLC are precise; the designer only needs to take action
on label changes that are dangerous. For example, the type system
requires that during a SYSCALL instruction, each GPR is explic-
itly cleared, or explicitly downgraded. However, no change is re-
quired on the SYSRET instruction. On the SYSCALL instruction,
the labels of the GPRs change from U to T. Since the new levels
indicate a higher level of integrity than can accurately be attributed
to the old values stored in the GPRs, the values must be updated.
However, on the SYSRET instruction, the labels change from T to
U and the GPR contents can remain—it is permissible (though con-
servative) for trustworthy data to be considered untrusted. Implicit
downgrading is not precise in this sense as it requires dependently
typed registers to be cleared on any change to their labels [14]
rather than just changes that correspond to label downgrading.

3.3 Overhead
To evaluate the overhead of using the proposed type system in

terms of programmer effort as well as the area and the clock pe-
riod of the hardware design, we compare two implementations of
the processor pipeline: one type-checked with SecVerilogLC, and
one that we believe is secure, but that has not been type-checked.
We refer to this second implementation as the baseline processor.

2A more realistic implementation of the SYSCALL instruction
might save the contents of the GPRs in the region of memory re-
served for storing context. The corresponding SYSRET instruction
would then restore this saved context into the GPRs before return-
ing to user space. We expect that our type system would also sup-
port such an implementation.



The baseline processor pipeline is implemented in 1,487 lines of
code. To support the syntax of SecVerilogLC and pass type check-
ing, 271 lines were changed. Most line changes (257) were to add
com/seq annotations or labels. We believe that the com/seq anno-
tations could be added automatically as it is easy to identify if a
variable is combinational or sequential in Verilog. Most of these
lines require both a com/seq annotation and a label, so the annota-
tion burden is only slightly increased from that of SecVerilog [15].
Only a total of 14 lines (less than 1% of the code) were added to
handle explicit downgrades or make invariants explicit for the type
system. Some code was refactored to convince the type system that
certain statments are true when the built-in analysis cannot auto-
matically infer the invariants. These cases include a change to the
pc update logic and a change to register file writes.

To evaluate the overhead that SecVerilogLC adds to the area and
the clock frequency of the hardware, we used our SecVerilog-to-
Verilog compiler for both designs. We synthesized both designs
with Synopsys Design Compiler using the TSMC 65nm process
and a target clock period of 2ns. Both reach the target clock pe-
riod. The area of the baseline design is 29, 638µm2 and the area of
the labeled design is 29, 843µm2, an area overhead of about 0.7%.
There are two main sources of area overhead. The first is the ad-
dition of muxes for checking labels. This is the true overhead of
using the proposed type system. A second source of area overhead
is an implementation artifact that can be fixed. In our current im-
plementation of SecVerilogLC, registers generate flip-flops without
built-in enable signals, whereas the baseline processor uses multi-
ple types of flip-flops. For this reason, the baseline processor maps
more efficiently to standard cells. SecVerilogLC can be improved
by adding a syntax for describing registers with enable signals.

4. RELATED WORK
Information flow control was first applied to hardware at the

gate level by GLIFT [7, 10, 11]. The earliest GLIFT [11] approach
inserts additional run-time logic and has prohibitive overhead in
terms of performance, area, and energy. Later work applies GLIFT
to simulations of circuits [10] by enumerating over the state space.
Because the state space can be large for practical designs, prior
work checks only the subset of that state space that is reachable by
a particular piece of software. Compared to run-time IFC, SecVer-
ilogLC provides static IFC at design time that checks information
flow for all possible cases.

Sapper [5], Caisson [6], and SecVerilog [15] all apply informa-
tion flow type systems at the HDL level. Caisson and Sapper sup-
port sharing among security levels through nested states. Both lan-
guages describe hardware as a composition of FSMs and resemble
continuation-passing-style languages. Sapper and Caisson support
transitions from high states (in which high or low variables may
be modified) to low states (in which only low variables may be
modified) through the use of linear continuations as proposed by
Zdancewic et al. [13]. In practice, nested states can be used to de-
scribe controller FSMs that multiplex between physically separate
modules for storing trusted and untrusted data. However, neither
Sapper nor Caisson provide a mechanism for reusing storage ele-
ments for both trusted and untrusted data, so both languages require
duplication of state elements. SecVerilogLC enables secure sharing
of hardware at fine granularity without duplication of storage ele-
ments. This work builds on the dependent types in SecVerilog [15],
but redesigns the language to securely enable flexible sharing poli-
cies by making combinational/sequential variables and clock cycles
explicit. We expect that this language enforces the same security
property as SecVerilog [15], i.e., observational determinism [13].

SecVerilogLC is the first to securely support mutable dependent

labels in a language for information flow control in either hard-
ware or software. Zhang et al. [16] proposed a software language
that supports dynamic IFC labels in software programs. However,
labels in this language are immutable, whereas SecVerilogLC sup-
ports mutable labels. While our language is designed for hardware,
we note that the proposed approach can also be applied to support
mutable dependent types in imperative software languages for IFC.
Condit et al. [2] proposed Deputy, a language with a dependent type
system for writing safe C programs. The authors use this language
to prevent buffer overflows. The approach of Condit et al.has not
been used for information flow control or for hardware.

5. CONCLUSION
This paper proposes novel extensions to secure HDLs. This new

type system is expressive enough to allow efficient hardware with
complex, fine-grained sharing among security levels while ensur-
ing the security of such sharing. We evaluated this language by
designing a MIPS processor with support for privilege levels, user
and kernel modes, and found that the proposed HDL could express
and verify efficient processor design that was not supported by the
state-of-the-art secure HDL. Security type checking also revealed a
security vulnerability in our prototype that we did not expect.
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