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Understanding CHOKe: Throughput and
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Abstract—A recently proposed active queue management,
CHOKe, is stateless, simple to implement, yet surprisingly
effective in protecting TCP from UDP flows. We present an
equilibrium model of TCP/CHOKe. We prove that, provided the
number of TCP flows is large, the UDP bandwidth share peaks at
( + 1) 1 = 0 269 when UDP input rate is slightly larger than
link capacity, and drops to zero as UDP input rate tends to infinity.
We clarify the spatial characteristics of the leaky buffer under
CHOKe that produce this throughput behavior. Specifically, we
prove that, as UDP input rate increases, even though the total
number of UDP packets in the queue increases, their spatial distri-
bution becomes more and more concentrated near the tail of the
queue, and drops rapidly to zero toward the head of the queue. In
stark contrast to a nonleaky FIFO buffer where UDP bandwidth
shares would approach 1 as its input rate increases without bound,
under CHOKe, UDP simultaneously maintains a large number of
packets in the queue and receives a vanishingly small bandwidth
share, the mechanism through which CHOKe protects TCP flows.

Index Terms—Active queue management, bandwidth share,
CHOKe, leaky buffer, spatial characteristics.

I. INTRODUCTION AND SUMMARY

TCP IS BELIEVED to be largely responsible for preventing
congestion collapse while the Internet has undergone dra-

matic growth in the last decade. Indeed, numerous measure-
ments have consistently shown that more than 90% of the traffic
on the current Internet is still TCP packets, which, fortunately,
are congestion controlled. Without a proper incentive structure,
however, this state of affair is fragile and can be disrupted by the
growing number of nonrate-adaptive (e.g., UDP-based) applica-
tions that can monopolize network bandwidth to the detriment
of rate-adaptive applications. This has motivated several active
queue management schemes, e.g., [2]–[4], [7], [9], [11], [14],
that aim at penalizing aggressive flows and ensuring fairness.
The scheme, CHOKe, of [11] is particularly interesting in that
it does not require any state information and yet can provide a
minimum throughput to TCP flows. In this paper, we provide an
analytical model of CHOKe that explains both its throughput
behavior and the spatial characteristics of its leaky buffer that
underlies the throughput behavior.
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The basic idea of CHOKe is explained in the following quote
from [11]:

When a packet arrives at a congested router, CHOKe
draws a packet at random from the FIFO (first-in-first-out)
buffer and compares it with the arriving packet. If they both
belong to the same flow, then they are both dropped; else
the randomly chosen packet is left intact and the arriving
packet is admitted into the buffer with a probability that de-
pends on the level of congestion (this probability is com-
puted exactly as in RED).

The surprising feature of this extremely simple scheme is that it
can bound the bandwidth share of UDP flows regardless of their
arrival rate. Extensive simulation results in [11] show that as the
arrival rate of UDP packets increases without bound, their band-
width share peaks and then drops to zero! It seems intriguing
that a flow that maintains a much larger number of packets in
the queue does not receive a larger share of bandwidth, as in the
case of a regular first-in-first-out (FIFO) buffer. A precise un-
derstanding of this phenomenon requires a detailed analysis of
the queue dynamics.

We make two contributions. First, we present in Section II a
deterministic fluid model that explicitly models both the feed-
back equilibrium of TCP/CHOKe system and the spatial charac-
teristics of the queue. By making three simplifying approxima-
tions to the model, we prove that, provided the number of TCP
flows is large, the UDP bandwidth share peaks at

when UDP input rate is slightly larger than link capacity,
and drops to zero as UDP input rate tends to infinity (Theorems
1 and 2). This result, explained in Section III, has been inde-
pendently obtained in [10] and [16] using different methods. It
explains the simulation results of [11] and raises the question of
what produces this throughput behavior.

Our second contribution answers this question by clarifying
the spatial characteristics of the leaky buffer under CHOKe. In
Section IV, we introduce the concepts of spatial distribution and
velocity of packets at different positions in a queue. In a non-
leaky FIFO buffer, both quantities are uniform across the queue.
As a result, both the buffer occupancy of a flow and its band-
width share are proportional to its input rate. CHOKe, however,
produces a leaky buffer where packets may be dropped as they
move toward the head of the queue, leading to nonuniformity in
both quantities across the queue. We prove that, as UDP input
rate increases, even though the total number of UDP packets in
the queue increases, their spatial distribution becomes more and
more concentrated near the tail of the queue, and drops rapidly
to zero toward the head of the queue (Theorems 4 and 8). Hence,
asymptotically, even though UDP packets occupy close to half
of the queue (Theorem 5), almost all of them are dropped be-
fore they advance to the head (Theorems 2 and 6). In stark con-
trast to a nonleaky FIFO buffer where UDP bandwidth shares
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would approach 1 as its input rate increases without bound,
under CHOKe, UDP simultaneously maintains a large number
of packets in the queue and receives a vanishingly small band-
width share, the mechanism through which CHOKe protects
TCP flows.

Our model can be solved numerically. The numerical solu-
tion, the throughput behavior and the spatial properties are accu-
rately validated by the simulation results presented in Section V.
We discuss our simulation experiences in Section VI and con-
clude in Section VII with limitations of this work.

II. MODEL

We focus on the single bottleneck FIFO buffer where packets
are queued and drained at a rate of packets per second. The
buffer is shared by identical TCP flows and a single UDP
flow.1 All TCP flows have a common round trip propagation
delay of seconds. We assume the system is stable and model
its equilibrium behavior.

More generally, one can choose more than one packet from
the queue, compare all of them with the incoming packet, and
drop those from the same flow. This will improve CHOKe’s
performance, especially when there are multiple unresponsive
sources [10], [11]. Here, we focus on the modeling of a single
drop candidate packet. The analysis can be extended to the case
of multiple drop candidates.

A. Notations

Quantities (rate, backlog, dropping probability, etc) associ-
ated with the UDP flow are indexed by 0. Those associated with
TCP flows are indexed by . Since the TCP sources
are identical, these quantities all have the same value, and hence
we will refer to flow 1 as the generic TCP flow. These are equi-
librium quantities which we assume exist.

We collect here the definitions of all the varibles and some of
their obvious properties.

Packet backlog from flow , .
Total backlog: .
Congestion-based dropping probability. The spatial prop-
erties of CHOKe are insensitive to the specific algorithm,
such as RED, to compute this probability, as long as it
is the same for all flows. In general, for
some function as a function of aggregate backlog and
queueing delay .
The probability that an incoming packet of flow , ,
is dropped by CHOKe:

Overall probability that a packet of flow , , is
dropped before it gets through, either by CHOKe or RED:

(1)

The explanation of (1) is provided later.
Source rate of flow , . The spatial properties of
CHOKe are insensitive to the specific TCP algorithm, such
as Reno or Vegas. In general, for some

1In this paper, we use “UDP flow” to denote a flow with a constant rate.

function as a function of overall loss probability and
queueing delay at equilibrium.
Common queueing delay. Round-trip time is .

It is important to keep in mind that is the only independent
variable; all other variables listed above are functions of ,
though this is not made explicit in the notations. Later we will
also use as a shorthand for flow ’s normalized bandwidth
share, , .

B. TCP/CHOKe Model

A packet may be dropped, either on arrival due to CHOKe
or congestion (e.g., according to RED), or after it has been ad-
mitted into the queue when a future arrival from the same flow
triggers a comparison. Let be the probability that a packet
from flow is eventually dropped. To see why is related to
CHOKe and RED dropping probabilities according to (1), note
that every arrival from flow can trigger either 0 packet loss
from the buffer, 1 packet loss due to RED, or 2 packet losses due
to CHOKe. We assume that these events happen with respective
probabilities of , , and . Hence, each
arrival to the buffer is accompanied by an average packet loss of

We take the overall loss probability to be the packet loss rate
. We now justify this probability from another

perspective.
Consider a packet of flow that eventually goes through the

queue without being dropped. The probability that it is not
dropped on arrival is . Once it enters the queue,
it takes time to go through it. In this time period, there are on
average packets from flow that arrive at the queue. We
assume that the probability that this packet is not chosen for
comparison is

Hence, the overall probability that a packet of flow survives
the queue is

(2)

A simple interpretation of a leaky buffer is as follows:
is the source rate of flow and is the rate
at which flow enters the queue after CHOKe and conges-
tion-based dropping. This flow splits into two flows: one even-
tually exits the queue and the other is dropped inside the queue
by CHOKe. The rate of the former flow is flow ’s throughput

and the rate of the latter flow is its leak rate , so
that they sum to the input rate . Since the link
is fully utilized, the flow throughputs sum to link capacity:

This completes the description of the model. In summary, the
independent variable is UDP rate . The ten dependent vari-
ables of the model are:

• backlogs of flow , ; total backlog ;
• congestion-based dropping probability , CHOKe drop-

ping probabilities , and overall dropping probabilities
, ;

• TCP rate and queueing delay .
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The relations among these variables define our model. For ease
of reference, we reproduce these ten equations here.

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Let denote the ten de-
pendent variables. Then the above equations (3)–(9) can be ex-
pressed as

(10)

This can be regarded as implicitly defining in terms of .
We assume, in situations of interest, the following.

A1: Given any , there is a unique solution that
satisfies (10).

A2: Given any , the solution of (10) is con-
tinuous in and that exists. Denote

by .
A3: The (equilibrium) TCP algorithm is contin-

uous in its arguments. Moreover,
when .

A4: The congestion-based dropping is continuous
in its arguments. Moreover, as .

Note that our model and analysis are insensitive to specifics of
the algorithms for TCP and congestion-based dropping.
They only need to satisfy conditions A3 and A4, which are non-
restrictive: A3 says that the TCP rate is finite if there is any loss,
and A4 says that if backlog grows without bound then eventu-
ally all incoming packets will be dropped.

C. Numerical Solution of TCP/CHOKe Model

The set of nonlinear equations (3)–(9) that models the
TCP/CHOKe system can be solved numerically by minimizing
the quadratic cost [using (10)]:

with an appropriate choice of positive diagonal weighting
matrix . A solution of TCP/CHOKe satisfies

. The solution can then be used in the differential
equation model described later to solve for spatial properties of
the leaky buffer under CHOKe; see Section IV.

Matlab is used to implement the above procedure. The
weighting matrix is chosen such that each component in the
vector is in the range near the fixed point.
A direct search method [8] for multidimensional unconstrained
nonlinear minimization implemented in Matlab is used for this
optimization problem. The search algorithm is stopped when

is smaller than . The solution is accurately validated
with ns-2 simulations; see Section V-A.

III. THROUGHPUT ANALYSIS

In this section, we make three approximations to our model.
They allow us to readily derive the maximum achievable UDP
throughput and a proof that UDP throughput approaches zero as

.
In Section III-A, we study the detailed dynamics of a leaky

buffer that explains the mechanism underlying these macro-
scopic properties.

A. Three Approximations

1) First Approximation: Recall that an arrival packet is first
subjected to CHOKe dropping, and if it survives CHOKe, then
it is subjected to congestion-based dropping (e.g., RED). First,
we approximate the system by one in which the order of con-
gestion-based dropping and CHOKe is reversed: a packet is first
admitted with probability , and if it is admitted, it is then
compared with a packet randomly chosen from the queue and
dropped with probability .

With this approximation, the probability that a packet from
flow is eventually dropped is no longer given by (3), but

(11)

To see this, note that every arrival from flow can trigger either
0 packet loss, 1 packet loss due to congestion, or 2 packet losses
due to CHOKe. These events happen with respective probabili-
ties of , , and . Hence, each arrival is
accompanied by an average packet loss of

and hence the overall loss probability in (11).2 This implies
that the probability that a packet of flow goes through the queue
without being dropped is:

(12)

We now derive this probability from another perspective.
The same reasoning that leads to (2) applies here, except that

is now replaced with , so that the overall proba-
bility that a packet of flow survives the queue is changed from
(2) to

(13)

Equating in (12) and (13), we have our first (of the three)
key equation(s) to compute the maximum UDP throughput:

(14)

2) Second Approximation: The second approximation is
that is so large that a comparison triggered by a TCP packet
arrival never yields a match, i.e., we assume

2Note that the approximate probability (11) is smaller than the original loss
probability given by (3) because a packet that is first dropped due to congestion
saves a potential loss of two packets due to CHOKe. The difference however is
small since both r and h are typically small.
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This means that, once in the queue (after congestion-based drop-
ping and initial CHOKe), a TCP packet will never be dropped.
The overall dropping probability then reduces to [substitute

into (11)]:

(15)

More importantly, this provides a simple relation between
queueing delay, throughput and backlog. From the condition (7)
of full link utilization, the aggregate TCP throughput is

. The queueing delay is . The number
of TCP packets in the buffer is . Then Little’s
Theorem implies

(16)

This is the second key equation for throughput analysis.
3) Third Approximation: The third approximation is that the

total backlog is large so that

(17)

Combining the key (14), (16), and (17) to eliminate , we
have

(18)

where we have used (12) to eliminate . This is the main equa-
tion in the proof of Theorem 1.

B. Maximum and Asymptotic Throughput

Let denote the UDP throughput share,
, and let denote the max-

imum achievable UDP share. We now estimate and prove
that approaches 0 asymptotically as . These results
are also independently obtained in [10] (and [16]), using a dif-
ferent model.

Theorem 1:
1) The maximum UDP bandwidth share is

.
2) It is attained when the UDP input rate after congestion-

based dropping is
.

3) In this case, the CHOKe dropping rate for UDP is
.

Proof: From (12), the UDP bandwidth share is

Then rewrite (18) as

(19)

Let denote

(20)

Then (19) becomes

or

(21)

It is easy to check that the right-hand side has a unique max-
imum at with maximum bandwidth share given
by

(22)

Substituting into the definition (20) of , the
maximum UDP bandwidth share is attained when the CHOKe
dropping probability for UDP is

(23)

Since , this implies that 39% of the queue are UDP
packets when UDP attains the highest throughput.

Since , the UDP rate after con-
gestion-based dropping, , that attains the maximum
throughput is

Substituting (22) and (23), we have

The next result says that, as UDP rate grows without
bound, even though UDP packets occupy up to half of the
queue, its throughput drops to zero. This result is
also proved in Theorem 6 in Section IV-D using the original
model (3)–(9) without the three approximations of this section.

Theorem 2: As , but .
Proof: Since , we have from (12)

We argue that indeed as .
From (7), we have for all . Hence,

as . From (12), we have

Hence, either or . We show by
contradiction. If , then by
(15). Assumption A3 then implies .
The condition of full link utilization (7) then implies

This violates Theorem 1. Hence, and . Then
from (20), and hence, using (21), .

We visualize (18) in Fig. 1. It illustrates both theorems above.

C. Remarks: Approximate Model

With the first two approximations, the model (3)–(9) with ten
dependent variables is simplified to eight dependent variables

, with and , and eight
equations with the three (3)–(5) for replaced by the single
(16). The approximate model that consists of (3)–(5) for ,
(6)–(9) and (16) can also be solved numerically using the same
method described in Section II-C.

We close this section by presenting another way to derive
(14). The rate of flow is when it first enters the
tail of the queue after congestion-based dropping and CHOKe,
and it takes seconds for packets to reach the head of the queue.
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Fig. 1. � versus x (1 � r)=c.

After traveling down the queue for seconds, , the
packets arrive at a certain point , where it has been
thinned by a factor [following the same argu-
ment that leads to (2)] and the rate of the flow at is

Hence, is the infinitesimal volume of the fluid at the
point in the queue, and the backlog from flow is thus

If we approximate by , when is large, then the
above integral reduces to

In particular, since , this implies

This becomes (14) when we approximate by .

IV. SPATIAL CHARACTERISTICS

In this section, we derive the spatial characteristics of the
leaky buffer under CHOKe that give rise to the macroscopic
properties of maximum and asymptotic throughput proved in
Section III.

A. Spatial Distribution and Packet Velocity

If a packet cannot be dropped once it has been admitted into a
FIFO queue, then, clearly, the queueing delay and bandwidth
share are

and (24)

If packets can be dropped while they advance toward the head
of the queue, (24) no longer holds, and the queueing delay and

bandwidth share depend critically on the spatial characteristics
of the queue. The key to their understanding is the spatial dis-
tribution of packets in the queue and the flow rate (velocity at
which packets move through the queue) at different positions in
the queue. We now define these two quantities and relate them
to the variables previously defined.

Let denote a position in the queue, with
being the tail and the head of the queue. In a leaky buffer,
the queueing delay of a packet that eventually exits the queue
is no longer the backlog it sees on arrival divided by the link
capacity. This is because it advances toward the head both when
packets in front of it exit the queue and when they are dropped
by CHOKe. To model this dynamics, define as the velocity
at which the packet at position moves toward the head of the
queue:

For instance, the velocity at the head of the queue equals the link
capacity, . Then, the queueing delay is given in terms
of as

(25)

More generally, define, for , by

(26)

which can be interpreted as the time for a packet to reach posi-
tion from position 0. Clearly, .

Let be the probability that the packet at position be-
longs to flow , . As usual, we have

for all (27)

The average number of flow packets in the entire backlog sat-
isfies

(28)

The bandwidth share is the probability that the head of the
queue is occupied by a packet from flow :

(29)

Note that if the queue is not leaky, then the spatial distri-
bution of packets will be uniform, being independent of
position :

for all

This, together with (28), implies the bandwidth share in (24),
i.e., the bandwidth share depends only on the total number of
flow packets in the queue. When the queue is leaky, however,
the spatial distribution can be highly nonuniform. The band-
width share of flow depends on the spatial distribution of
packets only at the head of the queue and does not depend di-
rectly on the distribution at other positions or the total number
of flow packets, in stark contrast to the case of nonleaky buffer.
This is the underlying reason why UDP packets can occupy
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almost half of the queue, yet receiving very small bandwidth
share: when UDP rate is high, decreases rapidly from

to with ; see Section IV-C.
We have completed the definition of spatial distribution

and velocity of packets in the queue. We now derive an
ordinary differential equation (ODE) model of these quantities.

B. ODE Model of and

We will derive an ODE model for and ; can
be obtained from (27).

Consider a small volume of the (one-dimensional
fluid) queue at position . The amount of fluid (packets) in
this volume that belongs to flow is , .
For instance, , , is the amount of fluid that
arrives at the tail of the queue, packets that are not dropped by
CHOKe or congestion-based dropping on arrival and admitted
into the buffer. Hence,

(30)

Another boundary condition is the packet velocity at the head
of the queue mentioned above:

(31)

Suppose the small volume of fluid (our “tagged
packet”) arrives at the buffer at time 0, and reaches position

at time . During this period , there are
packet arrivals from flow , and each of these arrivals triggers a
comparison. The tagged packet is selected for comparison with
probability each time. We model this by saying that the fluid
is thinned by a factor when it reaches position

at time . Thus

(32)

Note that this is the same argument that leads to (2).
Taking logarithm on both sides and using (26) to eliminate

, we have

where

Differentiating both sides with respect to , we get

(33)

(34)

Now (33) (34) yields

(35)

where we have used (27). Substituting (35) into (33), we get

(36)

Hence, the spatial distribution and packet velocity
is given by the two-dimensional system of nonlinear differen-

tial (35)–(36) with boundary conditions (30) and (31). Since the
right-hand sides of (35) and (36) are continuously differentiable
in , there exists a unique solution in its interval of exis-
tence [12].

We make an important remark. Given , quantities such as ,
, are uniquely determined by (10) by assumption A1. At the

same time and are uniquely determined by the differ-
ential (35) and (36) with boundary conditions (30) and (31). The
relations (25) and (28) between these two sets of quantities are
not necessarily true a priori. Even though they seem reasonable
based on their physical interpretation, they nonetheless remain
a postulation:

A5: Relations (25) and (28) hold.
Note that (27) holds without assumption and defines .

C. Structural Properties

In this subsection, we prove some structural properties of the
velocity and spatial distribution . They are illustrated
in Fig. 2.

Theorem 3: For all , packet velocity is a convex
and strictly decreasing function with

and . It is linear if and only if
.

Proof: See Appendix A.
Given , define

and the inflexion point by

Theorem 4: Suppose . Then is a strictly de-
creasing function, with

Moreover,
• if , then is convex;
• if , then is concave;
• if , then is concave for

and convex for .
Proof: See Appendix B.

Theorems 3 and 4 are illustrated in Fig. 2. The figure also
shows the asymptotic properties of and , to which we
now turn.

D. Asymptotic Properties

We will prove that and take the form shown in
the right-hand column of Fig. 2 asymptotically as . We
assume:

A6: The pointwise limits of and as ,
denoted by and , exist. Moreover, rela-
tions (25), (26), and (28) are satisfied in the limit with

, and replaced by , and
, respectively.

Note that we do not assume that the limit functions and
satisfy the ODEs of Section IV-B.
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Fig. 2. Illustration of Theorems 3, 4, 6, 8, and 9.

We start with a result that says that regardless of the UDP rate
, every flow, including UDP flow, occupies less than half of

the queue. This implies that asymptotically as , con-
gestion-based dropping probability and queueing delay

. These properties are used later to prove the asymp-
totic UDP throughput and the asymptotic spatial properties of
the leaky buffer of CHOKe.

Theorem 5:
1) For all , , .
2) As

a) and ;
b) ;
c) and ;
d) , .

Proof:
1) From (3), and hence using (5),

we have

The right-hand side is a decreasing function for
with a maximum value of 1/2 at .

2) Since for all , must tend to 1 as
. Hence, . Then

, or . Since
, we have .

Suppose . From (3),
and hence, for ,

with equalities if and only if for . But this
contradicts that . Hence, .

Consider TCP flow . Since
from part 2(a), (4) implies that . By

assumption A3, . Now suppose for
the sake of contradiction that . Then (4) implies

but (3) implies

yielding , contradicting that
. Hence, .

Finally, if , then by assumption A4, we have
, contradicting (b).

We next show that the UDP throughput vanishes as grows
without bound. This confirms the approximate throughput anal-
ysis of Theorem 2. Recall (26) that for

Theorem 6: As , .
Proof: From (36), we have

where . Integrating both sides from 0 to , we
get

Hence,

(37)

where

(38)

UDP throughput share is evaluated at
where . From Theorem 5 (c),

, and hence by Lemma 7 below, .
The following lemma implies that, asymptotically as
, not only does the throughput of UDP , more-

over, all UDP packets are dropped before the first point where
is nonzero. Note that in the lemma below is generally a

function of .
Lemma 7: If , then

Proof: See Appendix C.
The next result says that the asymptotic spatial distribution

of UDP takes the form shown in Fig. 2.
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Theorem 8: Let . Then

Proof: See Appendix D.
The next result proves the shape of .
Theorem 9: Let . Then

.

Proof: See Appendix E.
We summarize these structural properties. First, when is

large, the spatial distribution decreases rapidly toward the
head of the queue. This means that most of the UDP packets
are dropped before they reach the head. It is therefore possible
to simultaneously maintain a large number of packets (near the
tail) and receive a small bandwidth share, in stark contrast to
the behavior of a nonleaky buffer. Indeed, as grows without
bound, UDP share drops to 0. Second, the packet velocity is
infinite before the position because UDP packets are being
dropped at an infinite rate until .

E. Asymptotic Regime

The TCP/CHOKe system is much simpler in asymptotic
regime when . To simplify notation, we drop the
superscript on in this subsection, though all quantities are
limits.

By Theorem 6, UDP share is zero, and .
Hence, because of full utilization (7), TCP shares are equal:

(39)

Using Theorem 5(2a) to eliminate in (3), we have

(40)

Applying Theorem 9 to (25), we have

(41)

where . In summary, in asymptotic regime,
the TCP/CHOKe model is reduced from ten dependent variables
to five variables , determined by the five
equations (39)–(41), and (8) and (9). Given the TCP function

in (8) and congestion-based dropping in (9), the
system is completely specified and can be solved numerically.

The system is further simplified if we approximate
for . Then (41) reduces to

(42)

For TCP Reno TCP and RED, we use the following model
for and (e.g., [5]):

(43)

(44)

Fig. 3. Network topology.

for some and . With pkts/s, s, ,
pkts, , the asymptotic values are numerically

solved to be [values in parentheses are calculated using (42)
instead of (41)]:

pkts

s

pkts/ s

From ns-2 simulation with the same parameters at ,
we obtained pkts, close to the numerical value.

V. SIMULATION RESULTS

We present three sets of simulation results. The first set il-
lustrates the accuracy of our TCP/CHOKe model (3)–(9) and
its macroscopic properties. The second set illustrates the spa-
tial properties proved in Theorems 4 and 8. Both sets use only
TCP NewReno. The third set uses TCP Vegas and illustrates that
these properties are insensitive to the specific TCP algorithms.

We implemented a CHOKe module in ns-2 version 2.1b9 and
have conducted extensive simulations using the network shown
in Fig. 3 to study the equilibrium behavior of CHOKe. There is
a single bottleneck link from router R1 to router R2 shared by
TCP sources and one UDP source. The UDP source sends data
at constant rate (CBR). For all NewReno simulations, the link
capacity is fixed at Mb/s and the round trip propagation
delay is ms. Packet size is 1 kB. Parameters for Vegas
simulations are given in Section V-C.

We use RED CHOKe as the queue management with RED
parameters: minth packets, maxth packets,

. The corresponding analytical model uses (43) for
and (44) for , with .

A. Experiment 1: Macroscopic Behavior

We vary UDP sending rate from 0.1 to 10 Mb/s, corre-
sponding to to , and vary the number of TCP flows
from 12 to 64, to observe their effect on the equilibrium behavior
of TCP/CHOKe. We measure the following quantities:

1) aggregate queue size ;
2) UDP bandwidth share ;
3) TCP throughput

as functions of and of . We then solve for these quantities
using our analytical model (3)–(9), and the approximate model
described in Section III-C. The results, shown in Figs. 4 and 5,
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Fig. 4. Experiment 1: Effect of UDP rate x on queue size and UDP share.
N = 32, x = 0:1c to 10 c, c = 1 Mb/s, simulation duration = 300 s.

illustrate both the macroscopic behavior of TCP/CHOKe and
the accuracy of our analytical models. We now discuss these
results in detail.

First, we study the effect of UDP sending rate on queue size
and bandwidth allocation. The number of TCP sources is fixed
at . As can be seen from Fig. 4, the aggregate queue
length steadily increases as UDP rate rises. UDP bandwidth
share rises, peaks, and then drops to less than 5% as

increases from to , while the total TCP throughput
follows an opposite trend, eventually exceeding 95% of the ca-
pacity (not shown). These results match closely those obtained
in [11], and with both the analytical model (3)–(9) and the ap-
proximate model of Section III-C.

Fig. 4(b) also displays the UDP bandwidth share measured
from the simulations for the cases . It verifies
Theorems 1 and 2 which predict that the UDP bandwidth share
peaks at around 0.269 and tends to 0 as increases. Simula-
tion and numerical solution using the full model (3)–(9) both
show a smaller UDP share than that predicted by the approxi-
mate model (Theorem 1). This is because the theorem is derived
under three approximations that require large and large . In
Section V-C, we will show the corresponding results for TCP

Fig. 5. Experiment 1: Effect of number N of TCP flows on aggregate queue
b and per-flow TCP throughput � c. N = 12–64, x = 1250 pkts/s, c =

125 pkts/s, simulation duration = 300 s.

Vegas, where and are both larger and the match between
simulation and approximate model is better.

Next, we fix Mb/s, , and vary from 12 to
64. Fig. 5 shows the effect of on aggregate queue size and
on per-flow TCP throughput . As expected, the
queue size increases and per-flow TCP throughput decreases
with as the queue becomes more congested. Again, the
simulation and analytical results match very well, further vali-
dating our model.

B. Experiment 2: Spatial Distribution

This set of results measure the spatial distributions of
UDP packets in the set of simulations shown in Fig. 4, with
parameters: Mb/s, , varies from to .
The simulation results, and analytical solutions, are both shown
in Fig. 6. They match well Theorems 4 and 8; compare with
Fig. 2(b) in Section IV-C.

To measure the packet distribution from each simulation (
value), we took snapshots of the queue every 100 ms
for 300 seconds. From the sample queue sizes , we first
calculated the average . The distribution was
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Fig. 6. Experiment 2: Spatial distribution �(y) of packets in queue at different UDP rates x . N = 32, c = 125 pkts/s, simulation duration = 300 s. Verifies
Theorems 4 and 8 [compare with Fig. 2(b)].

estimated over this range , as follows. For each
, the sample distribution is calculated as

where is 1 if the packet in position of the th
snapshot is UDP, and 0 otherwise.

When [Fig. 6(a)], UDP packets are distributed
roughly uniformly in the queue, with probability close to 0.08
at each position. As a result, its bandwidth share is roughly 10%.
As increase, concentrates more and more near the tail
of the queue and drops rapidly toward the head, as predicted by
Theorems 4 and 8.

Also marked in Fig. 4(b) are the UDP bandwidth shares cor-
responding to UDP rates in Fig. 6. As expected the UDP band-
width shares in 4 (b) are equal to in Fig. 6. When

, even though roughly half of the queue is occupied by UDP
packets, almost all of them are dropped before they reach the
head of the queue!

C. Experiment 3: Vegas

In this subsection, we present similar simulations with TCP
Vegas and compare with those with TCP NewReno. They il-
lustrate that the qualitative behavior of TCP/CHOKe is insen-
sitive to the specific TCP algorithms. It also shows that Vegas

scales better than Reno with respect to link capacity (Vegas sim-
ulations used 15 times the link capacity in NewReno simula-
tions), especially under CHOKe. This is because CHOKe in-
creases the overall loss probability, limiting the achievable rate
of TCP Reno (see also Section VI). Since TCP Vegas sets its
rate based on queueing delay, it does not have this limitation.
See [16] for more simulation results with Vegas.

For TCP Vegas, the source rate is related to the round trip
time in equilibrium according to (see [6])

where is a protocol parameter. If the buffer is not leaky, each
Vegas source puts number of packets in the queue and hence
the total number of TCP packets in the queue is .

The original Vegas implementation in ns-2 works poorly in
a lossy environment, for two reasons. First, the implementation
estimates RTT naively by setting it to the difference between
sending time of a packet and receiving time of its ACK. When
packets are lost, the ACK may be a duplicate ACK or it may
be triggered by the retransmitted packet. A more sophisticated
estimation is required when losses are frequent. Second, when
there are multiple losses in the same round trip time, which is not
infrequent since CHOKe drops two packets every time a com-
parison yields a match, the Vegas implementation often incurs
timeout and slow-start. We re-implemented the Vegas module
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Fig. 7. Experiment 3: Effect of UDP rate x on queue size and UDP share.
N = 100, x = 0:1c to 10c, c = 15 Mb/s, simulation duration = 20 s.

in ns-2 based on the TCP-NewReno code which better handles
losses. There are three major changes. First, we do not estimate
RTT with duplicate ACKs, especially with the first and second
duplicate ACKs when fast retransmit/fast recover phase is not
yet entered. Second, we use the NewReno’s fast retransmit and
fast recovery code to deal with multiple losses. Third, we change
the Vegas code such that it does not halve the sending window
when there is a loss.

For all Vegas simulations, the link capacity is fixed at
Mb/s the round-trip propagation delay is ms, the

number of (identical) TCP Vegas flows is . We set
packets for all Vegas flows. We use RED CHOKe as

the queue management with RED parameters: (
packets, packets, ). Packet
size is 1 kB. Simulation time is 20 s.

We vary UDP sending rate from Mb/s to
Mb/s. We measure the UDP bandwidth share

and aggregate queue length , and compare them
with the numerical solutions of the full model (3)–(9) and those
of the approximate model described in Section III-C. The re-
sults are shown in Fig. 7. Comparison of this with Fig. 4 for
NewReno simulations confirms that the qualitative behavior of
TCP/CHOKe is insensitive to TCP algorithms.

Fig. 8. Queue size with N = 40.

Theorems 1 and 2 predict that the UDP bandwidth shares
peaks at around 0.269 and tends to 0 as increases.
Fig. 7(b) also displays the UDP share from simulations
with . As mentioned in Section V-A, both
simulation and numerical solution of the full model (3)–(9)
yield a smaller maximum UDP throughput than predicted,
because of the three approximations used in deriving the theo-
rems. Since the number of flows is larger in Vegas simulations

than in NewReno simulations , and the
queue length is larger in Vegas simulations than in NewReno
simulations [compare Fig. 7(a) with Fig. 4(a)], the match
between simulation and Theorem 1 is better for Vegas than for
NewReno [compare Fig. 7(b) with Fig. 4(b)].

VI. DISCUSSION

Our model captures well the equilibrium behavior of CHOKe
under the assumption that the queue size is between and .
This holds if is sufficiently small or is sufficiently large.
A sample queue size from a NewReno simulation is shown in
Fig. 8, where indeed the queue size fluctuates around a level
much larger than pkts. This may not hold for small .

With smaller , each TCP source gets a larger bandwidth
share, which requires a lower dropping probability. However,
when CHOKe is active, it imposes a lower bound on the drop-
ping probability: from (1)

(45)

where the last inequality follows from (5) and the fact that UDP
packets occupy at most half of the queue [Theorem 5(1)].

We can estimate the minimum with which CHOKe is al-
ways active. Approximate the TCP function in (43) by

Combining with (45) to get

When UDP sending rate is large, TCP flows take almost all the
bandwidth, so . Around , queueing delay is roughly
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Fig. 9. Queue size with N = 8.

. Putting all these together, the minimum number of
TCP flows required for CHOKe to remain active is roughly

Using the same parameters as in Section V, we can estimate
the minimal to be 8.08. When , queue size oscillates
around packets, constantly turning CHOKe on and off,
as shown in Fig. 9 (compare with Fig. 8). When is small,
the equilibrium model in Section II no longer holds. The same
phenomenon is observed when increases (with fixed ). The
lower bound on dropping probability when CHOKe is active,

, eventually prevents TCP flows from making full
use of the available capacity. A positive effect is that the queue
length is controlled to stay around .

We have also simulated with more than one UDP flows, and
with Back CHOKe (where an arrival is always compared with
the packet at the tail of the queue) and Front CHOKe (where
an arrival is always compared with the packet at head of the
queue) [11]. When there is more than one UDP flow, CHOKe
may not be as effective in protecting TCP traffic and UDP flows
may take a larger bandwidth share at high sending rate. The
throughput behavior of CHOKe variants, where burstiness has a
much stronger effect, can be quite different from that of the orig-
inal CHOKe. For instance, with Back CHOKe, once admitted
into the buffer, a packet will not be dropped. When the UDP
input rate is high, all packets in the same burst of UDP arrivals
will be dropped, except possibly the last packet when the burst
has odd number of packets. As a result the UDP share remains
small (in fact close to 1/3 if the number of TCP flows is large)
and the queue oscillates around .

VII. CONCLUSION

We have developed a model of CHOKe that includes the feed-
back equilibrium of TCP/CHOKe and a detailed modeling of the
queue dynamics. We prove that as UDP input rate increases, its
bandwidth peaks at when UDP input rate
is slightly larger than link capacity, and drops to zero as UDP
input rate tends to infinity. To explain this phenomenon, we have
introduced the concepts of spatial distribution and velocity of

packets in the queue. We prove structural and asymptotic prop-
erties of these quantities that make it possible for UDP to si-
multaneously maintain a large number of packets in the queue
and receive a vanishingly small bandwidth share, the mecha-
nism through which CHOKe protects TCP flows.

Finally, we remark that CHOKe algorithm may be constantly
turned on and off when the link capacity is high or the number
of TCP sources is small. This can prevent TCP flows from
making full use of available capacity but regulate the queue
size to around .

Our model applies only to the equilibrium behavior of
TCP/CHOKe which presumes an asymptotically stable system.
It is restricted to the simple case of homogeneous TCP flows, a
single UDP flow, a single drop candidate, at a single bottleneck
link. It would be interesting to extend the analysis to a more
general setting. The technique presented here may also be
applicable to analyzing other types of leaky buffer.

APPENDIX

A. Proof of Theorem 3

Using (27), (35) can be rewritten as

where . Hence, is strictly decreasing.
Differentiating again and using from

(27), we have

From (36), we have

with equality if and only if . Hence, is convex and
is linear if and only if .

The boundary values of follows from (30) (sum over )
and (31).

B. Proof of Theorem 4

From (36), we have

Since and , , i.e., is a strictly
decreasing function. The value of follows from (30) and
Theorem 3.

Differentiating (36), we have after some algebra

There are three possible cases.

• : and
. In this case is convex decreasing.

• : and
. In this case is concave decreasing.
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• : Then for and
for . Hence, is strictly concave de-

creasing before the inflexion point and strictly convex
decreasing after.

C. Proof of Lemma 7

We will show that the numerator of (37) tends to 0 as
. From Theorem 4, we have

(46)

and hence from (38), we have

The numerator of (37) is then

From Theorem 5, as , , , and .
Moreover, from Theorem 5(d), and hence

. Then, if , it can be shown
that grows at most linearly to , while tends at
least exponentially to 0. Hence, .

D. Proof of Theorem 8

From Theorem 6, we know . Hence, we can define

Let be any point with . One exists because, from
proof of Lemma 7, we know [see (46)]. Consider
the midpoint between and , . It suffices
to prove that (i) either or , and (ii) .

(i) Suppose . We need to show that .
Since is decreasing for any finite (Theorem 4),
its limit is nonincreasing in . Hence, . Suppose
for the sake of contradiction that .

We first prove that . Consider for any finite
the quantity , the TCP flow rate at position

in the queue. Using (32) and (30), we have

Taking limit as , we have

which is bounded by Theorem 5. Note that by
definition of . Since , we have (taking
limit of the corresponding finite- expression as )

Hence, implies .
This in turn implies that since by
definition of (otherwise, and we are done).

Now define be the midpoint of and ,
. Then by definition of . We now show that

implies , a contradiction.

From Theorem 3, is strictly decreasing in and hence
defined by (26) satisfies

Taking limit as , we have

where the last inequality follows from . Hence,
by Lemma 7. But this contradicts the definition of

since . Hence, we must have .
(ii) The above shows that takes the form shown in

Fig. 2. Then, by (28) and Theorem 5, we have (using assumption
A6)

This completes the proof.

E. Proof of Theorem 9

We first prove for and then for .
Assume there exists such that . Con-

sider . Since is nonincreasing in , we
have for any . Hence, using
assumption A6, we have

Then Lemma 7 implies that . Since , this
contradicts theorem 8. So for , .

For , we prove the theorem in four steps.

Step 1) for all .
Using (32) and (30), and taking limit as ,

we have

But by Theorem 8,
for , and by Theorem 5, the right-hand side is
finite. Hence, for all .

Step 2) for .
Fix . Since is strictly decreasing (The-

orem 3) we have, for each finite

Taking limit as , we have for

Step 3) There exists an integrable function such that,
for all and
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From (37) we have

Since for all , the proof of Lemma
7 shows that, as , grows at most logarith-
mically to while grows at least expo-
nentially to 0. Hence, the numerator
tends to 0 as . Moreover,

is finite. Hence, for sufficiently large , we
have

Note that is independent of . Hence, if we de-
fine , then .
Since is finite for all (Theorem 5), is in-
tegrable over .3

Step 4) for .
Fixed . From (35), we have, for each

Taking limit as , we have

From Step 3, is upper bounded by an integrable
function and converges pointwise to as

. Hence, the Lebesgue convergence theorem
applies (see [1, pp. 215], [13, p. 229]):

Hence, for .
This completes the proof.
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