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Abstract— This paper reverse-engineers backoff-based
random-access MAC protocols in ad-hoc networks. We show
that the contention resolution algorithm in such protocols
is implicitly participating in a non-cooperative game. Each
link attempts to maximize a selfish local utility function,
whose exact shape is reverse-engineered from the protocol
description, through a stochastic subgradient method in
which the link updates its persistence probability based on
its transmission success or failure. We prove that existence
of a Nash equilibrium is guaranteed in general. Then we
establish the minimum amount of backoff aggressiveness
needed, as a function of density of active users, for uniqueness
of Nash equilibrium and convergence of the best response
strategy. Convergence properties and connection with the
best response strategy are also proved for variants of the
stochastic-subgradient-based dynamics of the game. Together
with known results in reverse-engineering TCP and BGP, this
paper further advances the recent efforts in reverse-engineering
layers 2-4 protocols. In contrast to the TCP reverse-engineering
results in earlier literature, MAC reverse-engineering highlights
the non-cooperative nature of random access.

Index Terms— Wireless network, Ad hoc network, Medium ac-
cess control, Mathematical programming/optimization, Network
utility maximization, Game theory, Network control by pricing,
Reverse-engineering.

I. INTRODUCTION

TO BETTER understand backoff-based random-access
protocols in wireless MAC (Medium Access Control),

such as the BEB (Binary Exponential Backoff) protocol in the
IEEE 802.11 DCF standard, we pose the following question:
are the distributed and selfish actions by each link in such
protocols in fact implicitly maximizing some local utility
functions? We answer this question by developing a non-
cooperative game model for EB (Exponential Backoff) type
of MAC protocols, reverse-engineering the underlying utility
function’s form from protocol description, and characterizing
the existence, uniqueness, stability, and other key properties
of Nash equilibrium.
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Reverse-engineering starts from a given protocol originally
designed based on ad hoc heuristics and discovers the under-
lying mathematical problems implicitly being solved by the
network dynamics of the given protocol. It does not proceed
with a top-down design path, but often leads to new insights
on why an existing protocol “works” and when it will not,
thus indirectly leading to systematic forward-engineering.

The reverse-engineering approach in this paper is different
from either imposing a particular utility maximization in
a game-theoretic model (e.g., the game-theoretic model for
slotted Aloha in [1]) or performance analysis of a protocol
without discovering the underlying optimization process (e.g.,
analysis of 802.11 protocols based on Markov model [2], [3]).
By studying the current MAC protocol, we discover that the
users are actually implicitly participating a non-cooperative
game, with the utility function of each selfish user (player in
the game) reserve-engineered from the protocol specifications.

This reverse-engineering leads to a mathematical model
to study the selfish behaviors in the current MAC protocol,
including why certain aspects of the protocol work (e.g.,
uniqueness of the Nash Equilibrium can be shown), why
others do not work (e.g., difficulty in attaining convergence
and social optimality), and how to improve the MAC protocol
by forward-engineering efforts (e.g., new MAC design [18]
motivated by reverse-engineering). Another benefit of reverse-
engineering is that much insights on protocol performance and
its cross-layer effects can be obtained. Our layer 2 reverse-
engineering results complement the recent success on reverse-
engineering layer 4 TCP, e.g., [5], [6], and layer 3 BGP [7].

It is interesting to note that reverse-engineering MAC re-
veals the non-cooperative nature of random access in con-
trast to TCP reverse-engineering results in recent research
literature. Internet TCP/AQM protocols in the transport layer
have recently been reverse-engineered as implicitly solving a
cooperative Network Utility Maximization (NUM) [8], [9],
[10], [11] using different Lagrange multipliers or congestion
prices. Consider a communication network with L logical
links, each with a fixed capacity of cl bps, and S sources
(i.e., end users), each transmitting at a source rate of xs bps.
Each source s emits one flow, using a fixed set L(s) of links
in its path, and has a concave utility function Us(xs). NUM
is formulated as:

maximize
∑

s Us(xs)
subject to

∑
s:l∈L(s) xs ≤ cl, ∀l,

xmin � x � xmax.

(1)

Even though TCP/AQM protocols were first designed without
regard to global optimization, a reverse-engineering model
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provides a rigorous path towards understanding the equi-
librium and dynamic properties of complicated interactions
across sources and routers, as well as valuable guidance in
design. In those models, the utility function of each source
depends only on its data rate that can be directly controlled
by the source itself, and there is adequate feedback from the
network. Hence, the TCP/AQM protocol can be modeled as an
algorithm that converges to the globally optimal rate allocation
by implicitly solving the basic NUM problem (1) for different
utility functions and its Lagrange dual problem.

Prior to this paper, there has not been a systematic effort of
reverse-engineering existing MAC protocols. MAC protocols
can be classified into two main categories: scheduling-based
(contention free), e.g., FDMA, TDMA, CDMA, and ran-
dom access (contention-based), e.g., Ethernet, slotted Aloha,
802.11 DCF function. Even though, recently, some differ-
ent approaches are studied (e.g.[12]), scheduling-based MAC
protocols have long been mapped into graph coloring or
matching problems. Therefore, reverse-engineering is most
necessary for the heuristics-based random access MAC proto-
cols. These protocols typically include a contention avoidance
phase and contention resolution phase. In the contention
avoidance phase, users exchange messages (e.g., Request-To-
Send (RTS) and Clear-To-Send (CTS)) to avoid simultaneous
transmissions. In the contention resolution phase, the con-
tention conflicts are resolved by various methods including
adaptive persistence probability (e.g., slotted Aloha) and adap-
tive backoff window size (e.g., 802.11 DCF). In this paper, we
will reverse-engineer an average model of protocols based on
Exponential Backoff (EB).

Different from the TCP/AQM model, the utility of each link
in the EB protocol directly depends on not just its own trans-
mission (e.g., persistence probability) but also transmissions
of other links due to collisions that cannot be controlled by
the link itself. Moreover, there is no explicit feedback from
the network. Hence, in contrast to TCP reverse engineering,
a non-cooperative game model is more appropriate for the
EB protocol than a global optimization model. We show
that the EB protocol can be reverse-engineered through a
non-cooperative game in which each link tries to maximize,
using a stochastic subgradient formed by local information,
its own utility function in the form of expected net reward for
successful transmission. While the existence of Nash equi-
librium can be proved, neither convergence nor social welfare
optimality is guaranteed. We then provide sufficient conditions
on link density and backoff aggressiveness that guarantee
uniqueness and stability (i.e., convergence of the standard
best response strategy as well as the gradient update with
small step size) of Nash equilibrium. In particular, it confirms
and quantifies the intuition that as long as there is adequate
backoff among contending nodes, the non-cooperative game
dynamics of random access will converge. Finally we show
that a sequential variant of the stochastic subgradient method
is equivalent to the best response strategy.

The rest of this paper is organized as follows. In Section II,
we provide the system model. In Section III-A, we establish
a non-cooperative game model for the EB protocol, reverse-
engineer the underlying utility function, and prove the exis-
tence of Nash equilibrium. In Section III-B, we further reverse-
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Fig. 1. Logical topology graph of an example network.

engineer the EB protocol as a stochastic subgradient method.
We characterize the uniqueness and stability properties of
Nash equilibrium in Sections III-C and III-D, and develop the
relationship between the stochastic subgradient method and
the best response strategy in Section III-E. In Section IV, we
provide numerical results that illustrate the properties of the
EB protocol as a non-cooperative game, and we conclude in
Section V. Most of the proofs are presented in the Appendix.

II. SYSTEM MODEL

Consider an ad-hoc network represented by a directed graph
G(V, E), e.g., as in Figure 1, where V is the set of nodes and
E is the set of logical links. We define LI

to(l) as the set of
links whose transmissions cause interference to the receiver
of link l and LI

from(l) as the set of links whose transmissions
get interfered from the transmission of link l. Hence, if link
l and a link in set LI

to(l) transmit data simultaneously, the
transmission of link l fails. If link l and a link k in set
LI

from(l) transmit data simultaneously, the transmission of
link k also fails.

The EB protocol is a prototypical contention resolution
protocol in such wireless networks. EB protocols can be
implemented in two ways: a persistence-probability-based
protocols and contention-window-based protocols similar to
slotted Aloha. In the persistence probability-based EB pro-
tocol, each link l has its own persistence probability pl with
which it transmits its data in a time-slot, and the maximum and
minimum persistence probabilities pmax

l and pmin
l . After each

transmission attempt, if the transmission is successful without
collisions, then link l sets its persistence probability to be its
maximum value, pmax

l . Otherwise, it multiplicatively reduces
its persistence probability by a factor βl (0 < βl < 1) until
reaching its minimum value pmin

l . In the contention window-
based EB protocol, each link l maintains its contention
window size Wl, current window size CWl, and minimum
and maximum window sizes Wmin

l and Wmax
l . After each

transmission, contention window size and current window
size are updated. If transmission is successful, the contention
window size is reduced to the minimum window size (i.e.,
Wl = Wmin

l ), otherwise it is increased by a factor 1/βl

(0 < βl < 1) until reaching the maximum window size Wmax
l

(i.e., Wl = min{1/βlWl, W
max
l }). Then, current window size

CWl is updated to be a number between (0, Wl) following a
uniform distribution. It decreases in every time-slot, and when
it becomes zero, the link transmits data.
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In the IEEE 802.11 implementation, the EB protocol is
window-based with β = 1/2. Since the window size is
doubled after each transmission failure, the EB protocol in the
IEEE 802.11 is called the Binary Exponential Backoff (BEB)
protocol, which is a special case of EB protocols.

Here we study the persistence probability-based EB pro-
tocol, which can also approximate a contention window-
based EB protocol, just like the source rate model in the
TCP reverse-engineering literature for the window-based TCP
congestion control protocol. The correspondence can be seen
by setting pl = 2/(Wl + 1), pmax

l = 2/(Wmin
l + 1), and

pmin
l = 2/(Wmax

l + 1). This is justified due to the following
reasons. First, after the transmission, the time until the next
transmission has a geometric distribution with a parameter
pl (i.e., with mean 1/pl) in the persistence probability-based
protocol and a uniform distribution between 1 and Wl (i.e.,
with mean (Wl + 1)/2) in the contention window-based
protocol. Hence, with the above relationship between the
persistence probability and the window size, both protocols
have the same mean value for the inter-transmission time.
Moreover, it has been shown in [2] that the above relationship
is valid once the window size (or the persistence probability)
converges to the equilibrium point.

III. REVERSE-ENGINEERING: NON-COOPERATIVE GAME

MODEL OF EB MAC PROTOCOL

In this section, we characterize the selfish utility maximiza-
tion problem that is implicitly solved by random-access MAC
protocols such as EB. In contrast to the TCP/AQM protocol
that can be modeled as a basic NUM in (1), we model the
EB protocol as a non-cooperative game due to the coupled
utility of each link (due to collisions) and the lack of sufficient
feedback from the network.

A. Game Model, Utility Function, and Existence of Nash
Equilibrium

The update algorithm for the persistence probability de-
scribed in the previous section can be written as:

pl(t + 1) = max{pmin
l , pmax

l 1{Tl(t)=1}1{Cl(t)=0} (2)

+βlpl(t)1{Tl(t)=1}1{Cl(t)=1} + pl(t)1{Tl(t)=0}},
where pl(t) is a persistence probability of link l at time-slot
t, 1a is an indicator function of event a, and Tl(t) and Cl(t)
are the events that link l transmits data at time-slot t and that
there is a collision to link l’s transmission given that link l
transmits data at time-slot t, respectively. Then, given p(t),
we have

Prob{Tl(t) = 1|p(t)} = pl(t)

and

Prob{Cl(t) = 1|p(t)} = 1 −
∏

n∈LI
to(l)

(1 − pn(t)).

Since the update of the persistence probabilities for the next
time-slot depends only on the current persistence probabilities,
we will consider the update conditioning on the current
persistence probabilities. Note that pl(t) is a random process
whose transitions depend on events Tl(t) and Cl(t).

We will first study its expected (thus deterministic) tra-
jectory, and will return to (2) later in this section1. Slightly
abusing the notation, we still use pl(t) to denote the expected
persistence probability. From (2), we have

pl(t + 1) = max{pmin
l , pmax

l E{1{Tl(t)=1}1{Cl(t)=0}|p(t)}
+βlE{pl(t)1{Tl(t)=1}1{Cl(t)=1}|p(t)}
+E{pl(t)1{Tl(t)=0}|p(t)}}

= max{pmin
l , pmax

l pl(t)
∏

n∈LI
to(l)

(1 − pn(t))

+βlpl(t)pl(t)

⎛
⎝1 −

∏
n∈LI

to(l)

(1 − pn(t))

⎞
⎠

+pl(t)(1 − pl(t))}, (3)

where E{a|b} is the expected value of a given b.
We now reverse-engineer the update algorithm in (3)

as a game, in which each link l updates its strategy,
i.e., its persistence probability pl, to maximize its utility
Ul based on strategies of the other links, i.e., p−l =
(p1, · · · , pl−1, pl+1, · · · , p|E|).

Formally, we formulate the EB protocol as a non-
cooperative game, GEB−MAC = [E,×l∈EAl, {Ul}l∈E],
where E is a set of players, i.e., links, Al = {pl | pmin

l ≤
pl ≤ pmax

l } is an action set of player l, and Ul is a utility
function of player l. We refer to this as the EB-MAC Game
and now study its properties and solutions.

In the non-cooperative game, one of the most important
questions is whether a Nash equilibrium2 [13] exists or not. In
the case of EB-MAC Game, we have the following definition
of Nash equilibrium.

Definition 1: A persistence probability vector p∗ is said
to be a Nash equilibrium if no link can improve its utility
by unilaterally deviating its persistence probability from Nash
equilibrium:

Ul(p∗l ,p
∗
−l) ≥ Ul(pl,p∗

−l), pmin
l ≤ pl ≤ pmax

l , ∀l.

The following reverse-engineering theorem, proved in Ap-
pendix A, obtains the underlying utility functions in the EB-
MAC Game and establishes the existence of Nash equilibrium
for the game.

Theorem 1: The utility function is the following expected
net reward (expected reward minus expected cost) that the link
can obtain from its transmission:

Ul(p) = p2
l

(
1
2
pmax

l − 1
3
pl

) ∏
n∈LI

to(l)

(1 − pn)

−1
3
(1 − βl)p3

l

⎛
⎝1 −

∏
n∈LI

to(l)

(1 − pn)

⎞
⎠

= R(pl)S(p) − C(pl)F (p), ∀l, (4)

1To be precise, the expectation of pl(t) needs to be taken outside of “max”,
instead of inside “max” as in (3). However, if we make pmin

l = 0, as we
will do later in the paper, the “max” operation is not needed and (3) yields
the precise average value. Moreover, in most practice cases, pmin

l ≈ 0 and
(3) can be a good approximation.

2In this paper, we only consider a pure Nash equilibrium as in Definition
1.
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Fig. 2. Dependence of a utility function on its own persistence probability,
for βl = 0.5, pmax

l = 0.5, and
Q

n∈LI
to(l)(1 − pn) = 0.5.

where S(p) = pl

∏
n∈LI

to(l)(1 − pn) is the probability of
transmission success, F (p) = pl(1−

∏
n∈LI

to(l)(1−pn)) is the

probability of transmission failure, and R(pl)
def= pl(1

2pmax
l −

1
3pl) can be interpreted as the reward for transmission success,

C(pl)
def= 1

3 (1−βl)p2
l can be interpreted as the cost for trans-

mission failure. Furthermore, there exists a Nash equilibrium
in the EB-MAC Game GEB−MAC = [E,×l∈EAl, {Ul}l∈E ]
characterized by the following:

p∗l =
pmax

l

∏
n∈LI

to(l)(1 − p∗n)

1 − βl(1 −∏
n∈LI

to(l)(1 − p∗n))
, ∀l. (5)

Remark: It is important to note that the expressions of S(p)
and F (p) come directly from the definitions of success and
failure probabilities, while the expressions of R(pl) and C(pl)
(thus exact form of Ul) are in fact derived in the proof by
reverse-engineering the EB protocol description.

From (5), we conclude that, other conditions being the
same, at a Nash Equilibrium a link l will have a higher
persistence probability if it has a higher value of pmax

l , a
higher value of βl, or a higher value of

∏
n∈LI

to(l)(1 − p∗n),
i.e., a higher transmission success probability. We also have
the next corollaries that immediately follow from (3) and (5).

Corollary 1: If p(t) updated by (3) converges to p∗,
pmin < p∗ < pmax, then p∗ is a Nash equilibrium.

Corollary 2: Suppose that pmin
l > 0, ∀l, p∗l →

pmin
l as |LI

to(l)| → ∞.
Corollary 3: Suppose that pmin

l = 0, ∀l. Let |LI
to(l)| →

∞. If p∗l > 0, then only a finite number of links among
links in LI

to(l) have positive persistence probabilities at a Nash
equilibrium.

Corollaries 2 and 3 can be easily proven with (14) and the
fact that, as the number of links in LI

to(l) with a positive
persistence probability at a Nash equilibrium goes to infinity,
p∗l in (5) goes to zero. Corollaries 2 and 3 confirm the intuition
that, as the number of interfering nodes to a link increases (i.e.,
as the amount of contention in the contention region of a link
gets higher), the persistence probability of the link decreases.

B. EB Protocol and Stochastic Subgradient Method

Using (12), we can rewrite (3) as

pl(t + 1) = max

{
pmin

l , pl(t) +
∂Ul(p)

∂pl

∣∣∣∣
p=p(t)

}
.

Hence, in (3), each link updates its persistence probability to
the direction of the maximizer using the gradient. To update
its persistence probability by (3), each link l must know
the persistence probabilities of its adjacent links, i.e., link
n, n ∈ LI

to(l). However, in the EB protocol, there is no
explicit message passing among links, and the link cannot
obtain the exact information to evaluate the gradient of its
utility function. Instead of using the exact gradient of its utility
function as in (3), each link attempts to approximate it using
(2) according to a stochastic subgradient method as defined
follows [14].

Definition 2: Consider a function g(x) and a sequence of
random variables (x(0), ..., x(t)) from time 0 to t. Then f(t)
is said to be a stochastic subgradient of g(x) at x(t) if

E [f(t)| (x(0), ..., x(t))] ∈ ∂g(x),

where ∂g(x) is the subdifferential, i.e., the set of subgradients
of g(x).
Hence, the stochastic subgradient of a function can be thought
as the perturbed version of the subgradient of the function (i.e.,
gradient, when the gradient exists) whose conditional expected
value is equal to the subgradient.

We now rewrite (2) as

pl(t + 1) = max{pmin
l , pl(t) − pl(t) + pmax

l 1{Tl(t)=1}1{Cl(t)=0}
+βlpl(t)1{Tl(t)=1}1{Cl(t)=1} + pl(t)1{Tl(t)=0}}

= max{pmin
l , pl(t) + vl(t)},

where

vl(t) = pmax
l 1{Tl(t)=1}1{Cl(t)=0} + βlpl(t)1{Tl(t)=1}1{Cl(t)=1}

+pl(t)1{Tl(t)=0} − pl(t).

Since

E{vl(t)|p(t)} = pmax
l pl(t)

∏
n∈LI

to(l)

(1 − pn(t))

+βlpl(t)pl(t)(1 −
∏

n∈LI
to(l)

(1 − pn(t)))

+pl(t)(1 − pl(t)) − pl(t)

=
∂Ul(p)

∂pl

∣∣∣∣
p=p(t)

,

we conclude that vl(t) is a stochastic subgradient of Ul at
p(t).

In summary, we have the following reverse-engineering
result in addition to Theorem 1:

Theorem 2: The EB protocol described by (2) is a stochas-
tic subgradient algorithm to maximize utility in (4).

Remark: Each stochastic subgradient vl can be measured by
the link itself through collision and success of its transmission,
without explicit message passing among links.
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C. Uniqueness of Nash Equilibrium and Convergence of Best
Response

In Theorem 1, we have shown that there exists a Nash
equilibrium in the EB-MAC game. However, in general, there
may not be a unique Nash equilibrium, as illustrated in a
simple example. Suppose that there are two links interfering
with each other, and that pmax

1 = pmax
2 = pmax = 1, then

it can be verified that there is an infinite number of Nash
equilibria, which is the set of (p∗1, p

∗
2) satisfying

max{pmin,
1 − pmax

1 − βpmax
} ≤ p∗1 ≤ min{1,

1 − pmin

1 − βpmin
}

and

p∗2 =
1 − p∗1
1 − βp∗1

.

We will investigate uniqueness of Nash equilibrium together
with the convergence of a natural strategy for the game: the
best response strategy, commonly used to study stability of
Nash equilibrium.

Definition 3: Link l’s best response is defined as the per-
sistent probability that maximizes his utility function given
fixed persistent probabilities from other links:

Bl(p−l) = argmax
pmin

l ≤pl≤pmax
l

Ul(pl,p−l).

Thus the best response update is defined as

p∗l (t + 1) = Bl(p∗
−l(t)), ∀l. (6)

Note that, in current practice, the persistence probability in
the EB protocol is not updated by the best response strategy,
but by (2) (or by (3) on average). Hence, in the EB protocol,
instead of instantaneously setting pl(t+1) to the best response
p∗l (t + 1), in (2) (or (3)) each link updates its persistence
probability to the direction of the maximizer by using the
stochastic gradient. Hence, in the EB protocol, the persistence
probability of the link is updated more smoothly than the best
response.

As proved in Appendix B based on S-modular game theory
[15], [16], the following theorem provides our first charac-
terization of the convergence properties of the best response
strategy to a Nash equilibrium in the EB-MAC Game.

Theorem 3: Suppose that the persistence probability of
each link is updated by the best response function in (6) in
each time-slot with p∗(0) = pmin. Then,

p∗(2t + 1) → p̂ and p∗(2t) → p̃ as t → ∞.

If p̂ = p̃ i.e., if p∗(t) converges to p̂, then p̂ is a Nash
equilibrium.

Thus far, we have shown that Nash equilibrium of the EB-
MAC game may not be unique and, further, the best response
strategy may not converge to a Nash equilibrium. However,
by imposing some conditions on the strategy set of each
link, we can guarantee both uniqueness of Nash equilibrium
and convergence of the best response strategy to the Nash
equilibrium.

For notational simplicity, we assume all links have the same
pmax and pmin. Furthermore, assume that pmax < 1 and

pmin = 0 3. Then, from (5), we have

p∗l = pmax

∏
n∈LI

to(l)(1 − p∗n)

1 − β(1 −∏
n∈LI

to(l)(1 − p∗n))
, (7)

where LI
to(l) is a set of links that cause interference to link l.

We first bound Nash equilibrium with the following
Lemma 1: We have p∗l > 0 and p∗l < pmax.
This lemma is proved in Appendix C and guarantees that

any equilibrium must be an inner solution. We now show that
when contention density is not too high, the above solution is
actually the unique Nash equilibrium.

Let K = maxl{|LI
to(l)|}, which captures the amount of

potential contention among links. We have the following
theorem that relates three key quantities: amount of potential
contention K , backoff multiplier β (speed of backoff), and
pmax that corresponds to the minimum contention window
size (minimum amount of backoff).

Theorem 4: If pmaxK
4β(1−pmax) < 1, then

1) The Nash equilibrium is unique;
2) Start from any initial point, the iteration defined by best

response converges to the unique equilibrium.
The proof is in Appendix D. The key idea is to show the

updating rule from p(t) to p(t + 1) is a contraction mapping
[17] by verifying a particular norm of the Jacobian J (||J||∞
in our proof) is less than one.

There are several interesting engineering implications from
the above theorem. For example, it provides a guidance to
choose parameter in EB protocols, and quantifies the intuition
that with a large enough β (i.e., links do not decrease the
probabilities suddenly) and a small enough pmax (i.e., links
backoff aggressively enough), uniqueness and stability can be
ensured. The higher the amount of contention (i.e., a larger
value of K), the smaller pmax needs to be.

Some of the other implications are stated in the following
corollary, whose proof hinges upon the following observation.
If β ≤ 0.5, then 1−β

β(1−p) ≥ 1 for p ∈ (0, 1), and we have

||J||∞ ≤max
l

{
pmax|LI

to(l)|(1 − β)
(1 − β + β(1 − pmax))2

}

≤ pmaxK(1 − β)
(1 − β + β(1 − pmax))2

. (8)

Corollary 4: If one of the following conditions is satis-
fied, then the Nash equilibrium is unique. Moreover, starting
from any initial point, the iteration defined by best response
converges to the unique equilibrium.

(a) β ≤ 0.5 and pmaxK(1−β)
(1−β+β(1−pmax))2 < 1;

(b) For the system in which each link interferes each
other (i.e., LI

to(l) = E−{l}, ∀l), e.g., as in an uplink
topology4, pmax(L−1)

4β(1−pmax) < 1, where L is the number
of links;

(c) For the system in which each link interferes each
other (i.e., LI

to(l) = E − {l}, ∀l), β ≤ 0.5 and
pmax(L−1)(1−β)

(1−β+β(1−pmax))2 < 1.

3If the maximum window size is sufficiently large, then pmin can be
sufficient close to 0. Furthermore, if we do not allow the minimum window
to be 1, which is a plausible thing to do, then the smallest minimum window
is 2 and the corresponding pmax = 2/3 < 1.

4Multiple users communicating with base station or access point with one
hop.
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Fig. 3. pmax
c (β, L) for β = 0.5.

Remark: Part (c) of the above corollary quantifies the intu-
ition that smaller number of interfering links helps uniqueness
and stability of Nash equilibrium: L needs to be smaller than
1 + (1−β+β(1−pmax))2

pmax(1−β) .
Interpreting the above results in another way, we examine

the dependence of the maximum pmax allowed, i.e., the least
amount of backoff needed in terms of the smallest Wmin, in
order to ensure uniqueness and stability of EB protocol, as a
function of backoff multiplier β and link density L. Using
pmax

c (β, L) to denote the critical value of pmax satisfying
the bounds, both pmax

c (β, L) developed in Corollaries 4 (b)
(pmax

c (β, L)1) and 4 (c) (pmax
c (β, L)2) are visualized in Figure

3 with the standard parameter β = 0.5. It is worthwhile to
note that as long as the minimum window size is 3 or larger,
then for the number of active links L up to 8, which is a
reasonably large number in many applications, uniqueness and
convergence can be guaranteed.

We also plot pmax
c (β, L) for Corollary 4 (b) in Figure 4.

Not surprisingly, pmax
c (β, L) in an increasing function on β

and decreasing on L. Moreover, it is concave on β and convex
on L.5

D. Convergence of Gradient Play with Small Stepsize

In the previous subsection we have shown the uniqueness
of Nash equilibrium and convergence of the best response
updates. In this subsection, we will show that an improved
version of the gradient play in (3) also have nice convergence
results.

Define the gradient play with small stepsize as

pl (t + 1) = max
{

pmin
l , pl (t) + κ

∂Ul (p)
∂pl

}
, (9)

where ∂Ul(p)/∂pl is given in (12), and κ is a constant stepsize
no larger than 1 to ensure that pl(t + 1) ≤ pmax

l . It is clear

5 A natural question to ask next is whether the above upperbounds on pmax
l

are too conservative due to relaxations during the computation of bounds
on Jacobian’s infinity norm. The answer is no, for the contraction mapping
technique used above. An limit that sets the best possible upperbound we can
achieve via contraction mapping using infinity norm is derived by finding the
lowerbound of the maximum of ||J ||∞, see Appendix E for details. It turns
out this limit has qualitatively the same shape as the bounds in Corollary 4.
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Fig. 4. pmax
c (β, L) from Corollary 4 (b).

that any fixed point of (9) is a Nash equilibrium. In (9), users
update their persistent probabilities along the directions that
improve their utility, which can be thought as better responses
instead of best responses. If the κ is small enough, (9) will
converge to the Nash equilibrium and have less oscillation
than the best response updates.

In the following we assume that each link l interferes with
each other (i.e., LI

to (l) = E − {l}), and pmin
l > 0 for all l.

Let γ = 1
minl(1−βl)pmax

l
, and then we can prove the following:

Theorem 5: Assume there exists a unique Nash equi-
librium. Then (9) globally converges to the unique
Nash equilibrium if for any l ∈ E, stepsize κ ≤
min

{
1, 2

maxl(pmax
l )2

(γ+|E|−1)

}
for any pl ∈ [pmin

l , pmax
l ].

The proof is given in Appendix F. The basic idea is to define
a Lyapunov function and show that it will keep increasing
over time until (9) hits its fixed point, which is the Nash
equilibrium.

Remark: Theorem 5 quantifies the intuition that the stepsize
should decrease with a larger number of interfering links |E|,
a larger value of maxl (pmax

l ), or a larger value of minl βl. In
other words, κ should be chosen such that the total change in
(pl(t + 1) − pl(t)) is small for all link l.

E. Relating Stochastic Subgradient Method with Best Re-
sponse Strategy

We have shown that the stochastic subgradient updates (2)
is how EB protocol works. A different update rule, the best
response strategy (6), is the standard game-theoretic dynamics
whose convergence characterizes the stability of Nash equi-
librium, and we have provided sufficient conditions for its
convergence. In this subsection, we develop the connection
between these two types of updates.

Consider the case where only link l updates its persistent
probability pl similar to (2) but with a diminishing step-size,
and other links contend for the common channel with fixed
probabilities p−l. We can show that such sequential stochastic
subgradient updates converge to the best response solution in
(6) under proper chosen step-size and mild conditions of the
system parameters.
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Fig. 5. The minimum value of β that satisfies condition 3 of Theorem 6 vs.
the number of interfering links Ml with an infrared physical layer in 802.11
[2]

Formally, define the new update algorithm for link l under
fixed value of p−l as:

pl (t + 1) = max
{
p̃min

l , pl (t) + κ (t) vl (t)
}

, (10)

where vl (t) is the stochastic subgradient defined in (6), κ (t)
is the step-size (no larger than 1), and p̃min

l is the modified
minimum persistent probability. Assume for simplicity that
all links have the same minimum and maximum persistent
probabilities 0 ≤ pmin ≤ pmax < 1, and a common backoff
multiplier β. The following result is proved in Appendix G.

Theorem 6: The update in (10) converges, with probability
one, to the best response solution of link l in (6) under fixed
p−l if the following conditions all hold:

1) The step-size κ (t) satisfies κ (t) ≥ 0,
∑∞

t=0 κ (t) =
∞,

∑∞
t=0 κ2 (t) < ∞, e.g., κ(t) = 1/t.

2) The modified minimum persistent probability p̃min
l =

pmax(1−pmin)Ml

1−β(1−(1−pmin)Ml) ≥ pmin.

3) The values of pmin, pmax and β satisfy
1−β

β

(
1

(1−pmax)Ml
− 2

(1−pmin)Ml

)
≤ 1, where

Ml =
∣∣LI

to (l)
∣∣ is the number of interfering links

with link l.
Remark: Theorem 6 shows that although link l neither

knows the exact values of other links’ persistent probabilities,
nor has memory of other links’ past behaviors, the stochastic
subgradient updates can still converge to the best response
strategy, if it is sequential and use diminishing step-sizes
(condition 1 above).

We now show that conditions 2 and 3 in Theorem 6 are
often satisfied in practice. Both are on system parameters:
the upperbound constraint on pmin in condition 2, and the
relationship in condition 3. If pmin = 0 as assumed in Section
III-C, then condition 2 always holds, and a sufficient condition
for condition 3 to hold is 2 (1 − pmax)Ml ≥ 1.

To see how often conditions 2 and 3 hold in practice,
consider the system parameters specified in 802.11 standard
(e.g., [2]). For an infrared (IR) physical layer, the minimum
and maximum contention window sizes are Wmin

l = 64 and
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Fig. 6. Comparison of trajectories of p1(t) in a system with two links.
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Fig. 7. Comparison of trajectories of p1(t) in the network in Figure 1, with
pmax

l = 0.5.

Wmax
l = 1024, which correspond to pmin = 2/1025 and

pmax = 2/65 in our probabilistic model. In Figure 5, we
plot the minimum value of β that satisfies condition 3 as a
function of the number of interfering links Ml. It is clear
from the figure that any nonnegative value of β satisfies
condition 3 when Ml ≤ 23. For any β ≥ 0.5, condition 3
is satisfied with Ml ≤ 37, which is large enough even for
a dense network. For other physical layer specifications such
as Frequency Hopping Spread Spectrum (FHSS) and Direct
Sequence Spread Spectrum (DSSS), the minimum contention
window sizes are Wmin

l = 16 and Wmin
l = 32, respectively

([2]). The maximum contention window sizes are the same as
in the IR case. As a result, any β ≥ 0.5 satisfies condition 3
when Ml ≤ 9 and Ml ≤ 18, for FHSS and DSSS respectively.
For all three physical layer specifications, condition 2 is
automatically satisfied in all practical scenarios (i.e., β ≥ 0
and Ml ≤ 2099).

IV. NUMERICAL EXAMPLES

We present numerical results for the non-cooperative game
model for MAC protocol. In Figure 6, we consider a network
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Fig. 8. Comparison of trajectories of p1(t) in the network in Figure 1, with
pmax

l = 0.8.

with two links. We first provide the results with pmax
l = 0.5

and pmax
l = 0.8 in the same graph, setting βl = 0.5 and

pmin
l = 0.05 for both cases. We compare trajectories of the

persistence probability of link 1, p1(t), which are obtained
by (3), i.e., by gradient updates, and by (6), i.e., by best
response. It can in fact be proved that, in the two-link case,
the trajectory of the persistence probability obtained by (6)
converges to a Nash equilibrium, which is confirmed in this
numerical example. The trajectory obtained by (3) converges
to the same Nash equilibrium, but more smoothly than that
obtained by (6).

In Figures 7 and 8, we consider the network in Figure
1, which has six logical links, with βl = 0.5 and pmin

l =
0.05, and plot the trajectories of link 1. In these figures, we
also provide trajectories obtained by (2), i.e., by stochastic
subgradient.6 In Figure 7, we set pmax

l = 0.5. The figure
shows that trajectories obtained by (3) and (6) converge to the
same equilibrium, which must be a Nash equilibrium from
Theorem 3.7 In Figure 8, we set pmax

l = 0.8. The figure
shows that the trajectory obtained by (6) oscillates between
two values. Indeed, as shown in Theorem 3, in general the EB-
MAC Game with the best response strategy may not converge
to a Nash equilibrium. Furthermore, while the trajectory
obtained by gradient method (3) converges and, by Corollary
1, it indeed converges to a Nash equilibrium, the stochastic
subgradient iterations do not converge in this example. In
other simulations, we observe that the moving average of the
stochastic subgradient updates with a diminishing step-size
converges.

In Figures 9 and 10, we consider a two-link topology and
compare the attained Nash equilibrium when each link has a
different pmax

l and a different βl, respectively. In Figure 9,
we set β1 = β2 = 0.5. But link 1 has its maximum persis-
tence probability pmax

1 = 0.5 and link 2 has its maximum
persistence probability pmax

2 = 0.5 + a. In Figure 10, we
set pmax

1 = pmax
2 = 0.5. But link 1 has β1 = 0.5 and link

6Since pl(t) is a stochastic process in this case, we plot its sample path.
7Although not shown in the graph, trajectories of the persistence probabil-

ities of the other links also converge.
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Fig. 10. Comparison of the persistence probability of links that have different
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2 = 0.5, but β1 = 0.5 and β2 = 0.5 + a.

2 has β2 = 0.5 + a. Hence, in both figures, as the value
of a gets larger, link 2 updates its persistence probability
more aggressively than link 1. As a consequence, link 2
converges to a higher persistence probability and link 1 to
a lower persistence probability, with the difference between
the two increasing as the value of a becomes larger. This
demonstrates that parameter setting of a link affects not
only the performance of the corresponding link but also the
performance of other links, causing fairness issues at the Nash
equilibrium.

V. CONCLUSIONS

Starting with given MAC protocol specifications, we have
reverse-engineered exponential-backoff random access proto-
cols as a non-cooperative game where each link is implic-
itly maximizing, through a stochastic subgradient update, a
quasi-concave utility function in the form of net reward for
successful transmission. Due to the lack of proper feedback
mechanisms in the current EB protocols, such selfish, local
actions are not aligned to maximize the network-wide total
utility, nor are they guaranteed to converge, even though a



LEE et al.: REVERSE-ENGINEERING MAC: A NON-COOPERATIVE GAME MODEL 1143

Nash equilibrium for the MAC game always exists. We have
provided sufficient conditions (on link density and backoff
aggressiveness) that guarantee both the uniqueness of Nash
equilibrium, then characterized convergence of gradient play
with small stepsize, and convergence of the best response strat-
egy. Finally we established the connection between stochastic
subgradient and best response for the EB-MAC game.

Our MAC layer reverse-engineering results, together with
the recently established reverse-engineering optimization mod-
els for TCP and BGP, provide a mathematical foundation for
those layers 2-4 protocols that were originally designed based
on ad hoc heuristics. Deficiencies of existing MAC protocols
revealed through reverse-engineering also motivates forward
engineering, where adequate feedback is generated to align
selfish utility maximization by each logical link to maximize
the social welfare [18].

The formulation and results in this paper can be a basis to
further study other properties of EB MAC protocols, such as
efficiency loss of the non-cooperative game compared with
social welfare maximization. Like the reverse-engineering
models of TCP and BGP, there are several simplifying assump-
tions in our model, notably our focus only on the contention
resolution mechanism. A next step is to reverse-engineer
carrier-sensing-based (e.g., RTS-CTS) MAC protocols (e.g.,
CSMA/CA) that consists of both contention avoidance and
collision resolution algorithms. Finally, session level stochastic
effects need to be incorporated to include the arrival statistics
of finite-duration sessions. Then MAC protocols can be an-
alyzed and designed using both stochastic stability results in
traditional queuing models and optimality results in the utility
maximization models.
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APPENDIX

A. Proof of Theorem 1

Proof: We first obtain the utility function of each
link based on the update algorithm in (3). Assuming that
there exists an equilibrium with persistence probabilities p∗,
pmin < p∗ < pmax, then we see from (3) that p∗ satisfies
the following:

p∗l = pmax
l p∗l

∏
n∈LI

to(l)

(1 − p∗n) + βlp
∗
l p

∗
l (1 −

∏
n∈LI

to(l)

(1 − p∗n)

+p∗l (1 − p∗l ). (11)

Since each link adjusts its own persistence probability to
maximize its utility given persistence probabilities of the other
link, from (11) and the first order necessary condition, each
link l has its utility function, Ul(p), such that

∂Ul(p)
∂pl

= pmax
l pl

∏
n∈LI

to(l)

(1 − pn) (12)

+βlplpl(1 −
∏

n∈LI
to(l)

(1 − pn)) + pl(1 − pl) − pl.

Hence, the utility function of link l, Ul(p), which is unique
up to a constant offset, is obtained as

Ul(p) =
1
2
pmax

l

∏
n∈LI

to(l)

(1 − pn)p2
l

+
1
3
βl(1 −

∏
n∈LI

to(l)

(1 − pn))p3
l −

1
3
p3

l

= p2
l

∏
n∈LI

to(l)

(1 − pn)(
1
2
pmax

l

−1
3
pl) − 1

3
(1 − βl)p3

l (1 −
∏

n∈LI
to(l)

(1 − pn))

= R(pl)S(p) − C(pl)F (p), (13)

where R(pl) = pl(1
2pmax

l − 1
3pl), C(pl) = 1

3 (1 − βl)p2
l ,

S(p) = pl

∏
n∈LI

to(l)(1 − pn), and F (p) = pl(1 −∏
n∈LI

to(l)(1 − pn).
It can be verified that utility function Ul is quasi-concave

in pl. The action set Al = {pl | pmin
l ≤ pl ≤ pmax

l } of
each link l is a nonempty compact convex subset of Euclidian
space, and the utility function Ul of each link l is continuous
and quasi-concave on Al. Hence, by Proposition 20.3 in [13],
there exists a Nash equilibrium.

Moreover, from (12), we can easily show that

∂Ul(p)
∂pl

⎧⎨
⎩> 0, if pl <

pmax
l

Q
n∈LI

to(l)(1−pn)

1−βl(1−
Q

n∈LI
to(l)(1−pn))

< 0, otherwise
. (14)

Hence, we can characterize Nash equilibrium for persistence
probabilities of links as

p∗l =
pmax

l

∏
n∈LI

to(l)(1 − p∗n)

1 − βl(1 −∏
n∈LI

to(l)(1 − p∗n))
, ∀l.

B. Proof of Theorem 3

Proof: We have

∂2Ul(p)
∂pl∂pk

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏
n ∈ LI

to(l)
n �= k

(1 − pn) (βlp
2
l − pmax

l pl), k ∈ LI
to(l)

0, otherwise

.

Since βl < 1 and pl ≤ pmax
l , the utility function is submod-

ular8. Moreover, the action set of a link does not depend on
the strategies of the other links. Hence, by applying Theorem
5.1 in [16], the proof is completed.

C. Proof of Lemma 1

Proof:
∏

i∈LI
to(l)(1 − p∗i ) ≤ 1. It is easy to check p∗l

achieves its maximal pmax when
∏

i∈LI
to(l)(1 − p∗i ) = 1.

Therefore p∗l ≤ pmax.
If p∗l = 0, then p∗i = 1 for some i ∈ LI

to(l). That is
impossible as we know p∗i ≤ pmax < 1. Hence p∗l > 0.

If p∗l = pmax, then
∏

i∈LI
to(l)(1 − p∗i ) = 1. That is again

impossible as p∗i > 0. Hence p∗l < pmax.

8If Ul is twice differentiable and ∂2Ul(p)
∂pl∂pk

≤ 0,∀p ∈ ×l∈LAl ∀k �= l,
then Ul is submodular. We refer readers to [15], [16] for more details on
submodularity.
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D. Proof of Theorem 4

Proof: The best response updating rule is defined as
following:

pl(t + 1) = pmax

∏
i∈LI

to(l)(1 − pi(t))

1 − β(1 −∏
i∈LI

to(l)(1 − pi(t)))
. (15)

Its equilibrium is characterized by (7). We now set up unique-
ness and convergence together by showing (15) is a contraction
mapping. We first cite the following basic theorem [17] that
we will use.

Contraction Mapping Theorem. Let M be a complete metric
space and f : M → M a mapping. Assume there is a constant
k, where 0 ≤ k < 1, such that d(f(u), f(v)) ≤ kd(u, v), for
all u, v ∈ M ; such an f is called a contraction. Then f has
a unique fixed point; that is, there exists a unique u∗ ∈ M .
Furthermore, the sequence u(t + 1) = f(u(t)) converges to
the unique fixed point.

Let M be the Euclidean space and consider any vector
norm. Let d(.) be the induced distance function by the vector
norm. We have

d(f(u), f(v)) = ||f(u) − f(v)||
≤ ||∂f

∂x
||||(u − v)|| = ||∂f

∂x
||d(u, v). (16)

The matrix norm used here is induced by the vector norm
too. The inequality follows from the property of matrix norm.
Hence it is clear that if we have the Jocobian ||∂f

∂x || < 1 − ε
everywhere for some positive ε, we can let k = 1− ε < 1 and
the Contraction Mapping Theorem applies. 9

We now derive conditions using ||.||∞ for (15) to be a
contraction map. Its Jacobian J is defined by

Jlj =
∂pl(t + 1)

∂pj(t)
.

It is straightforward to check

Jlj =

⎧⎨
⎩

0, j �∈ LI
to(l)

−pmax
(1−β)

Q
i∈LI

to(l),i�=j
(1−pi)

(1−β(1−Q
i∈LI

to(l)(1−pi)))2
, j ∈ LI

to(l)
.(17)

It then follows that

||J||∞ = max
l

{pmax
∑

j∈LI
to(l)

(1 − β)
∏

i∈LI
to(l),i�=j(1 − pi)

(1 − β(1 −∏
i∈LI

to(l)(1 − pi)))2
}.

For any j ∈ LI
to(l), define

π(l, j) =
∏

i∈LI
to(l),i�=j

(1 − pi)

and

M(l, j) =
(1 − β)

∏
i∈LI

to(l),i�=j(1 − pi)

(1 − β(1 − (1 − pj)
∏

i∈LI
to(l),i�=j(1 − pi)))2

.

We have

M(l, j) =
(1 − β)π(l, j)

(1 − β(1 − (1 − pj)π(l, j)))2

9As ε can be arbitrarily small, the later derivation will use 1 instead.

and

dM(l, j)
dπ(l, j)

=
(1 − β)(1 − β − βπ(l, j)(1 − pj))

(1 − β(1 − (1 − pj)π(l, j)))3
.

It then follows that, if 1−β
β(1−pj)

≤ 1, M(l, j) achieves its

maximum value of 1
4β(1−pj)

when π(l, j) = 1−β
β(1−pj)

, i.e.,∏
i∈LI

to(l)(1 − pi) = 1−β
β . If 1−β

β(1−pj)
≥ 1, M(l, j) reaches

its maximum value of 1−β
(1−β+β(1−pj))2

when π(l, j) = 1.10

Therefore, we conclude that

||J||∞ = max
l

{pmax
∑

j∈LI
to(l)

M(l, j)}

≤ max
l

{ pmax|LI
to(l)|

4β(1 − pmax)
} ≤ pmaxK

4β(1 − pmax)
. (18)

By assumption in the theorem, we conclude ||J ||∞ < 1.
Hence, (15) is a contraction mapping and both uniqueness
and global convergence are guaranteed [17].

E. Derivation of the limit in Footnote 5

We now show the upperbound of pmax cannot be made
independent of L via above method, by deriving an upperlimit
considering the system in which each link interfere each other
(i.e., LI

to(l) = E−{l}, ∀l) that takes into account the relation
among M(l, j) for different j, which has been neglected in
previous derivation. We have

||J ||∞ = pmax
∑
j �=l

(1 − β)
∏

i�=l,j(1 − pi)
(1 − β(1 −∏

i�=l(1 − pi)))2
.

Let yi = 1 − pi, then

||J ||∞ = pmax(1 − β)
∑
j �=l

∏
i�=l,j yi

(1 − β(1 −∏
i�=l yi))2

.

We are interested in finding its maximum with constraint yi ∈
[1− pmax, 1], it is at least as big as the maximum of V (y) =
pmax(1 − β) (L−1)yL−2

(1−β+βyL−1)2 , where y ∈ [1 − pmax, 1].

dV (y)
dy

= pmax(1 − β)
(1 − β + βyL−1)(L − 1)(L − 2)yL−3

(1 − β + βyL−1)3

− 2β(L − 1)2y2L−4

(1 − β + βyL−1)3

Solving the optimality condition dV (y)
dy = 0 gives the critical

value

yc =
(

(1 − β)(L − 2)
βL

) 1
L−1

.

Therefore, if yc < 1 − pmax, max(V (y)) = V (1 − pmax);
if yc > 1,11max(V (y)) = V (1); otherwise, max(V (y)) =
V (yc). Imposing max(V (y)) < 1, we achieve the limit
for upperbound for pmax via using contraction mapping and
infinity norm.

10It is interesting to note that for the standard parameter setting β = 0.5,
1−β

β(1−pj)
≥ 1 always holds.

11This can only happen if β < L−2
2L−2

, and cannot happen with β = 0.5.
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F. Proof of Theorem 5

Proof: The proof is similar as in [19]. First we observe
from (12) that

∂Ul (p)
∂pl

= (βl − 1) p2
l +

(
plp

max
l − βlp

2
l

)∏
n�=l

(1 − pn)

=
(
plp

max
l − βlp

2
l

)
Q (p) ,

where

Q (p) =
pl (βl − 1)
pmax

l − βlpl
+

∏
n�=l

(1 − pn).

Let us consider the Lyapunov function

V (p) =
∑

l

1 − βl

βl

(
pl +

pmax
l

βl
ln (pmax

l − βlpl)
)
−

∏
n∈E

(1−pn),

hence
∇lV (p (t)) = Q (p (t)) .

Also consider a matrix D (p) := −∇2V (p) , from [20, Prop.
A.25] we have

‖D (p)‖2
2 ≤ ‖D (p)‖∞ · ‖D (p)‖1 .

Since D (p) is symmetric, ‖D (p)‖∞ = ‖D (p)‖1 , and hence

‖D (p)‖2 ≤ ‖D (p)‖∞
= max

l

∑
n

[D (p)]l,n

= max
l

∑
n

(
pmax

l (1 − βl)
(pmax

l − βlpl)
2 1{l=n}

+
∏

n�=l,j

(1 − pn)1{l �=n}

⎞
⎠

≤max
l

∑
n

(
pmax

l (1 − βl)
(pmax

l − βlpmax
l )2

1{l=n} + 1{l �=n}

)

≤ γ + |E| − 1.

Now let us look at the incremental difference of the Lyapunov
function,

V (p (t + 1)) − V (p (t))
= ∇V (p (t)) · (p (t + 1) − p (t))

+
1
2

(p (t + 1) − p (t))T · ∇2V (p̄) · (p (t + 1) − p (t))

= ∇V (p (t)) · (p (t + 1) − p (t))

−1
2

(p (t + 1) − p (t))T · D (p̄) · (p (t + 1) − p (t))

≥∇V (p (t)) · (p (t + 1) − p (t))

−γ + |E| − 1
2

‖p (t + 1) − p (t)‖2

=
∑

l

(∇lV (p (t)) (pl (t + 1) − pl (t))

−γ + |E| − 1
2

(pl (t + 1) − pl (t))2
)

(19)

where p̄ is some convex combination of p (t) and p (t + 1).
We know that pl(t+1) ≤ pmax

l as long as κ ≤ 1. It is clear
that if pl (t + 1) = pl (t), (19) equals 0. Otherwise, we need
to consider the following two cases:

1) pl (t + 1) ∈ (pmin
l , pmax

l ]. We have

∇lV (p (t)) (pl (t + 1) − pl (t))

−γ + |E| − 1
2

(pl (t + 1) − pl (t))
2

= Q (p (t))
(
κ
(
plp

max
l − βlp

2
l

)
Q (p)

)
−γ + |E| − 1

2
(
κ
(
plp

max
l − βlp

2
l

)
Q (p)

)2

≥
(

1 − κ
(
plp

max
l − βlp

2
l

) γ + |E| − 1
2

)
κ
(
plp

max
l − βlp

2
l

)
Q2 (p (t))

≥
(

1 − κ (pmax
l )2

γ + |E| − 1
2

)
κ
(
plp

max
l − βlp

2
l

)
Q2 (p (t))

≥ 0.

The last inequality is due to the fact that κ ≤
2

minl(pmax
l )2

(γ+|E|−1)
.

2) pl (t + 1) = pmin
l . This implies that 0 > pmin

l −pl (t) ≥
κ
(
pl(t)pmax

l − βlp
2
l (t)

)
Q (p (t)), and

∇lV (p (t)) (pl (t + 1) − pl (t))

− γ + |E| − 1
2

(pl (t + 1) − pl (t))
2

=
(

Q (p (t))
pmin

l − pl (t)
− γ + |E| − 1

2

)(
pmin

l − pl (t)
)2

≥
(

1
κ (plpmax

l − βlp2
l )

− γ + |E| − 1
2

)(
pmin

l − pl (t)
)2

≥ 0

Combining the above analysis, we always have
V (p (t + 1)) − V (p (t)) ≥ 0, i.e., V (p) will keep
increasing till the system reaches a fixed point of equation
(9). Since the strategy space Πl

[
pmin

l , pmax
l

]
is an invariant

set from the definition of (9) and there is a unique Nash
Equilibrium (which is the unique fixed point of (9)) by
assumption, we have proven the global convergence of (9).

G. Proof of Theorem 6

Proof: The proof relies on Theorem 6.2 in [21], a
variation of which is stated below.

Stochastic Subgradient Convergence Theorem. Consider the
maximization of a concave continuous one-dimensional func-
tion F (x) in x ∈ [a, b] , and let X∗ be a set of optimal solu-
tions. Consider the following stochastic subgradient projection
method:

x (t + 1) = max {a, min {b, x (t) + s (t) ξ (t)}} , t = 0, 1, ...
(20)

F (x∗) − F (x (t))
≤E {ξ (t) |x (0) , · · · , x (t)} (x∗ − x (t)) + γ0 (t) , (21)

where γ0 (t) may depend on (x (0) , · · · , x (t)) , x∗ ∈ X∗, and
s (t) is the step size that satisfies
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s (t) ≥ 0,

∞∑
t=0

s (t) = ∞,

∞∑
t=0

E
{
s (t) |γ0 (t)| + s2 (t) |ξ (t)|2

}
< ∞. (22)

Then lim x (t) ∈ X∗ with probability 1.
For our proof, we map the elements of the updates in (10)

into the elements of the algorithm in (20,21,22). First note
that pl(t + 1) ≤ pmax

l when κ(t) ≤ 1. Define

preflex
l = pmax

Πn∈LI
to(l) (1 − pn)

2
(
1 − β

(
1 − Πn∈LI

to(l) (1 − pn)
)) .

It can be verified that Ul(pl) is strictly concave in pl ∈[
preflex

l , pmax
]

for fixed p−l. Also the unique maximizer of

Ul (pl) is pBR
l = 2preflex

l . It can be further shown that under
conditions 2 and 3 in the theorem, p̃min

l satisfies

max
{
pmin, preflex

l

}
≤ p̃min

l ≤ pBR
l ≤ pmax

for any feasible value pn (n ∈ LI
to(l)). These enable us to

establish the following mappings: pl → x, Ul (pl) → F (x),[
p̃min

l , pmax
] → [a, b] and

{
pBR

l

} → X∗. Here pBR
l is the

best response solution as in (6).
Now we map vl (t) into ξ (t) . Since

E {vl (t) |pl (0) , · · · , pl (t)}= E {vl (t) |pl (t)}
=

∂Ul (pl)
∂pl

∣∣∣∣
pl=pl(t)

,

inequality (21) is satisfied with γ0 (t) = 0. Finally, (22)
is satisfied under condition 1 and the fact that |vl (t)|2 ≤
(pmax)2 . All the conditions of the Stochastic Subgradient
Convergence Theorem are satisfied, and pl (t) converges to
the best response solution with probability 1.

REFERENCES

[1] A. B. MacKenzie and S. B. Wicker, “Stability of multipacket slotted
Aloha with selfish users and perfect information,” in IEEE INFOCOM,
2003, pp. 1583–1590.

[2] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Sel. Area Comm., vol. 18, no. 3, pp.
535–547, March 2000.

[3] C. Yuen and P. Marbach, “Price-based rate control in random access
networks,” IEEE/ACM Trans. on Networking, vol. 13, no. 5, pp. 1027–
1040, December 2005.

[4] J.-W. Lee, M. Chaing, and A. R. Calderbank, “Utility-optimal medium
access control reverse and forward engineering,” in IEEE INFOCOM,
2006.

[5] S. H. Low, “A duality model of TCP and queue management algo-
rithms,” IEEE/ACM Trans. on Networking, vol. 11, no. 4, pp. 525–536,
August 2003.

[6] R. Srikant, The mathematics of Internet congestion control. Birkhauser,
2004.

[7] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable path problem
and interdomain routing,” IEEE/ACM Trans. on Networking, vol. 10,
no. 2, pp. 232–243, April 2002.

[8] R. J. La and V. Anantharam, “Utility-based rate control in the Internet
for elastic traffic,” IEEE/ACM Trans. on Networking, vol. 10, no. 2, pp.
272–286, April 2002.

[9] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–
252, March 1998.

[10] S. H. Low and D. E. Lapsley, “Optimization flow control-I: basic
algorithm and convergence,” IEEE/ACM Trans. on Networking, vol. 7,
no. 6, pp. 861–874, December 1999.

[11] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. on Networking, vol. 8, no. 5, pp. 556–567,
October 2000.

[12] T. Moscibroda and R. Wattenhofer, “The complexity of connectivity in
wireless networks,” in IEEE INFOCOM, 2006.

[13] M. J. Osborne and A. Rubinstein, A course in game theory. MIT Press,
1994.

[14] J. R. Brige and F. Loubeaux, Introduction to Stochastic Programming.
Springer, 1997.

[15] D. M. Topkis, “Equilibrium points in nonzero-sum n-person submodular
games,” SIAM Journal of Control and Optimization, vol. 17, no. 6, pp.
773–787, November 1979.

[16] D. D. Yao, “S-modular games, with queueing applications,” Queueing
Systems, vol. 21, pp. 449–475, 1995.

[17] R. Abraham, J. Marsden, and T. Ratiu, Manifolds, tensor analysis, and
applications. Springer-Verlag, 1988.

[18] J.-W. Lee, M. Chiang, and A. R. Calderbank, “Utility-optimal random-
access control,” to appear in IEEE Trans. on Wireless Commun., 2007.

[19] L. Chen, S. H. Low, and J. C. Doyle, “Random access game and medium
access control design,” submitted for publication, 2006.

[20] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: numerical methods. Prentice Hall, 1989.

[21] Y. Ermoliev and R.-B. Wets, Numerical Techniques for Stochastic
Optimization. Springer-Verlag, 1980.

Jang-Won Lee (S’ 02 – M’ 04) received his B.S.
degree in Electronic Engineering from Yonsei Uni-
versity, Seoul, Korea in 1994, M.S. degree in Elec-
trical Engineering from Korea Advanced Institute
of Science and Technology (KAIST), Taejon, Korea
in 1996, and Ph.D. degree in Electrical and Com-
puter Engineering from Purdue University, West
Lafayette, IN, USA in 2004. In 1997-1998, he was
employed with Dacom R&D Center, Taejon, Korea.
In 2004-2005, he was a Postdoctoral Research Asso-
ciate in the Department of Electrical Engineering at

Princeton University, Princeton, NJ, USA. Since September 2005, he has been
an assistant professor in the School of Electrical and Electronic Engineering
at Yonsei University, Seoul, Korea. His research interests include resource
allocation, QoS and pricing issues, optimization, and performance analysis in
communication networks.

Ao Tang (S’ 01 – M’ 07) received his B.E. (Hon.)
and M.E. in electronics engineering from Tsinghua
University, and his Ph.D. in electrical engineering
with a minor in applied and computational mathe-
matics from the California Institute of Technology
(Caltech), in 1999, 2001, and 2006, respectively.

He is currently a Junior Fellow in the Social and
Information Sciences Laboratory (SISL) at Caltech,
where his research interests include control and
optimization of communication networks; intercon-
nected dynamical systems; Microeconomics, Game

theory and their applications.
Dr.Tang was the recipient of the 2002 Outstanding Master Thesis Award

from Tsinghua University, the 2004 National Award for Outstanding Oversea
Students from P.R.China, and the 2006 George B. Danzig Best Dissertation
Award from INFORMS.



LEE et al.: REVERSE-ENGINEERING MAC: A NON-COOPERATIVE GAME MODEL 1147

Jianwei Huang (S’ 00 – M’ 06) is a Postdoctoral
Research Associate in the Department of Electrical
Engineering at Princeton University. He received the
B.S. degree in Electrical Engineering from Southeast
University (Nanjing, China) in 2000, M.S. and Ph.D.
degrees in Electrical and Computer Engineering
from Northwestern University in 2003 and 2005,
respectively. In 2004 and 2005, he worked in the
Network Advanced Technology Group at Motorola,
both as a full time summer intern and a part time
researcher. In 1999, he worked as a summer intern

in the Department of Change Management at GKN Westland Aerospace
Co. Ltd. His main research interests lie in the area of communications and
networking, with specific areas including cognitive radio networks, wideband
OFDM and CDMA systems, wireless medium access control, multimedia
communications, cooperative communications, and wired DSL broadband
access networks.

Dr. Huang is an Associate Editor of Elsevier Journal of Computer &
Electrical Engineering from 2007, the Lead Guest Editor of the special issue
of IEEE Journal of Selected Areas in Communications on Game Theory
in Communication Systems, the Lead Guest Editor of the special issue
of Journal of Advances in Multimedia on Collaboration and Optimization
in Multimedia Communications, and a Guest Editor of the special issue
of Journal of Advances in Multimedia on Cross-layer Optimized Wireless
Multimedia Communications. He is the recipient of a 2001 Walter P. Murphy
Fellowship at Northwestern University and a 1999 Chinese National Excellent
Student Award.

Mung Chiang (S’ 00 – M’ 03) is an Assistant
Professor of Electrical Engineering and an affiliated
faculty of Applied and Computational Mathematics
and of Computer Science at Princeton University. He
received the B.S. (Honors) in Electrical Engineering
and Mathematics, M.S. and Ph.D. degrees in Electri-
cal Engineering from Stanford University. Professor
Chiang conducts research in the areas of nonlinear
optimization of communication systems, theoretical
foundation of network architectures, algorithms in
broadband access networks, and stochastic models

of communications. He has been awarded as a Hertz Foundation Fellow,
and received Stanford University School of Engineering Terman Award, SBC
Communications New Technology Introduction Contribution Award, NSF
CAREER Award, ONR Young Investigator Award, and Princeton University
Howard B. Wentz Junior Faculty Award. His Jan. 2005 IEEE JSAC paper
becomes the Fast Breaking Paper in Computer Science in 2006 according to
ISIs citation frequency, and he co-authored the best student paper at IEEE
Globecom 2006.

Professor Chiang is the Lead Guest Editor of the Special Issue of IEEE
Journal of Selected Areas in Communications on Nonlinear Optimization
of Communication Systems, a Guest Editor of the Joint Special Issue of
IEEE Transactions on Information Theory and IEEE/ACM Transactions on
Networking on Networking and Information Theory, an Editor of IEEE
Transactions on Wireless Communications, a Program Co-Chair of the 38th
Conference on Information Sciences and Systems, and a co-editor of the
new Springer book series on Optimization and Control of Communication
Systems.

A. Robert Calderbank (M’ 89 – SM’ 97 – F’
98) received the BSc degree in 1975 from Warwick
University, England, the MSc degree in 1976 from
Oxford University, England, and the PhD degree in
1980 from the California Institute of Technology, all
in mathematics.

He is currently Professor of Electrical Engineer-
ing and Mathematics at Princeton University where
he directs the Program in Applied and Compu-
tational Mathematics. Dr. Calderbank joined Bell
Telephone Laboratories as a Member of Technical

Staff in 1980, and retired from AT&T in 2003 as Vice President of Research.
Dr. Calderbank has research interests that range from algebraic coding theory
and quantum computing to the design of wireless and radar systems.

Dr. Calderbank served as Editor in Chief of the IEEE TRANSACTIONS
ON INFORMATION THEORY from 1995 to 1998, and as Associate Editor
for Coding Techniques from 1986 to 1989. He was a member of the Board
of Governors of the IEEE Information Theory Society from 1991 to 1996.
Dr. Calderbank was honored by the IEEE Information Theory Prize Paper
Award in 1995 for his work on the Z4 linearity of Kerdock and Preparata
Codes (joint with A.R. Hammons Jr., P.V. Kumar, N.J.A. Sloane, and P. Sole),
and again in 1999 for the invention of space-time codes (joint with V.Tarokh
and N. Seshadri). He is a recipient of the IEEE Millennium Medal, and was
elected to the National Academy of Engineering in 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 1.8)
  /CalRGBProfile ()
  /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveEPSInfo true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.50000
    0.50000
    0.50000
    0.50000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.12500
    0.12500
    0.12500
    0.12500
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU <FEFF004300610064006d007500730020004d00650064006900610057006f0072006b0073002000730065007400740069006e00670073002000760065007200730069006f006e00200043004d0057005f0041006300720036005f00560032002e002000200041006c006c002000730065007400740069006e0067007300200070006f00730074006500640020006f006e0020007700770077002e006300610064006d00750073006d00650064006900610077006f0072006b0073002e0063006f006d002e00200020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [576.000 783.000]
>> setpagedevice


