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Abstract

This paper presents an analysis of a generalized version of the coupon collector problem,
in which the collector receives d coupons each run and chooses the least-collected coupon
so far. In the asymptotic case when the number of coupons n goes to infinity, we show
that, on average, (n log n)/d +(n/d)(m−1) log log n+O(mn) runs are needed to collect
m sets of coupons. An exact algorithm is also developed for any finite case to compute the
exact mean number of runs. Numerical examples are provided to verify our theoretical
predictions.
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1. Introduction

The classic coupon collector problem asks the following question: Given that a collector
randomly receives a coupon each run, how many runs are necessary to collect a complete set of
n different coupons? The answer is nHn, where Hn = ∑n

k=1 1/k is the harmonic number [2].
One can further ask how many runs are necessary to collect m complete sets of coupons. This
question has been addressed by Newman and Shepp [9].

The coupon collector problem and its variants are of traditional and recurrent interest [3],
[4], [5], [7], [8]. Besides their rich theoretical structures and implications, they have various
applications, including dynamic resource allocation, hashing, and online load balancing [1], to
name just a few. In particular, these problems also serve as basic models to analyze the delay for
opportunistic scheduling in broadcast wireless fading channels [10]. For example, to maximize
system throughput, we should serve to the user whose channel condition is the best at every
time slot. In order to evaluate performance, we could determine the expected number of time
slots needed for all users to be served at least once. Assuming that all channels are independent
and identically distributed, this is equivalent to the classic coupon collector problem.

In this paper we investigate a natural generalization of the coupon collector problem. Instead
of receiving one coupon, the collector receives d (1 ≤ d ≤ n) distinct coupons randomly each
run and chooses the least-collected coupon so far. Formally, we denote the number of runs (a
‘run’ is often referred to as a ‘time slot’ or simply as a unit of ‘time’ in this paper) necessary
to collect m sets of coupons as Dd

m,n. We are interested in characterizing the mean value of
the random variable Dd

m,n, especially in the asymptotic region when n is large. Clearly, when
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d = 1, we go back to the classic cases; when d = n, there is no randomness and Dn
m,n = mn.

In the scheduling transmission context discussed above, d can be viewed as a parameter that
controls the trade-off between efficiency (high throughput) and fairness among all users, with
d = 1 purely focusing on efficiency while d = n corresponds to perfect fairness. Essentially,
we are interested in investigating ‘the power of multiple choices’ in speeding up the wireless
scheduling; it is worth mentioning that ‘the power of two choices’ has been investigated in the
randomized load balancing setting, where ‘two choices’can exponentially reduce the maximum
load; see, for example, [6].

The remainder of this paper is organised as follows. We first briefly review existing related
results in Section 2. Although they are all special cases of the general problem, the techniques
used to derive them cannot be applied directly to the general case. Instead, we develop a
new technique to characterize E(Dd

m,n), and provide upper and lower bounds for E(Dd
m,n)

in Section 3 and Section 4. An asymptotic analysis shows that the upper bound and lower
bound match in the asymptotic regime of n → ∞ in Section 5. Furthermore, for any finite n,
an algorithm is motivated and proposed in Section 6 to calculate E(Dd

m,n) exactly. We use
numerical examples to validate our theoretical predictions in Section 7. Concluding remarks
and future work are given in Section 8.

2. Existing results

Existing results for special cases are listed below. If d = 1 then the problem is solved for
all m ≥ 1. If d > 1 then only the m = 1 case is known.

• d = 1 and m = 1 (see [2]). It is clear that the number of runs needed to obtain the
(i + 1)th coupon after obtaining the ith coupon follows a geometric distribution with
parameter (n − i)/n. Therefore,

E(D1
1,n) = nHn = n

n∑
k=1

1

k
.

For large n,
E(D1

1,n) = n log n + nO(1).

We see that the randomness cost is expressed approximately by a factor log n.

• d = 1 and m ≥ 1 (see [9]). We have

E(D1
m,n) = n

∫ ∞

0
(1 − (1 − Sm(t)e−t )n) dt,

where

Sm(t) =
m−1∑
k=0

tk

k! .

For fixed m and large n,

E(D1
m,n) = n log n + n(m − 1) log log n + nO(1).

It is interesting to note that although collecting the first set of coupons needs about n log n

runs, all later sets need only n log log n runs per set.
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• d ≥ 1 and m = 1 (see [10]). This has applications in the scheduling of data packet
transmission over wireless channels. Here

E(Dd
1,n) =

n−1∑
i=0

1

1 − (
i
d

)
/
(
n
d

) ,

where
(
i
d

) = 0 if i < d.
For fixed m and large n,

E(Dd
1,n) ∼ 1

d
n log n.

This shows that, for the m = 1 case, choosing d coupons randomly each time decreases
the expected number of runs, with the greatest reduction occurring between d = 1 and
d = 2.

• d ≥ 1 and m ≥ 1. In the context of scheduling, a transmitter who wants to send m

packets to each of the n users can only transmit one packet to one user chosen from the
d users who have the best wireless communication channels. Owing to the time varying
nature of the wireless channels, it is natural to assume that, for each time index, the d

users who have the best communication channels are uniformly distributed among the
n users. So E(Dd

m,n) gives an estimate on the total delay in delivering these m packets,
and, in this paper, we will offer a characterization of E(Dd

m,n).

3. Lower bound on E(Dd
m,n)

We will first lower bound E(Dd
m,n) by considering a different coupon collecting process. In

this new process, each time, we uniformly select d distinct coupons out of n coupons, instead
of keeping only one coupon out of these d selected coupons, we would keep all the d coupons.
The expected time of collecting m sets of coupons in this way will be no larger than the process
in which we keep only one coupon each. However, it is not so straightforward to directly obtain
an estimate for this new process. This motivates us to consider another process in which each
time we collect d uniformly, independently chosen (allowing repetition) coupons we keep all
of them. This process stops when m sets of coupons are fully collected.

Lemma 1. Let t1 be the expected time to collect m sets of coupons for the process in which
each time d uniformly chosen distinct coupons are kept. Let t2 be the expected time to collect
m sets of coupons for the process in which each time d uniformly chosen (allowing repetition)
coupons are kept. Then

t1 ≥
(
n
d

)
nd

t2. (1)

Proof. We simulate the process of choosing d distinct coupons through an expurgated
process of choosing d independent coupons (allowing repetition). If the d coupons we indepen-
dently choose (allowing repetition) are not distinct, we will discard this group of d coupons; if
the d coupons are all distinct, we will keep them. The kept coupons from the expurgated process
follow the same distribution as the chosen d distinct coupons. However, the expected time to
collect a group of d distinct coupons is clearly nd/

(
n
d

)
. So in the worst case, t2 ≤ ndt1/

(
n
d

)
.

In summary, in order to give a lower bound on E(Dd
m,n), we first need a lower bound on t2

for the process of keeping d uniformly, randomly chosen coupons (allowing repetition). To do
this, we follow the approach of generating functions in [9].
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Let pi be the probability of failing to obtain m sets of coupons when we have kept i coupons.
Let Px1,...,xn be a power series, and let {Px1,...,xn} be the power series when all terms having
exponents greater than or equal to m have been removed. Thus,

t2 =
∞∑

j=0

pdj

and

pdj = {(x1 + · · · + xn)
dj }

ndj
,

with x1, . . . , xn all equal to 1.
In addition, we know that

E(D1
m,n) =

d−1∑
q=0

∞∑
j=0

pdj+q = n

∫ ∞

0
(1 − (1 − Sm(t)e−t )n) dt,

where Sm(t) = ∑m−1
k=0 tk/k! [9].

We also note that pi is nonincreasing as i grows, so

t2 =
∞∑

j=0

pdj ≥ 1

d

( ∞∑
j=0

pj

)
≥ n

d

∫ ∞

0
(1 − (1 − Sm(t)e−t )n) dt.

So by (1) we know that

E(Dd
m,n) ≥

(
n
d

)
nd

E(D1
m,n)

d
.

4. Upper bound on E(Dd
m,n)

In this section we upper bound the expected time necessary to collect m complete sets of
coupons. To achieve this, we upper bound the expected time necessary to collect m complete
sets of coupons in a suboptimal process. In this new process, each time, we uniformly and
independently choose d coupons (allowing repetition). Among this group of d coupons, if the
ith (1 ≤ i ≤ d) coupon is the first coupon to so far have fewer than m copies then we will keep
this coupon and discard the remaining d − i coupons.

First, we observe that d distinct coupons are favorable in terms of minimizing the collection
time compared to d coupons with possible repetition.

Theorem 1. The minimized expected time of collecting m sets of coupons when the collector is
given d uniformly chosen, distinct coupons each run, but is allowed to keep only one coupon, is
no larger than the minimized expected time of collecting m sets of coupons when the collector
is given d uniformly chosen coupons (allowing repetition) each run, but is allowed to keep only
one coupon.

Proof. We consider two coupled coupon collecting processes: process P , which receives d

independent, uniformly chosen coupons (allowing repetition) each run, and process Q, which
receives d distinct coupons each run. For each run, process Q sequentially receives d distinct
coupons in this way: if the ith (1 ≤ i ≤ d) received coupon of process P is a repetition of one
of the first i − 1 received coupons of process Q, the ith received coupon of process Q will be
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uniformly chosen among the unreceived n−(i−1) coupons of process Q in this run; otherwise,
the ith (1 ≤ i ≤ d) received coupon of process Q will be the same as the ith (1 ≤ i ≤ d)
received coupon of process P . Since in each run all types of coupon received in process P are
also received in process Q, the coupon collector using process Q can keep the same coupon as
in process P and, thus, has no larger collecting time than using process P .

Second, we show that it is an optimal strategy for the coupon collector to keep the least-
collected coupon out of the d incoming coupons (whether allowing repetition or not).

Theorem 2. The expected time to collect m sets of coupons is minimized when the collector
keeps the least-collected coupon each run, if the collector is allowed to keep only one out of
the d offered coupons.

Proof. Suppose that we have c1 coupons of type j (1 ≤ j ≤ n) and c2 coupons of type l

(1 ≤ l ≤ n), where j �= l and c1 < c2 < m. Now consider two coupon collectors P and Q.
From an incoming set of d coupons which contain both type j and type l, P keeps a coupon
of type l, and we use state A, represented by the tuple {c′

1, c
′
2} = (c1, c2 + 1), to record the

numbers of type-j and type-l coupons kept by P . Collector Q instead keeps a coupon of type j ,
and we correspondingly use state B, represented by {c′′

1 , c′′
2} = (c1 + 1, c2).

Now we need only to argue that, to collect m sets of coupons, on average, collector Q, who
starts from state B, will take no longer than collector P , who starts from state A. In each
run, P and Q receive the same set of d coupons, and a collector can keep a coupon only if
he/she has fewer than m copies of that type. We consider the ‘following-and-updating’ process
described below.

We let P make his/her optimal keeping decision each run to minimize the expected collecting
time. Then we let collector Q keep the same type of coupon as collector P . For a run where
collectors P and Q decide to keep a coupon of type j or type l, we update their states A and B.
There are two possible cases.

In the first case, c′′
1 = c′′

2 and it is the coupon of type j that both collectors decide to keep in
that run. Then P and Q are in states {c′

1 +1, c′
2} and {c′′

1 +1, c′′
2}, respectively. We update state

A to {c′
1 + 1, c′

2}, but instead symmetrically update the state of Q to B = {c′′
2 , c′′

1 + 1}, which
has the same optimized expected collecting time as state {c′′

1 + 1, c′′
2}. If c′′

1 + 1 = c′
2, A and

B are two equivalent states (note that c′
1 + c′

2 = c′′
1 + c′′

2); thus, we achieve our objective.
In the second case, after keeping a new coupon of type j or type l, we simply update states

A and B to record the new numbers of type-j and type-l coupons.
Before the states of the two collectors become equivalent, the collectors repeat the ‘following-

and-updating’ process described above, starting from new states A and B each iteration. With
a little abuse of notation, we still use {c′

1, c
′
2} and {c′′

1 , c′′
2} to represent states A and B before

each iteration, even though the values of c′
1, c′

2, c′′
1 , and c′′

2 may have changed over iterations.
It is not hard to see that the following conditions always hold before each iteration:

c′
1 + c′

2 = c′′
1 + c′′

2 , c′
1 ≤ c′

2, c′′
1 ≤ c′′

2 ,

c′
2 − c′

1 > c′′
2 − c′′

1 , c′
1, c

′
2, c

′′
1 , c′′

2 ≤ m.

Because of these conditions, in each run, when P keeps a certain type of coupon, Q can also
follow P ’s decision and keep the same type of coupon.

In each iteration, we always increase c′
1 + c′

2 and c′′
1 + c′′

2 , and because c′
1, c

′
2, c

′′
1 , c′′

2 ≤ m,
we will eventually obtain a pair of equivalent states in some iteration. Since we can always
arrive at two equivalent states for the two coupon collectors, starting from B to collect m sets
of coupons will not take any longer than starting from A.
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Now we prepare a final lemma before presenting the upper bound on E(Dd
m,n).

Lemma 2. The function

f (i) = n

di
− 1

1 − (1 − i/n)d

is nonincreasing in i ∈ [1, n], and 1/d − 1 ≤ f (i) ≤ 0 for 1 ≤ i ≤ n.

Proof. We need to show that, for i ∈ [1, n], the following derivative is nonpositive:

f ′(i) = d(1 − i/n)d−1

n(1 − (1 − i/n)d)2 − n

di2 .

Let g(x) = (1 − x)d + dx(1 − x)(d−1)/2, so

g′(x) = − 1
2d(1 − x)(d−3)/2(x + dx + 2(1 − x)(d+1)/2 − 2).

Also, let h(x) = x + dx + 2(1 − x)(d+1)/2 − 2, so

h′(x) = 1 + d − (1 + d)(1 − x)(d−1)/2 ≥ 0,

and h(x) ≥ h(0) = 0 for x > 0. Because

g′(x) = − 1
2d(1 − x)(d−3)/2h(x) ≤ 0 for 0 < x ≤ 1,

we have g(x) ≤ g(0) = 1 for 0 < x ≤ 1. This translates into

1 − (1 − x)d ≥ dx(1 − x)(d−1)/2 for 0 < x ≤ 1,

so
d(1 − x)d−1

n(1 − (1 − x)d)2 ≤ 1

ndx2 for 0 < x ≤ 1.

Plugging in x = i/n, we have

d(1 − i/n)d−1

n(1 − (1 − i/n)d)2 ≤ n

di2 for 1 ≤ i ≤ n.

So f ′(i) ≤ 0 for 1 ≤ i ≤ n. Calculating f (n), we have

n

di
− 1

1 − (1 − i/n)d
≥ 1

d
− 1 for 1 ≤ i ≤ n.

At this point, we are ready to present the following upper bound for E(Dd
m,n).

Theorem 3. Suppose that the coupon collector is given d uniformly randomly chosen d distinct
coupons and that he/she is allowed to keep only one out of these d distinct coupons. Then the
expected time E(Dd

m,n) ≤ E(D1
m,n)/d + mn(1 − 1/d).

Proof. Inspired by Theorems 1 and 2, we consider the process in which each run d in-
dependently chosen coupons (allowing repetition) are presented and among them the coupon
collector keeps only the first ‘useful’ coupon which he/she has fewer than m copies of.



A generalized coupon collector problem 1087

We focus on upper bounding the expected finishing time, conditioning on a specific sequence
ofmnkept ‘useful’coupons, specified by their type and the order in which they are kept. Suppose
that immediately after the rth kept coupon in this ‘keeper’ sequence, there are s types of coupon
for which the coupon collector has m copies.

Conditioning on the specified ‘keeper’coupon sequence, unless an incoming coupon belongs
to the s types of coupon for which the collector already has m copies, this incoming coupon
must be the (r + 1)th ‘keeper’ coupon. So, given that the ‘keeper’ sequence is known, with
probability (1 − (n − s)/n)d , none of the d uniformly chosen (allowing repetition) coupons is
the known (r +1)th ‘keeper’. So, conditioning on the specified ‘keeper’ sequence, the expected
time to collect the (r + 1)th ‘keeper’ coupon is

E′ = 1

1 − (1 − (n − s)/n)d
.

However, if the coupon collector is offered only one instead of d coupons each run, the expected
time to collect the (r + 1)th coupon is E′′ = n/(n − s).

By Lemma 2, E′ − E′′/d ≤ 1 − 1/d for any 1 ≤ s ≤ n. Since a whole ‘keeper’ sequence
S has mn coupons, the total expected time E′

S to collect them, when d coupons (allowing
repetition) are offered each run, and the total expected time E′′

S , when one coupon is offered
each run, satisfy E′

S − E′′
S/d ≤ mn(1 − 1/d).

We note that the probability that the coupon collector follows a specific sequence of ‘keeper’
coupons is the same no matter whether d = 1 or not. This is because, among a batch of d

offered coupons, the collector still checks them one by one and keeps only the first coupon that
is ‘useful’. So this implies that E(Dd

m,n) ≤ E(D1
m,n)/d + mn(1 − 1/d) for any d.

We remark that the upper bound in Theorem 3 can also be obtained by considering the classic
coupon collector process and dividing the incoming coupons into batches of d coupons: after
each coupon is accepted, the collector throws away the next d − 1 coupons to ensure that the
next kept coupon belongs to a fresh batch of d coupons. The proof of Theorem 3 reduces to
an exact result for the m = 1 case, and can lead to tighter upper bounds for general m if a
finer analysis is applied (for example, using the exact formula instead of the upper bound in
Lemma 2, which is possible at least for collecting the last coupon).

5. An asymptotic analysis (n → ∞)

In this section we provide an asymptotic analysis for the upper and lower bounds of E(Dd
m,n),

and we see how this analysis behaves asymptotically for fixed d and m as n goes to ∞. We
will begin with an asymptotic analysis through an exact expression for E(Dd

1,n).

Theorem 4. When n is large enough and d > 1,

E(Dd
1,n) = n

(
log n

d
+ O(1)

)
.

Proof. We have

E(Dd
1,n) =

n−1∑
i=0

1

1 − (
i
d

)
/
(
n
d

)

=
n−1∑
i=0

1

1 − i(i − 1) · · · (i − d + 1)/n(n − 1) · · · (n − d + 1)
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≥ d +
n−1∑
i=d

1

1 − ((i − d + 1)/(n − d + 1))d

= d +
n−d∑
i=1

1

1 − (1 − i/(n − d + 1))d
.

Since (1 − x)d ≥ 1 − dx for 0 ≤ x ≤ 1,

E(Dd
1,n) ≥

n∑
i=1

n − d + 1

di
= n − d + 1

nd

n−1∑
i=0

n

n − i
=

(
1 − d − 1

n

)
E(D1

1,n)

d
.

Thus,

E(Dd
1,n) =

n−1∑
i=0

1

1 − i(i − 1) · · · (i − d + 1)/n(n − 1) · · · (n − d + 1)

≤
n−1∑
i=0

1

1 − (i/n)d

=
n∑

i=1

1

1 − (1 − i/n)d

≤
n∑

i=1

(
n

di
− 1

d
+ 1

)

= 1

d
E(D1

1,n) + n

(
1 − 1

d

)
.

Theorem 5. When m is fixed, for any d > 1,

lim
n→∞

E(Dd
m,n) − n log(n)/d

(n(m − 1) log log n)/d
= 1.

Proof. From the lower bound and upper bound for E(Dd
m,n) in Section 3 and Section 4, we

know that

lim
n→∞

E(Dd
m,n)

E(D1
m,n)

= 1

d
.

Then the asymptotic expression emerges immediately by recalling the asymptotic expression
for E(D1

m,n).

6. An algorithmic approach (for any finite n)

In this section we give an algorithm which calculates exactly E(Dd
m,n) for specified m, n, and

d based on a state-space representation of the Markov process of collecting the coupons. For
each n0, n1, n2, . . . , nm ≥ 0 satisfying n0 +n1 + · · ·+nm = n, define Sm = (n0, n1, . . . , nm)

to be the state, where ni (0 ≤ i ≤ m) is the number of coupons that the coupon collector has
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collected i times. Hence, E(Dd
mn) is the expected number of runs necessary for the coupon

collector to go from state (n, 0, . . . , 0) to state (0, . . . , 0, n).
We now provide an algorithm to calculate E(Dd

m,n). Define Nd
m(Sm) to be, starting from

state Sm, the number of runs after which m-completed sets of coupons have been collected,
i.e. the number of runs from state Sm to (0, . . . , 0, n). Clearly,

Nd
m(n, 0, . . . , 0) = Dd

m,n

and
Nd

m(0, . . . , 0, n) = 0.

Suppose that we are in state Sm = (n0, n1, . . . , nm). After one run, the transition probability
from Sm to the following two states are as follows:

(n0, n1, . . . , nm) with probability

(
nm

d

)/(
n

d

)
,

(n0, . . . , ni − 1, ni+1 + 1, . . . , nm) with probability pi, 0 ≤ i < m,

where

pi =
((∑m

t=i nt

d

)
−

(∑m
t=i+1 nt

d

))/(
n

d

)
.

Therefore, we have

E(Nd
m(n0, . . . , nm)) = 1 +

((
nm

d

)/(
n

d

))
E(Nd

m(n0, . . . , nm))

+
m−1∑
i=0

pi E(Nd
m(n0, . . . , ni − 1, ni+1 + 1, . . . , nm)).

So

E(Nd
m(n0, . . . , nm)) =

((
n

d

)/((
n

d

)
−

(
nm

d

)))

×
m−1∑
i=0

((∑m
t=i nt

d

)
−

(∑m
t=i+1 nt

d

))/((
n

d

)
−

(
nm

d

))

× E(Nd
m(n0, . . . , ni − 1, ni+1 + 1, . . . , nm)). (2)

Define the map

� : {(n0, . . . , nm) : n0, n1, . . . , nm ≥ 0, n0 + n1 + · · · + nm = n} → N,

where

�(n0, n1, n2, . . . , nm) =
m∑

i=0

(1 + n)m−ini .

Obviously, � is an injection and

�(n, 0, . . . , 0) = n(1 + n)m, �(0, . . . , 0, n) = n.
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Since
�(n0, . . . , nm) − �(n0, . . . , ni − 1, ni+1 + 1, . . . , nm)

= ((1 + n)m−ini + (1 + n)m−i−1ni+1)

− ((1 + n)m−i (ni − 1) + (1 + n)m−i−1(ni+1 + 1))

= (1 + n)m−i − (1 + n)m−i−1

> 0,

by (2), the expected number of runs from state S depends only on the expected number of runs
from the states S∗ with �(S∗) < �(S). Therefore, we can order all the states (n0, . . . , nm)

according to the value of �(n0, . . . , nm), and compute E(Nd
m(n0, . . . , nm)) one by one, from

the starting state (0, . . . , 0, n) to the last state (n, 0, . . . , 0). The algorithm is described below.

Algorithm 1. (Calculating E(Dd
m,n).)

for n0 = 0 to n

for n1 = 0 to n − n0
...

for nm−1 = 0 to n − ∑m−2
i=0 ni

do nm = n − ∑m−1
i=0 ni

if nm = n

then E(Nd
m(n0, . . . , nm)) = 0

else use (2) to compute E(Nd
m(n0, . . . , nm))

Since the number of nonnegative integer solutions to the equation n0 + · · · + nm = n is(
n+m

n

)
, the number of states is

(
n+m

n

)
, and the complexity of Algorithm 1 is O(

(
n+m

n

)
).

To conclude this section, we now use a simple example (n = 6 and m = 2) to illustrate
Algorithm 1. When m = 2, each state has three parameters: n0, n1, and n2. Since n0 + n1 +
n2 = n, we could draw the state transition diagram as in Figure 1. Algorithm 1 computes
E(Nd

2 (n0, n1, n2)) for each state (n0, n1, n2) by the order shown in Figure 2. Note that

• the expected number of runs from any state depends only on the number of runs from its
descents in Figure 1,

0,0,6

1,0,5 0,1,5

2,0,4 1,1,4 0,2,4

3,0,3 2,1,3 1,2,3 0,3,3

4,0,2 3,1,2 2,2,2 1,3,2 0,4,2

5,0,1 4,1,1 3,2,1 2,3,1 1,4,1 0,5,1

6,0,0 5,1,0 4,2,0 3,3,0 2,4,0 1,5,0 0,6,0

Figure 1: State transition diagram for n = 6 and m = 2. Self-loops are omitted. The nodes are labeled
with the values of n0, n1, and n2.
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Figure 2: State transition diagram for n = 6 and m = 2. The nodes are labeled with the computation
order. The highest node, which represents (0, 0, 6), is labeled 0 because Nd

2 (0, 0, 6) is known to be 0.
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Figure 3: State transition diagram for n = 6 and m = 2. The nodes are labeled with the value of
E(N2

2 (n0, n1, n2)).

• the computation of E(Nd
2 (· · · )) for any state is carried out after the computations for its

descents by Figure 2.

The values of E(Nd
2 (n0, n1, n2)) for each state (n0, n1, n2) is shown in Figure 3.

7. Numerical examples

We now engage in numerical exercises to support the results of the last two sections, i.e. the
correctness of Algorithm 1 and the derived upper and lower bounds of E(Dd

m,n).

7.1. Algorithm

First, we give numerical results for the expected collection time when n = 100 and m =
1, 2, 3, respectively, in Tables 1–3. The results show that Algorithm 1 gives an expected delay
consistent with the simulation results.
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Table 1: Numerical results for the expected collection time when m = 1 and n = 100.

d

1 2 3 4 5

Algorithm 518.74 292.93 220.06 184.79 164.27
Simulation 518.69 292.40 219.33 184.59 164.18

Table 2: Numerical results for the expected collection time when m = 2 and n = 100.

d

1 2 3 4 5

Algorithm 728.81 418.69 327.02 286.75 264.84
Simulation 728.20 419.13 327.29 286.81 264.68

Table 3: Numerical results for the expected collection time when m = 3 and n = 100.

d

1 2 3 4 5

Algorithm 910.87 531.34 428.75 386.97 364.86
Simulation 910.09 531.33 428.72 386.65 364.90

7.2. Asymptotic results

Two cases are considered: d = 3 and m = 1, and d = 3 and m = 2. For each case, in
Figures 4 and 5 we plot the lower bound from Theorem 2, the upper bound from Theorem 1,
and the result computed from Algorithm 1 for n from 100 to 500. The results show that the
upper and lower bounds bound the expected collecting time very well. In fact, when m and d

are fixed, the upper and lower bounds both scale as (1/d) E(D1
m,n) as n → ∞.
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Figure 4: Asymptotics for m = 1 and d = 3.
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Figure 5: Asymptotics for m = 1 and d = 3.

8. Conclusion and future work

In this paper we have considered a generalized coupon collector problem in which the coupon
collector needs to collect m ≥ 1 sets of coupons and has the freedom to keep one coupon out
of the d ≥ 1 coupons offered each time. We obtained asymptotically matching upper and
lower bounds for the expected collection time. We also provided an algorithm to calculate
the expected collection time exactly based on a state representation for the coupon collecting
process. We should note that, asymptotically, even if the coupon collector is allowed to keep
only one coupon out of the d coupons, the needed time will still be shortened by a factor of d,
compared to if the coupon collector is allowed to keep all the d coupons offered each time.

There is much scope for future work on this problem. First, one could attempt to obtain
a closed-form expression for E(Dd

m,n). Second, one could attempt to improve Algorithm 1.
Algorithm 1 has a run time of

(
n+m

n

)
. To take advantage of this run time requires constant

time indexing. The direct approach is to index the states in an n-dimensional matrix of size
(n+1)m+1. However, since there are a total of

(
n+m

n

)
states, a large fraction of the matrix space

is not required. Hence, it would be helpful to find an algorithm which carries out triangular
indexing in constant time. This would reduce the memory requirements and increase the range
of parameters over which the problem is computationally feasible. One could further observe
that although there are

(
n+m

n

)
states, only

(
n+m−1
m−1

)
are actually needed at any time. So, with

constant time triangular indexing, one could reduce the memory requirements further, although
the gain from the second reduction is minimal.
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