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Abstruct-This paper' discusses the probability of 
connectivity of ad hoc networks. An empirical formula is 
proposed to fit the simulation results. The parameters of the 
formula are determined for different cases and the 
asymptotic behavior is discussed. Finally, a new metric is 
proposed to quanti@ the connectivity of an ad hoc network. 
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1. INTRODUCTION 

A wireless ad hoc network consists of a collection of mobile 
nodes sharing a wireless channel without any centralized 
control or established communication backbone. Typical 
applications of ad hoc networks are scenarios where setting 
up a communication infrastructure is difficult (because of 
mobility) or very expensive (because of terrain). 

is that there is at least a path connecting every two nodes. 
Such a network is called fully connected. 

One of the fundamental problems of ad hoc networks is 
connectivity. Part of the existing literature concentrates on 
the asymptotic behavior of connectivity when the number of 
nodes goes to infinity. In [l], it is proved that for the one- 
dimensional case, there exists a critical transmission range, 
which is the minimum transmission range of each node for 
the network to be connected with probability one, as the 
number of nodes in the network goes to infmity. The author 
also conjectured the critical transmission range for the two- 
dimensional case, which was studied by [2][3][4], and more 
recently by [ 51. 

We are interested in the case where the number of nodes is 
finite, which is more valuable for engineering designing. To 
the best of our knowledge, there is still no exact solution to 
this problem. This has led to another approach to the 
problem where upper and lower bounds are derived for the 
probability. One can find quite a few results in [6]. 
Typically, these bounds are tight only when the probability 
that any two nodes can communicate directly is near 0 or 1, 
which is not the case in many applications. 

In this paper, by simulation, we provide an empirical 
equation by fitting the data. The formula can be used to 
estimate the probability of connectivity for ad hoc networks, 
given node density, deployment surface area and intended 
transmission range. This is useful in designing or analyzing 
ad hoc networks. 

An ad hoc network should be well connected in order to be 
useful. Due to limited transmission power, typically it is 
impossible for every two nodes to communicate with each 
Other directly. SO it may be necessary to relay a Packet Over 
multiple radio units to reach the destination. A prerequisite 

2. BASIC MODEL AND SIMULATION METHOD 

Consider an L-by-L square. We assume the transmitter 
density to be D. Therefore the number n of nodes is DL' . 
Each node communicate within a circle of radius R, 
which is called transmission range (Fig. 1). Furthermore we 
assume nodes are uniformly distributed over the area, which 
is a reasonable assumption in typical scenarios. In Fig. 1, a 
line connects two nodes that can communicate directly. 
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Fig. 1. Instance of ad hoc network topology with n=9. It 
comprises two connected components. 

Rc E P 
1.0964 0.1729 0.9965 
1.3142 0.1735 0.9993 
1.4096 0.1757 0.9997 

We use Monte Carlo method to compute the connectivity 
probability P. For varying transmission range R (O<R<L), 
we randomly generate the locations of the n nodes according 
to a uniform distribution with density D, then determine 
whether they form a fully connected network or not. The 
standard shortest path algorithm is used to find the shortest 
path between every two nodes. If the length of the path is 
infinity, then we know the two nodes are not connected and 
the network is not fully connected. We repeat that process M 
times for each R. If the network is connected m times, then 
we say the connectivity probability for that R is m I M . We 
use &20000 for our simulation, which can roughly 
guarantee accuracy to the order of 0.01. 

5 

In [7], the authors proved that the average throughput for 
each node decreases with the increasing number of users for 
a given transmission range. And they reached the conclusion 
that designers should target their efforts at networks for 
smaller number of users, rather than try to develop large 
wireless networks. For this reason, our simulation focuses 
on the case where n does not exceed 125. 

1.4608 I 0.1783 I 0.9992 

3. SIMULATION RESULTS AND ANALYSIS 

6 

Typically, the probability curve looks as in Fig. 2. It is clear 
that the curves have generally the same shape. The more 
users, the sharper the transition from 0 to 1 looks. Through 
extensive simulations we found that, for P E [0.5,0.99] 

1.4912 I 0.1789 I 0.9990 

1 =P(- 
R-RC 

E P =  
1 

R- RC 
E 

1 + exp(- 

7 
9 

where Rc and E are model parameters. [0.5, 0.991 is the 
range of most interest. Indeed when P is small, the network 
is not well connected, and when P is near 1, we can use the 
existing bounds to get a satisfactory approximation. 

1.5091 0.1800 0.998 1 
1.5459 0.1778 0.9987 

WL 

Fig. 2.Connectivity probability as a function of normalized 
transmission range for networks of size n=5,25,49. 

I 11 

From (l) ,  we get: 

1.5830 I 0.1686 I 0.9994 I 

R- RC P -- - M-) E 1 -  P 

D Rr 

In order to determine Rc and E , we fit In( P /( 1 - P)) and 
R by a linear equation. The reciprocal of the slope gives E .  
And Rc is determined by the interception. 

E P 

To get an idea on how Rcand E vary with D and L, we 
first fuc D and vary L, and then vice versa. Table I and II 
are cases where P 1  and L=l, respectively. p is the linear 
correlation coefficient. We can see the linearity is very 
good. 

Table I ( P l )  

5 
8 
10 

.- 
0.5200 0.0788 0.9985 
0.4549 0.0612 0.9991 
0.4220 0.0549 0.9995 

~~ 

20 
30 
40 

0.3233 0.0385 0.9983 
0.9983 0.0332 0.2894 

0.2383 0.0272 0.9992 
60 
90 

~ ~~ ~~ 

0.1968 0.023 1 I 0.9992 
0.1642 0.0187 I 0.9981 
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To scale the problem, we set 
Rc = aL (3) 
E=bL (4) 

We found a and b are only dependent on n. The curves are 
shown in Fig.3. 

We claim that a is approximately a linear function of 
Jm and bn In * n is approximately a linear function of 
n, which is shown in Fig.4. By fitting the data, we get (5) 
and (6). The correlation coefficients are 0.9988 and 0.9977 
for the two equations, respectively. - 

In n 
a - 1.0362,l- -0.073 

V n  
0.3743n - 0.333 1 

nln2 n 
(6) b -  

Equations (1) and (3)-(6) summarize our solution to the 
problem, which is based on the simulation with n between 3 
and 125. If the number of nodes is not too large, then we can 
safely apply (3)-(6) to find E andR, and finally use (1) to 
get a good estimate. 

0 6 1  I 
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Finally we give a theoretical upper bound on the probability 
that any two nodes within a network of N nodes are 
connected. This bound, although loose for small values of 
the ratio R/L supports the results obtained through 
simulations. It may be derived in a straightforward way 
from [SI and [9]. Indeed it was proven in [9] that when the 
node locations have a two-dimensional gaussian 
distribution, the probability of an m-hop connection P, 
satisfies: 

m (7) 
p < e- (m-1)2R2/4a2 - e - m 2 R 2 / 4 0 2  

= pm- 
It was further proven in [SI that the distance distributions in 
scenarios where nodes are uniformly distributed in a 
rectangular area and where they are distributed over an 
unbounded area according to a 2-D gaussian distribution are 
very similar when the width of the rectangular area is taken 
to be about three times the standard deviation of the location 
distribution in the gaussian distribution. We make use of 
this fact to conclude that (7) holds for the scenario of 
interest here (that is uniform distribution, square 
deployment area L') if o;.L/3. Thus two nodes are 
connected with probability: 

p 5 p, = 1- e-NiR'14g2 (8) 
Ihl 

Here we would also like to point out a very recent work 
done by Desai and Manjunath [lo]. They obtained the exact 
formula for the probability that the network is connected for 
a one-dimensional finite ad hoc network. They also 
extended the result to find a simple upper bound for the 
connectivity in a two-dimensional finite ad hoc network. 
The bound is not asymptotically tight. 

0 1 ,  I 

4. DISCUSSION 

0 '  I 
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n 

Fig.3. Plots of a and b versus n. 

In order to check the accuracy of our empirical solution, we 
randomly choose some cases to compare the results from 
simulation and from the empirical equations. They are 
shown in Table III and show a good match. 

Table III 
Comparison of the simulation and empirical results 

We can now have a look at the asymptotic behavior of 
connectivity probability. Given L, when D increases, i.e. n 
increases, b and E will go to zero in (4) and (6). This 
explains the asymptotical behavior of the probability curve. 
When E is near zero, from (l), we can see that P approaches 
1 for R greater than R, and approaches zero for R less than 

Clearly, R, is the critical transmission range. The exact 
value of critical transmission range is still an open problem 
since Gilbert's work [4] published in 1961. It is conjectured 
to be 2,/- in [l]. But a reviewer of that paper 

conjectured it to be ,/21n(DL2)lnD and the author of [2] 

conjectured it to be,/ln(DL2)lnD . If we notice that 

, / l n ( D L 2 ) I D = J m L ,  2/&=1.128 and OUT coef- 
ficient in (5) is 1.0362, we would lean to support the author 
of [ll's conjecture. 

3 

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 17:40 from IEEE Xplore.  Restrictions apply.



Vol. 3-1336 

0.5 1 /- 
0 1 '  I I I I 

0 2  025 0 3  035 0 4  0 4 5  0 5  055 
sqrt[ln(n)/n) 

n 

Fig.4. Linear fitting for a and b. 

From the simulation results (Fig. 2), one can see that in 
order to achieve a fully connected network with high 
probability, a large transmission range is required, which is 
not always feasible or desirable. However when the network 
is mobile, due to changing topology, the distribution of the 
node locations, after some time, can be seen to be 
independent of the previous one. By taking advantage of the 
statistical independence of the network topologies at 
different points in time we need not always require full 
connectivity, as we shall explain later. 

In order to describe the connectivity when the network is 
not fully connected. We define a connectivity index q as 
following: 

1 I 

where n,is the number of nodes in the ith-connected 
component. q ranges from 0 to 1. When n, is 1 for all i, i.e. 
no node can communicate with other nodes, 77 is zero. 
When the whole network is fully connected, i.e. there is 
only one component with n nodes, q is one. For example, 
in Fig.1, there are two connected components with 
n, = 7 and n, = 2. So, q is 0.61 11. When the number of 
nodes is large, equation (9) can be approximated by 
equation (10): 

The typical shape of an q curve is shown in Fig. 5, where 
L=l and B 5 .  We also show the standard deviation of qfor 
that case in Fig. 6. 

R/L 

Fig.6. Standard deviation of connectivity index as a function 
of the normalized transmission range. (L=l, D=5) 

Since n, - 1 is the number of nodes with which one node in 
the ith-connected component can communicate, 
(n ,  - l ) / ( x n ,  -1) is the probability that this node can 
communicate with a randomly chosen destination. Sum this 
probability with weight n, and normalize it by the total 
number of nodes n ,  we get 7 .  q can be interpreted as the 
average probability of successful communication between 
two nodes. Clearly, q is larger than P for the same D, L and 
R since P is the probability that all the nodes are connected 
which is a more stringent requirement. This can also be seen 
by comparing fig. 2 and fig. 5 for the case L=l, D=5. 

Next we investigate how mobility impacts connectivity. In 
order to simplify our analysis we assume time is slotted. If 
after a certain number of time units, say T, the topology can 
be regarded as being independent, then after kT time units 
the probability p, that any two nodes can communicate is: 

where qr is the connectivity index for time unit i. For 
simplicity of analysis, assume q, is a constant 77 then (9) 
reduces to: 

Now we illustrate how we can take advantage of statistical 
independence of the network topologies at different times 
on a simple example where k5. Even though the 
connectivity index is 0.7, any two nodes can still 
successfully communicate with a probability as high as 
0.998 by (12). That means it is still possible to communicate 

P, = l - ( l - q y  (12) 
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‘reliably’ with a proper scheine even if the network is not 
quite well connected. This can decrease the required 
transmission range dramatically. For example, for the 
case L=l and P 5 ,  we can achieve = 0.7 by setting 
& O S  according -to Fig. 5 while we ieed e 0 . 9 2  to 
guarantee P to be 0.998 according to Fig. 2. Of course, 
the scheme will lead to larger delays. How much the 
delay will increase depends on the changing rate of the 
topology, i.e. the mobility of the nodes. 

5. CONCLUSIONS A,ND FUTURE WORK 

In this article we provided a simple empirical formula to 
calculate the probability that an ad hoc network is fully 
connected. By simulation, we find that this formula is 
quite accurate at least for the case that the number of 
nodes does not exceed 125, which is enough in typical 
applications (like the ad hoc network formed by laptops in 
a conference hall). We have also examined the 
asymptotic behavior of the connectivity formula and 
gotten results that agree with the existing literature. 
Finally, we introduced the connectivity index metric to 
quantify the connectivity of a network. 

At present, we are extending this work by exploring the 
effect of different connectivity indices on the performance 
of the network, such as throughput and delay. It would be 
interesting to design some schemes to combat the 
possibility of disconnection. Work is also needed to 
calculate the connectivity index under different areas and 
user densities. 
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