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Abstract— We consider the problem of joint service rate
control and load balancing of a network of servers. The system
incurs holding cost, effort cost, and a routing cost whenever a
demand is routed to other servers. This formulation is motivated
by recent interest on energy efficiency in IT systems where
effort cost models power consumption and holding cost represents
performance in terms of delay. The aim is to find a stationary
policy that minimizes, over an infinite horizon, the long-run
average cost rate. Using a dynamic programming formulation,
we show that the optimal routing policy is acyclic and bipartite.
We prove that the relative cost function is monotonically non-
decreasing in queue size while for the case of 2 servers, the
optimal service policy is non-decreasing in queue size and the
optimal routing policy is a threshold policy. We show how
upper and lower bounds of the optimal average cost rate can
be efficiently calculated numerically. In particular, based on
the monotonicity property, we develop an approximate dynamic
programming procedure to efficiently compute a good upper
bound. Numerical examples with two networked servers are
provided to illustrate our findings.

I. INTRODUCTION

The performance of a queueing network is usually charac-

terized by its level of congestion through either the number

of jobs in the system or the waiting time experienced by a

job in the queue. To minimize congestion, we should run the

system at the highest service rate possible. But in a real world

setting, increasing the service rate incurs additional costs such

as increased power consumption and a reduction in the lifetime

of network components. Consequently, there is an important

tradeoff between decreasing congestion and increasing the

service rate.

Our paper is motivated by the recent surge of interest

to reduce power consumption in datacenter networks. A

large datacenter houses tens of thousands of servers and

can consume electricity at the order of tens of megawatts

[1]. To reduce electricity cost, the hardware approach is to

replace the existing infrastructure with more power efficient

components. A better cooling system, more efficient servers

and power distribution, and improved architectural design of

the datacenters are some of the approaches that have been

implemented by datacenter owners [2]. On the other hand,

better efficiency can also be achieved by optimizing software

and deployment at various levels. At the chip level, we have

dynamic voltage/frequency scaling (DVFS) or speed scaling

[3], [4], [5]. At the machine level, virtualization is a widely

deployed method to run multiple computer systems on a

single set of computer hardware. At the datacenter level, one

proposed method is to power down inactive network elements

[6]. At the network level, we have power-demand routing

which exploits the the price differentials of electricity prices

for different geographical regions [7], [8], and load balancing

with a constrained average delay [9], [10].

From a modeling point of view, our work focuses on the

network level by considering a joint minimization of energy

cost, delay cost and routing cost. We also allow the service

rate to be changed dynamically according to the number of

demands in the system. From an analytical perspective, our

work is a generalization of the optimal service rate control

of a queue [11] to an open network of parallel queues

with routing costs and no feedback or cascade topologies. In

this framework, the costs in consideration are known in the

literature as cost of effort and holding cost (or congestion

cost), which corresponds to energy cost and delay cost for

the datacenter networks, respectively. In the rest of the paper,

we’ll use terms from the optimal service rate control literature,

and whenever possible, a translation to the datacenter networks

context is given.

A brief overview of the paper along with a summary of

our contributions is as follows. We start by giving a detailed

mathematical description of our problem formulation in Sec-

tion II. Then in Section III, we present the Bellman equation

for our model and prove the existence of a stationary optimal

policy. From the optimality equation we show that our model

can handle any non-convex or discrete effort cost functions

in Section IV-A. We show that the routing policy is acyclic

and bipartite in Section IV-B. In Section IV-C, we prove that

the relative value function is monotonic in queue size and

for a network of two servers, the optimal service policy is

non-decreasing in queue size and the optimal routing policy

is a threshold policy. Based on the structural properties, we

propose various techniques, including the use of approximate

dynamic programming [12], to calculate the upper and lower

bounds of the optimal expected average cost in Section V.

Numerical examples that illustrate all our results are presented

in Section VI. We conclude the paper in Section VII.

II. MODEL FORMULATION

Our system consists of a set, M = {1, 2 . . . ,M} of M
queues (datacenters). 1 Each queue i has a router ri and a

processor (the whole collection of servers) si connected in

series (see Figure 1). Demands arrive to each server i as a

1Except for two structural properties in IV-C, all main results in this paper
are for general M . One can see Section VI with M = 2 for concrete graphical
illustration.



Fig. 1. Service rate control and load balancing for M = 2 servers.g g

Poisson process with rate λi. We let λ =
∑

i∈M λi be the total

demand arrival rates to all servers. Each demand is assumed to

have a workload that is i.i.d. with an exponential distribution

of mean 1, and thus departs from server i with rate μi when

the server is running at speed μi. The state of the system is

the number of demands at each server, including the demands

being served. We assume there is no bounds on the queue

size of demands at each server and thus the state space is

N � (Z+)
M

and the state vector is n = (n1, n2, . . . , nM )
where ni is the number of demands at server i. We define

the partial order ≥ on N as follows: we say n+ ≥ n− if

n+
i ≥ n−i for all i ∈M.

The router serves as the entry point for the demands to the

servers. At the arrival of each demand, the router decides,

according to a probability distribution, whether to forward

the demand to its server or to the routers of other servers.

The routing probability is dependent on the current system

state. At state n, router i chooses to forward to its server with

probability αii (n) and to router rj , j �= i with probability

αij (n). We require that ∀n ∈ N ,
∑

k∈M αik (n) = 1, and
denote α (n) = {αij (n) : i, j ∈M} as the set of routing

probabilities when the state vector is n. Due to routing, the

total demand arrival rate to router ri and processor si is now

state dependent, and are denoted as λri (α (n)) and λsi (α (n)),
respectively and they satisfy λsi (α (n)) = αii (n)λ

r
i (α (n))

as well as

λri (α (n)) = λi +
∑
j �=i

λrj (α (n))αji (n) (1)

The processor serves the demands forwarded to it by the

router. The processor has a load-dependent service rate, i.e.

the service rate is μi(n) when there are n demands in the

system. The service rate of si is constrained to fall in a

compact set Ai ⊂ [0,∞), which has a least upper bound of

μ̄i and is assumed to contain the point μi = 0 and some point

μi > λi. The set of service rates at state n is denoted as

μ (n) = {μi (n) : i ∈M}. Thus, the action space, which is

the same for any state n, is A � A1 × . . .×AM ×R, where

R �
{
α ∈ R

M×M : αij ≥ 0,
∑

j αij = 1, i ∈M
}

is the set

of admissible routing probabilities.

Three types of costs are incurred for the system: cost of

effort, holding cost, and routing cost. If we run processor si
at service rate xi, an effort cost is continuously incurred at a

rate of ci (xi). For each i, the function ci : Ai → R is assumed

to be non-decreasing, and has, as a normalization, ci (0) = 0.
We denote c (x) =

∑
i∈M ci (xi) as the total cost of effort.

Note that we do not require Ai to be connected or ci (·) to be

convex, although we will show in Section IV-A that we could

have assumed, without loss of generality, that Ai = [0, μ̄i] and
ci (·) is convex.

When processor si has a queue size of ni, a holding

cost is continuously incurred at rate hi (ni). The function

hi : Z
+ → R is assumed to be nondecreasing and have less-

than geometric growth:

∞∑
n=0

hi (n)u
n
i <∞ for all ui ∈ [0, 1) , ∀i ∈M (2)

We denote h (n) =
∑

i∈M hi (ni) as the total holding cost.

The holding cost is, in a sense, the performance metric of the

individual servers. For instance, in the datacenter networks

context, hi (n) = n, ∀i ∈ M, and the holding cost is

simply the total delay experienced by the demands in all

the servers. Note that when the holding cost is bounded by

limn→∞ hi (n) = h∞i <∞ for at least one server i, then it is

possible that the optimal policy routes all demands to i, sets
all server speeds to 0, and achieves a long-run average cost

rate of h∞i . Reference [11] calls such a problem degenerate.
A fixed routing cost dij ≥ 0 is incurred whenever router

ri decides to route an incoming demand to router rj . By

convention, dii = 0. We denote d (α) =
∑

i,j∈M λri (α)αijdij
as the total routing cost. In the datacenter networks context, the

fixed routing cost can be thought of as the cost due to routing

delay, bandwidth consumption or energy required to route the

demand. Note that unlike cost of effort and holding cost which

are incurred continuously, the routing cost is incurred only

when a demand is routed. However, since demands arrive at a

rate of λri (α(n)), the routing cost can be thought of as being

incurred continuously at a rate of λri (α (n))αij (n) dij .
Before formulating the optimization problem, we address

the key modeling assumptions that we have made so far.

Although each datacenter houses thousands of servers, we treat

each datacenter as a single cluster of server and represent the

cluster as a single server. This representation is in keeping

with our focus on the network level instead of the datacenter

level. Any datacenter-level optimization can be independently

deployed and after all the optimization is done, all we need

to perform our analysis is the effort cost function, which in

this context, is the relationship between the datacenter utiliza-

tion level and the power consumption. As for the demands,



the Poisson arrivals and the exponential service times are

approximations and are assumed for tractability. We further

assume there is only one class of demand, and each demand

requires only one service and any datacenter is able to service

the demands equally well. In practice, datacenters typically

have to deal with multiple types of requests, each with its

own servicing time and frequently, due to incomplete data

replication, a datacenter may have to acquire data from another

datacenter before it can service a demand.

The final component of our model is a policy that

specifies (μ, α), where μ = {μ (n) : n ∈ N} and α =
{α (n) : n ∈ N}. In other words, a policy tells us the routing

probabilities and the service rates to adopt at each server for

every feasbile state. At the times in between state transitions,

the service rates and the transition probabilities are constrained

to be constant. This means that our problem is a continuous-

time Markov decision process (CTMDP) [13]. Note that we

are restricting our attention to stationary policies that choose

the same service rate μ (n) and routing probabilities α (n)
whenever the state is n. The justification for this restriction

is given in Theorem 1 where we show the existence of an

optimal stationary policy.

A stationary policy (μ, α) induces a continuous-time

Markov chain {I (t) : t ≥ 0} with an embedded Markov chain

{Iu : u = 1, 2, . . .} that has a transition probability matrix

P (μ, α) on N . Denote C (n,x, Q) = h (n) + c (x) + d (Q)
as the total cost rate when the system is in state n, runs at

speed x and routes demands according to Q. The long-run

average cost rate of the policy, given that the starting state is

I (0) = n, is defined by

z (μ, α) = lim
T→∞

En

{´ T
0
C (I (t) , μ (I (t)) , α (I (t))) dt

T

}

where E (·) is the expectation operator. Our problem is to

determine the minimum long-run average cost rate and find

the policy that achieves it, i.e. determine

z∗ = min
(μ,α)

z (μ, α) (3)

(μ∗, α∗) = arg min
(μ,α)

z (μ, α) (4)

Note that the set of all stationary policies is a closed set

since the action space at each state is the compact set A,

and the product of a collection of compact sets is compact by

Tychonoff’s theorem [13]. A policy (μ, α) is said to be optimal
if z (μ, α) = z∗. Assumption (2) ensures that z∗ < ∞ since

we can specify a policy (μ, α) for which no routing occurs,

and for all n ∈ N , i ∈M, μi (n) = xi > λi. Without routing,

the demand arrival rate is no longer state-dependent and thus

we can determine the average cost through the stationary dis-

tribution of the Markov chain by applying Jackson’s theorem

[14]. The joint stationary distribution is decomposable into the

product of M marginal stationary distributions, each of which

is geometric with parameter ui =
λi

xi
and thus z (μ, α) <∞.

In this section, we have laid down all the components of

an infinite horizon continuous-time Markov decision process.

To sum it up, our problem has a continuous time parameter, a

countably infinite state space, a possibly unbounded one-stage

cost, a long-run average cost rate optimality criterion and the

set of admissible policies is Markov deterministic, stationary

and unichain.

III. OPTIMALITY CONDITION

The standard approach to a Markov decision process with a

long-run average cost rate optimality criterion is to start with

the Bellman equation or the average cost optimality equation

(ACOE) [15], [13]:

vn =min
x,Q

{
1

τn (x)

[
h (n) + c (x)− z

+
∑

i∈M:ni>0

xivn−ei
+
∑
i∈M

λri (Q) qiivn+ei

+
∑
i∈M

∑
k∈M

λri (Q) qikdik

]}
(5)

where the minimum is taken over all admissible speeds {x =
(x1, . . . , xM ) : xi ∈ Ai, i ∈ M} and routing probabilities{
Q ∈ R

M×M : qij ≥ 0,
∑

j qij = 1, i ∈M
}
, and τn (x) =

λ+
∑

i∈M:ni>0 xi, is the rate of state changes (observe that the

optimal service rate for datacenter i when ni = 0 is xi = 0). z
can be interpreted as the minimum average cost rate, z∗. vn is

known as the relative cost function and can be interpreted as

follows: we define a new cost structure known as the z-revised
cost structure where the holding cost rate is

∑
i hi (ni) − z,

then starting from state n, the minimum expected cost incurred

until the first entry into an arbitrary reference state m ∈ N is

vn.
By moving vn over to the RHS, multiplying through by

τn (x), and grouping the terms together, (5) become

0 = min
Q

[∑
i∈M

{
λri (Q) qii (vn+ei

− vn)

+
∑
j∈M

λri (Q) qijdij

}]
+
∑
i∈M

hi (ni)− z (6)

−
∑

i∈M:ni>0

max
xi∈Ai

[xi (vn − vn−ei
)− ci (xi)]

If a stationary policy achieves the minimum in the ACOE,

it is optimal (see Theorem 5.1 of [16]) but the converse does

not hold in general.

We now justify our restriction to stationary policies by using

results from [17], [18] to show that there exists a stationary

optimal policy.

Theorem 1: There exists a stationary policy that minimizes

the expected average cost for any initial state n ∈ N and the

expected average cost z∗ is independent of the starting state.

Proof: We prove by checking for the 7 conditions from

[18] with the two modifications — condition 7 is dropped

while condition 5 becomes: It is possible to go from any

state n to state 0 with finite expected cost. The proof of [18]



works by first formulating our infinite horizon MDP to have an

expected total discounted cost optimality criterion. Next, they

utilize the fact that for such an optimality criterion, the MDP

has an optimal stationary policy and that the action space is

compact to show that we can take the limit as the discount

factor β approaches 0 and prove the desired results. Observe

that conditions 1-4 and 6 are obviously satisfied for our model.

Though we have modified condition 5 and dropped condition

7, the proof of [18] goes through for our model since for an

expected total discounted cost optimality criterion, state 0 is

the most favourable starting state (see Theorem 3), regardless

of what the discount factor β is.

In the following section, we will show that optimal policies

satisfying the ACOE must possess certain structural properties.

IV. STRUCTURAL PROPERTIES

A. Service Rates

From (6), we see that we have two separate optimizations

to deal with. Let’s first focus on the last term that determines

the optimal service rates. Defining

φi (y) = max
xi∈Ai

[xiy − ci (xi)] (7)

ψi (y) = min {x : xy − ci (x) = φi (y)} (8)

φi (·) is the convex conjugate [19] of ci (·) and is therefore

convex. ψi (·) is the smallest element of the subgradient

of φi (·) and since the subgradient is a singleton if φ′ (·)
exists, ψ (·) equals φ′ (·) if the derivative exists. ψi (·) is left-

continuous and non-decreasing. Since for xi ∈ Ai, ci (xi) ≥
ci (0), and Ai ⊂ [0,∞), we have that

φi (y) = 0, for all y ≤ 0 (9)

As explained in detail in [11], [17], both (7) and (8) remain

the same if we replace the effort cost ci (·) by its convex hull,

which by definition, is the largest convex function ĉi (·) on

[0, μ̄i]such that ci (xi) ≥ ĉi (xi) for all xi ∈ Ai. To establish

equivalency of the optimization problem after the replacement,

define A∗i ⊂ A to be the set of points xi ∈ Ai such that

ci (xi) = ĉi (xi), then we just need to check that for all y ≥
0, ψi (y) = x̂i ∈ A∗i . From (7), for any xi ∈ A, ci (x) ≥
ci (x̂i) + y (xi − x̂i) � f (xi). f (xi) is a convex function

and since ĉi (·) is the largest convex function, we have that

ci (x̂i) ≥ ĉi (x̂i) ≥ f (x̂i), but f (x̂i) = ci (x̂i) implies that

equality holds throughout and thus ci (x̂i) = ĉ (x̂i) implying

that x̂i ∈ A∗i .
Thus, we could replace ci (·) of any shape, and any compact

action set Ai within [0, μ̄i], with a convex ci (·) and a

connected action set Ai = [0, μ̄i]. The previous statement

has a few implications for the datacenter networks context.

Prior work, for instance [10], has typically assumed that ci (·)
is convex and that the CPU can run at any utilization level

from 0 to 1. The justification for the convex power function

arises from theoretical consideration or from measured data

on how the power usage of the CPU changes as its speed is

varied. However, other components of a server, such as the

memory, motherboard, hard drive, etc also consumes power.

[3] estimated that the CPU consumes only about 40% of a

server’s power and their empirical fit, which is accurate to

within 1% error, of the server power usage as a function

of its speed shows a slightly concave function. Moreover, at

present time, CPU only has a finite number of frequency-

power operating points. Thus, one strength of our model is

that we are able to accomodate non-convex power function and

any servers with a finite number of frequency-power operating

points.

B. Routing Policy

Next we move on to investigate the optimal routing policy.

First define, for all i, j ∈ M, yij = λri qij , then the first term

of (6) becomes

min
Y

[∑
i∈M

⎛
⎝yii (vn+ei

− vn) +
∑
j∈M

yijdij

⎞
⎠] (10)

where Y = {yij : i, j ∈M}. From (1), we obtain the restric-

tion that, for each i∑
j∈M

yij = λi +
∑
k �=i

yki (11)

This reformulation of the routing policy allows us to show that

the optimal routing policy is acyclic (if i routes to j, then j
doesn’t route to i) and bipartite (each router is either a “sink”

or a “source” but not both).

Theorem 2: Denote the optimal routing policy as Y ∗. If

∀i, j, k ∈ M, i �= j, j �= k, dij + djk > dik, i.e. triangle

inequality holds strictly, then y∗ij > 0 implies that y∗jk = 0.
Proof: We’ll prove by contradiction. Suppose there exists

i, j, k ∈M, i �= j, j �= k such that y∗ij > 0 and y∗jk > 0. Now

set δ = min
{
y∗ij , y

∗
jk

}
and ȳij = y∗ij − δ, ȳjk = y∗jk − δ,

ȳik =

{
y∗ik + δ , i �= k

y∗ik , i = k
. With this modification, (11) is still

satisfied but the cost has decreased since δdik−δ (dij + djk) <
0, contradicting optimality of y∗ij and y∗jk.

From this point onwards, we assume that triangle inequality

holds strictly for the routing cost. With this assumption,

Theorem 2 tells us that our problem is equivalent to having the

routers decide which processors to route to (instead of deciding

between its server’s processor and the routers of other servers).

Hence, reverting back to the original formulation using routing

probabilities, the first term of (6) can be rewritten as

min
Q

[∑
i∈M

∑
j∈M

λiqij
[(
vn+ej − vn

)
+ dij

]]

=
∑
i∈M

λi

⎡
⎣−vn +min

Qi

∑
j∈M

qij
(
vn+ej + dij

)⎤⎦ (12)

where Qi =
{
qij : qij ≥ 0,

∑
j qij = 1, j ∈M

}
.



We have thus separated the problem into M different

subproblems. For the subproblem, for fixed i, it is clear that the
optimal routing policy is to route to server j with the lowest

value in vn+ej + dij .

C. Monotonicity

Our aim is to show that the following structural properties

hold for all i ∈M, j �= i and n ∈ N ,

(a) (the relative cost function is nondecreasing) un+ei
−

un ≥ 0
(b) (the optimal service rate is nondecreasing in n)

(i) un+2ei
− un+ei

≥ un+ei
− un

(ii) un+ei+ej
− un+ei

≥ un+ej
− un

(c) (the routing policy is a threshold policy, see [20],

[15]) un+2ei
− un+ej+ei

≥ un+ei
− un+ej

At this point, we have the proof for property (a) while for

properties (b) and (c), we can prove it for M = 2.
The proof to show that the relative cost function is mono-

tonic in n takes the same route as Theorem 1 by first con-

sidering the minimal expected total discounted cost optimality

criterion. If we can show that the desired property holds for

any discount factor, then it also holds in the limit as the

discount factor approaches 0.

Let β > 0 be any positive discount factor and define uβn as

the minimal expected total discounted cost starting from state

n. We first apply the standard technique of uniformization [15]

to convert the problem from continuous time to discrete time.

Denote τ = λ +
∑

i μ̄i, then the Bellman equation for the

equivalent discrete time problem is

uβn =min
x,Q

1

β + τ

∑
i∈M

{
hi (ni) + ci (xi) + xiu

β
n−ei

(13)

+
∑
j∈M

λiqij

(
dij + uβn+ej

)
+ (μ̄i − xi)u

β
n

}

Denoting Cβ (μ, α) �
{
C(n,μ(n),α(n))

β+τ

}
n∈N

as the vec-

tor of one-stage costs, uβ =
{
uβn
}
n∈N as the vector of

minimal expected total discounted cost starting from state

n, na = {n± ei ≥ 0 : i ∈M} ∪ {n} as the set of states

adjacent to state n, inclusive of state n itself, P (μ, α) =
{P (n,m|μ (n) , α (n))}n,m∈N as the transition probability

matrix of going from state n to m, then Bellman equation

can be written compactly as

uβ = min
(μ,α)

Cβ (μ, α) + γ

{ ∑
m∈na

P (n,m|μ (n) , α (n))uβm

}
n∈N

= min
(μ,α)

Cβ (μ, α) + γP (μ, α)uβ

The Bellman operator T is thus defined as

T u = min
(μ,α)

Cβ (μ, α) + γP (μ, α)u

To prove monotonicity, we rely on the value iteration algorithm

[15], which works as follows:

1) Initialize with u0 = 0 .

2) For iteration k, k ≥ 1, update u by applying the Bellman

operator: uk = T uk−1.

Since the one-stage cost can be unbounded, in general, value

iteration does not converge. However, we will show that in

this setup, value iteration does indeed converge by drawing

from the results from Chapter 6.10 of [13].

For all n ∈ N , let wβn =
h(n)+c(μ̄)+

∑
i λi maxj dij

β+τ be the

maximum one-stage cost that can be incurred. Define the

weighted supremum norm ‖ · ‖wβ for real-valued functions

on N by

‖u‖wβ = sup
n∈N

|un|
wβn

and let Uwβ be the space of real-valued functions u on N
satisfying ‖u‖wβ <∞.

Lemma 1: For any discount factor β > 0, if there ex-

ists a positive constant Lβ such that h (n+ ej) − h (n) ≤
Lβ (β + τ) for all n ∈ N and j ∈ M, then the optimality

equation uβ = T uβ has a unique solution ûβ ∈ Uwβ .

Moreover, for any u0 ∈ Uwβ , limn→∞ ‖T nu0 − ûβ‖ = 0.
Proof: The lemma is modified from Theorem 6.10.4 of

[13]. To satisfy the conditions of the Theorem 6.10.4, we apply

proposition 6.10.5a of [13] and check for the following two

conditions: for all n ∈ N ,

max
a∈A

∣∣∣∣h (n) + c (μ (n)) +
∑

i

∑
j λiαij (n) dij

β + τ

∣∣∣∣ ≤ wβn (14)

∑
m∈na

P (n,m|a)wβm ≤ wβn + Lβ , for all a ∈ A (15)

The first condition holds trivially by the definition of wβn while

for the second condition:∑
m∈na

P (n,m|a)wβm

=wβn +
∑

m∈na

P (n,m|a) h (m)− h (n)

β + τ

≤wβn + Lβ

Now that we know value iteration converges, we can use it to

inductively show the desired structural property.
Theorem 3: For any β > 0, if uβ satisfies uβ = T uβ , and

n+ ≥ n−, then uβn+ − uβn− ≥ 0
Proof: We’ll show by induction on the value iteration

algoritm. For t = 0, it clearly holds since u0 = 0. Now

suppose it holds for t = 0, 1, . . . , k. For iteration t = k + 1,
denote the policy that minimizes T ukn+ as (x∗, Q∗). Apply

the policy (x∗, Q∗) to state n−, then we have

T ukn+

≥ 1

β + τ

{
h
(
n−
)
+ c (x∗) +

∑
i∈M:ni>0

x∗i u
k−1
n−−ei

+
∑
i∈M

∑
j∈M

λiq
∗
ij

(
dij + uk−1

n−+ej

)
+ (τ − τn− (x∗))uk−1

n− ≥ T ukn−



The first inequality holds because of the induction hypoth-

esis and becausehi (ni) is nondecreasing in ni. The second

inequality holds by the definition of T .

We next prove monotonicity properties (b) and (c) for M = 2.
Theorem 4: For M = 2 and for any β > 0, if the holding

costs are convex, i.e. hi(n+2)−hi(n+1) ≥ hi (n+ 1)−hi (n)
for i = 1, 2 and n ≥ 0, then for any uβ satisfying uβ = T uβ ,
uβ exhibits monotonicity properties (b) and (c).

Proof: We prove by induction and first prove property

(b)(i) before proceeding to property (b)(ii) and finally property

(c). The base case t = 0 is trivially true with u0 = 0.
Assuming properties (b) and (c) holds for t = 0, 1, . . . , k.
For iteration t = k + 1, to prove property (b)(i), we need to

show that for all i ∈M, j �= i and n ∈ N ,

T ukn+2ei
− T ukn+ei

− T ukn+ei
+ T ukn ≥ 0 (16)

All four terms can be expanded using (13). First, without

loss of generality, we assume i = 1. Next, we can separate

the terms involving holding cost, routing and service into

3 different groups and show that each group of terms are

individually non-negative. The terms involving holding cost

are non-negative since the holding costs are convex. For the

routing terms, denoting Q+ and Q− as the optimal policy for

states n+ 2e1 and n, respectively, and applying Q+ and Q−

once each to state n+ e1, it is sufficient to show that

2∑
l=1

2∑
j=1

λl

[
q+lju

k
n+2e1+ej

− q
+

lju
k
n+e1+ej

−q−
lju

k
n+e1+ej

+ q−lju
k
n+ej

]
≥ 0 (17)

Do note that by imposing policies Q+ and Q− on n, the

routing costs of the positive and negative terms cancel each

other off. Similar cancelations will occur throughout the rest of

the proof. For the proof to be complete, we need to show that

(17) is true for all possible routing policies. Due to the acyclic

and bipartite nature of the optimal routing policy, at each state,

there are 3 possibilities: no routing, route all to server 1 or

route all to server 2. Since we have 2 states, n+ 2e1 and n,
we have 3×3 = 9 possible policies to consider. However, our

work here is considerably simplified since the first two terms

are the smallest when the optimal policy at n + 2e1 is to

route all to to server 2 and the final two terms are the smallest

when the optimal policy at n is to route all to server 1. Non-

negativity follows since ukn+2e1+e2
− ukn+e1+e2

≥ ukn+2e1
+

ukn+e1
by property (b)(ii).

For the service terms, we break them up further according

to server and show that each is non-negative. Denote x+ and

x− as the optimal service policy for states n + 2e1 and n,
respectively. At server 1, we have(

μ̄1 − x+1
)
ukn+2e1

+ x+1 u
k
n+e1

−
(
μ̄1 − x+1

)
ukn+e1

− x+1 u
k
n

−
(
μ̄1 − x−1

)
ukn+e1

− x−1 u
k
n +

(
μ̄1 − x−1

)
ukn + x−1 u

k
n−e1

=
(
μ̄1 − x+1

) (
ukn+2e1

− ukn+e1
− ukn+e1

+ ukn
)

+ x−
(
ukn+e1

− ukn − ukn + ukn−e1

)

The sum of terms in the two rows are non-negative by property

(b)(i). The inequality holds even if n− e1 �∈ N since in that

case, x− = 0. At server 2, we have(
μ̄2 − x+2

)
ukn+2e1

+ x+2 u
k
n+2e1−e2

−
(
μ̄2 − x+2

)
ukn+e2

− x+2 u
k
n+e1−e2

−
(
μ̄2 − x−2

)
ukn+e1

− x−2 u
k
n+e1−e2

+
(
μ̄2 − x−2

)
ukn + x−2 u

k
n−e2

=
(
μ̄2 − x+2

) (
ukn+2e1

− ukn+e1
− ukn+e1

+ ukn
)

+ x+2
(
ukn+2e1−e2

− ukn+e1−e2
− ukn+e1

+ ukn
)

+ x−2
(
ukn+e1

− ukn+e1−e2
− ukn + ukn−e2

)
The first row is non-negative by property (b)(i), the second by

property (c) and the third by property (b)(ii). If n− e2 �∈ N ,

this implies n + 2e1 − e2 �∈ N and thus x+2 = x−2 = 0 and

the inequality still holds. The induction step is thus complete

for property (b)(i).

To prove property (b)(ii) holds, we have to show that for

all n ∈ N ,

T ukn+e1+e2
− T ukn+e1

− T ukn+e2
+ T ukn ≥ 0 (18)

We proceed similarly by expanding using (13) and breaking

up the terms into groups. The holding cost terms sum to zero.

Denote Q+, and Q− as the optimal policy for states n +
e1 + e2 and n, respectively. We have two options here: impose

policy Q+ on n+ e1, Q
− on n+ e2 or Q+ on n+ e2, Q

−

on n + e1. From the 9 possible combination of policies, if

the optimal policy at n+e1 + ej and n are the same, then by

property (b), the routing terms are non-negative. If the optimal

policy at n+e1 + ej is to route all to 2 or the optimal policy

at n is to route all to 1, then we choose to impose policy Q+

on n+ e1 and Q− on n+ e2 to obtain

2∑
l=1

2∑
j=1

λl

[
q+lju

k
n+e1+e2+ej

− q
+

lju
k
n+e1+ej

− q
−
lju

k
n+e2+ej

+ q−lju
k
n+ej

]

which is non-negative because if the optimal policy at n +
e1 + ej is to route all to 2, then ukn+e1+2e2

− ukn+e1+e2
≥

ukn+e2+ej
+ ukn+ej

for j = 1, 2 by property (b)(i) and (ii)

while if the optimal policy at n is to route all to 1, , then

ukn+e2+e1
− ukn+e1

≤ ukn+e1+e2+ej
− ukn+e1+ej

for j = 1, 2
by property (b)(i) and (ii). If the optimal policy at n+e1 + ej
is to route all to 1 or the optimal policy at n is to route all to

2, then we choose to impose policy Q+ on n + e2 and Q−

on n+ e1 and the argument is the same.

For the service terms, the proof at both servers is analogous

to the proof at server 1 for property (b)(i).

To prove property (c) holds, we need to show that for all

i ∈M, j �= i and n ∈ N ,

T ukn+2ei
− T ukn+ei

− T ukn+ei+ej
+ T ukn+ej

≥ 0

We prove it for i = 1 and j = 2 since the proof for i = 2
and j = 1 is the same. As before, we expand using (13) and

break the terms up into groups. The holding cost terms are



non-negative by convexity of the holding costs. The proof for

the routing terms are analogous to previous proofs.

For the service terms, we break them up further according

to server and show that each is non-negative. Denote x+ and

x− as the optimal service policy for states n+2e1 and n+ e2,
respectively. The proof for server 1 applies policy x+1 to n+
e1+e2 and policy x−1 to n+e1 and is analogous to the proof

at server 1 for property (b)(i). At server 2, we have two cases

to consider here: x+2 ≥ x−2 or x−2 ≥ x+2 . If x+2 ≥ x−2 , then(
μ̄2 − x+2

)
ukn+2e1

+ x+2 u
k
n+2e1−e2

−
(
μ̄2 − x+2

)
ukn+e1+e2

− x+2 u
k
n+e1

−
(
μ̄2 − x−2

)
ukn+e1

− x−2 u
k
n+e1−e2

+
(
μ̄2 − x−2

)
ukn+e2

+ x−2 u
k
n

=
(
μ̄2 − x+2

) (
ukn+2e1

− ukn+e1+e2
− ukn+e1

+ ukn+e2

)
+
(
x+2 − x−2

) (
ukn+e2

− ukn − ukn+e1
+ ukn+e1−e2

)
x+2
(
ukn+2e1−e2

− ukn+e1
− ukn+e1−e2

+ ukn
)

All three rows are non-negative by property (c). The proof for

the case of x−2 ≥ x+2 is analogous with policy x+2 imposed on

state n+ e1 and policy x−2 imposed on n+ e1 + e2.

V. BOUNDS AND APPROXIMATION

We know from [11] that if we only have 1 server, the optimal

average cost rate z∗ can be efficiently calculated. Hence to

derive bounds for our problem, a reasonable approach would

be to find ways to approximate our general M servers case

with 1 server problems. The key difference between the 1
server problem and the M servers problem is the existence of

routing. Bounds can thus be obtained if we can do away with

routing and it turns out that there are two ways to do it.

One way is done by letting dij = 0 for all i and j.
The problem is now equivalent to having a centralized router

where all demands arrive at, and the one router will decide

which server each demand should go to. This is still a non-

trivial problem to solve. We thus further simplify by treating

the whole M -server system as one queue with arrival rate

λ =
∑

i∈M λi. The next step is to determine the appropriate

holding cost rate, h and processing cost rate, c. To be a lower

bound, the cost rates have to satisfy ∀n ∈ N ,
∑

i hi (ni) ≥
h (
∑

i ni) and ∀xi ∈ Ai,
∑

i ci (xi) ≥ c (
∑

i xi). We construct

h and c in the same manner and the construction for h is

as follows: First define hmin (n) = mini {hi (n)}. Then let

ĥmin be the lower convex envelope of hmin. Finally we

obtain h (n) = Mĥmin (n/M). This is a lower bound due

to convexity and Jensen’s inequality:

M∑
i=1

hi (ni) ≥M
1

M

M∑
i=1

ĥmin (ni) ≥ h

(
M∑
i=1

ni

)
(19)

As an example, if the holding cost is the total delay, i.e.

∀i, hi (ni) = ni, equality holds throughout in (19) and h (n) =
n.

To obtain the upper bound, we set dij = ∞ for all

i �= j. Routers no longer route demands to other routers and

without routing, the problem decouples into M separate 1-
server problem. The sum of the optimal average cost rate of

TABLE I

ALGORITHM FOR PIECEWISE LINEAR APPROXIMATIONS TO THE RELATIVE

VALUE FUNCTION SUBJECT TO MONOTONICITY CONSTRAINT

Step 0 Initialize v0,0 and set j = 1
Step 1 Choose a starting state n ∈ N and set k = 1
Step 2 Calculate the new relative value function v̂n
Step 3 Calculate the vector ym ={

(1− bj)v
j,k−1
m + bj v̂n , if m = n

vj,k−1
m , otherwise

Step 4 Project the updated estimate to the space of monotone
relative value functions. vj,k = Π(y)

Step 5 If k = k̄ and j = j̄, terminate the algorithm.

Else if k = k̄, set j = j+1, vj,0 = vj−1,k̄ and go to
step 1.
Else set k = k+ 1, determine the next state n, and go
to step 2.

the M 1-server problem thus gives us a simple upper bound

on z∗. A better upper bound can be obtained by determining

the optimal stationary fraction of demand to route. Note that

since the results of [11] are numerical, such a routing fraction

can only be numerically computed.

The tightest upper bound can be obtained through the undis-

counted version of value iteration [15]. The value iteration here

is performed on a truncated state space where the truncation

is achieved by choosing a queue capacity n̄i for each server i
and then setting hi (ni) =∞, ∀ni > n̄i. The new holding cost

defines a new problem and with a finite number of state space,

value iteration converges to the optimal solution of this new

problem. Since the holding cost is replaced with one that is

uniformly larger, the final result of value iteration is an upper

bound on the optimal cost.

Another upper bound is obtained through an approximate

dynamic programming approach. Dynamic programming ap-

proaches such as value iteration and policy iteration is often

criticized for its scalability issue, also known as the curse of

dimensionality. Take value iteration as an example. Since we

set a queue capacity of 50 demands for the two servers, for

each iteration, we need to perform 50 × 50 = 2500 relative

value function updates per iteration. Now suppose instead that

M = 10, each iteration would now require 5010 ≈ 9.8× 1017

relative value function updates. Assuming you have a 1 GHz

CPU that can perform 109 updates per second, it would have

taken about 31 years for the CPU to perform just one iteration.

Approximate dynamic programming (ADP) [12] is pro-

posed as an efficient method to find near-optimal solutions.

ADP encompasses a wide array of heuristics and the algorithm

that we are using here is piecewise linear approximations to

the relative value function subject to monotonicity constraint

(proved in Theorem 3). The algorithm is given in Table I.

We first give a basic explanation of the algorithm before

going into the details. At the most basic level, the algorithm

is a random walk on the state space. Each random walk is

of length k̄ and at the end of each walk, the random walk is

restarted with a new starting state. In total, we have j̄ random

walks. At each step of the random walk j, we calculate a new

value to the relative value function of the state that we are



visiting. The relative value function is then updated according

to a stepsize bj which varies with each walk. After the update,

since we know from Theorem 3 that the relative value function

is monotonic in N , we project the updated relative value

function to the space of monotonic functions.

We will now explain the implementation details of the

algorithm. First note that similar to value iteration, we choose

a server capacity and truncate the state space at n̄i for each

server. At step 0, we initialize with an initial estimate of

the relative value functions. Unlike value iteration, not all

initial estimate will work. In order for the algorithm to work,

we find that the policy calculated from the initial relative

value function must induce a Markov chain with a stationary

distribution that is concentrated on the states close to 0.
Without such a policy, the random walk has a tendency to

drift to the higher states and combined with the monotonicity

projection (more on this later), the random walks will stay at

the higher states and thus induce a stationary distribution that

is concentrated on states far from 0.
At step 1, we choose a starting state for a new random

walk. The reason we need to restart the random walk instead of

having one long random walk is because the random walk may

get trapped in certain states due to the monotonicity projection

and thus never explore other states. Also, since we know states

close to 0 affect the cost much more than states that are far

away, the starting state should be chosen to be state 0 or states

that are close to it.

At the second step, similar to value iteration, for step k of

random walk j, we calculate the new relative value function

via the ACOE:

v̂n =min
x,Q

{
1

τn (x)

[
h (n) + c (x) +

∑
i∈M:ni>0

xiv
j,k−1
n−ei

+
∑
i∈M

∑
g∈M

λiqig

(
vj,k−1
n+eg

+ dig

)
− zest

]}
(20)

where zest is our current estimate of the expected average cost.

An estimate that we have found to work well is obtained by

solving for zest for the ACOE for state 0:

zest = h (0) + min
Q

∑
i∈M

∑
j∈M

λiqig

(
vj,k−1
eg

− vj,k−1
0 + dig

)
(21)

Once we have the new relative value function, we update

the relative value function of the visited state using weighted

average with a stepsize bj =
1

(γ+j) , where γ > 0. We remark

here that there are many other stepsizes which works well. To

get a good feel of viable stepsizes, see [12].

After updating, we project the relative value function to the

space of monotonic functions. The projection is required for

the algorithm to yield consistently good results. Our projection

operation is a minimum Euclidean norm projection and its

details and proof can be found at section VIII-A of the

appendix. We illustrate our scheme with an example where

M = 2 and the state space is truncated to only 3 × 3. The

example here show how the projection is actually implemented

and is different from the tree structure construction in the

appendix since we do not have to worry about dual variables.

Lastly, the next step of the random walk is chosen proba-

bilistically according to the optimal service and routing policy

of the current state. Such a policy is given by the argument

that achieves optimality in (20). Similarly, once the algorithm

terminates, the optimal policy is determined from the final

relative value function for each state by finding the argument

that achieves optimality in (20) . With the optimal policy, we

can compute the stationary distribution of the Markov chain

and hence the expected average cost.

VI. NUMERICAL EXAMPLE WITH M = 2

In this section, we specialize to the case of M = 2 and

perform simulations to verify our previous findings. The effort

cost function used in the simulation is ci (x) = 1
2x

2, x ∈
[0, 100] , ∀i ∈ M while the holding cost is assumed to

be hi (n) = n, ∀i ∈ M. Hence, we have that φi (y) =
1
2y

2,ψi (y) = y , h (n) = n, and c (x) = 1
4x

2. The arrival rate

to the first server is held fixed at λ1 = 1 while for the second

server, the arrival rate can take on the values λ2 = 1, 2, 5
and 10. The routing cost between the two servers are assumed

to be symmetric, i.e. d12 = d21 � d and has values d =
0.01, 2, 5 and 100. For value iteration, the state is restricted to

50×50 since we find no significant improvement in the optimal

average cost rate if the state space is expanded further. This

implies that we can treat the relative value function and policy

derived from value iteration as the optimal solutions. The state

space of the ADP algorithm is similarly truncated to 50× 50
so that the results can be compared against value iteration’s.

The ADP algorithm runs for 1000 random walks which restart

at state 0 and has length 200 each. The stepsize rule that we

use is bj = 1/(3 + 
j/20�).
The numerical results are summarized in Table II. z is the

lower bound, z̄val is obtained from value iteration, z̄ADP is

the value from the ADP algorithm, z̄r is the upper bound with

optimal stationary routing and z̄ is the upper bound with no

routing. For the case where λ1 = 1, λ2 = 5 and d = 2, the
graphs of the relative cost functions, the routing policy and the

service rate of servers 1 and 2 for different states are plotted

at Figure 2, Figure 3, Figure 4(a) and Figure 4(b) respectively.

There are a few things to note from the table. The table

shows that ADP performs slightly worse than value iteration.

It is however better than the upper bound derived with optimal

stationary routing, except when the routing cost is large, since

there is minimal routing in this case and z̄r is already close to

optimal. It is worth pointing out that for the cases when λ2 = 2
or 5, ADP seems to perform better when the routing cost

increases from 2 to 5 to 100. We can explain this phenomenon

by first noticing that z̄ and z̄val are very close for these

cases, implying that the optimal policy does not involve much

routing. When the routing cost is low, ADP is more likely to

produce a policy with more routing involved than when the

cost is high, and are thus further from the optimal solution.

The figures verify that the relative cost function is monoton-

ically nondecreasing, the optimal routing policy is a threshold



TABLE II

BOUNDS AND ESTIMATES FOR THE OPTIMAL AVERAGE COST RATE FOR

FIXED λ1 = 1

λ2 d z z̄val z̄ADP z̄r z̄
1 0.01 2.8658 3.3328 3.3754 3.6782 3.6782
1 2 2.8658 3.6772 3.7353 3.6782 3.6782
1 5 2.8658 3.6781 3.7282 3.6782 3.6782
1 100 2.8658 3.6781 3.7175 3.6782 3.6782
2 0.01 4.9514 5.5635 5.5680 6.1786 6.3988
2 2 4.9514 6.3587 6.4801 6.3987 6.3988
2 5 4.9514 6.3987 6.4053 6.3987 6.3988
2 100 4.9514 6.3987 6.4061 6.3987 6.3988
5 0.01 14.012 14.894 15.278 16.408 20.114
5 2 14.012 18.154 19.138 19.316 20.114
5 5 14.012 19.985 20.477 20.114 20.114
5 100 14.012 20.114 20.481 20.114 20.114
10 0.01 38.630 39.757 40.091 42.825 62.135
10 2 38.630 46.790 48.227 50.738 62.135
10 5 38.630 56.312 57.581 58.759 62.135
10 100 38.630 62.135 62.731 62.135 62.135

Fig. 2. Relative cost function v for λ1 = 1, λ2 = 5, d = 2

policy and also that the optimal service rate is monotonically

nondecreasing if the queue size of other servers are held fixed.

VII. CONCLUSION

This paper discusses optimal joint speed scaling and load

balancing for a network of servers. Assuming an M/M/1
model for each queue, we show the existence of an optimal

stationary policy. We further characterize that the optimal rout-

ing policy is acyclic and bipartite. The relative cost function

is demonstrated to be monotonically non-increasing with each

queue size. For M = 2, we show that the optimal service

policy is non-decreasing in queue size and the optimal routing

policy is a threshold policy.

There are a number of ways this preliminary work can be

extended. First, we can establish the structural properties for

general M . Second, although the ADP algorithm provided is

faster than value iteration, it still suffers from the curse of

dimensionality as it has to store the relative cost function of

all states. A significant improvement would be to represent the

whole state space with just a reasonable amount of parameters

and modify the ADP algorithm to update the parameters at

Fig. 3. Routing policy for for λ1 = 1, λ2 = 5, d = 2. In the red region,
server 1 routes to server 2, in the green region, no routing occurs and in the
blue region, server 2 routes to server 1

(a) Service rate policy of server 1

(b) Service rate policy of server 2

Fig. 4. Service rate policy for λ1 = 1, λ2 = 5, d = 2



each step. Finally, it will be of great interest to see to what

extent this joint optimal solution can be decentralized. That

will also bring the theoretical results closer to practice.
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VIII. APPENDIX

A. Monotonicity Projection

Denote n̄i as the queue capacity for server i. The state space

is thus N = [0, n̄1]× . . .× [0, n̄M ]. The convex optimization

problem that we want to solve is

min
v

1

2

∑
n∈N

(vn − yn)
2

(22)

s.t. vn+ei
− vn ≥ 0, ∀n,n+ ei ∈ N , i ∈M

Denote ωin+ei
as the dual variable associated with the inequal-

ity vn+ei
−vn ≥ 0, the Karush-Kuhn-Tucker (KKT) conditions

[19] are

vn − yn =
∑
i:ni>0

ωin −
∑

i:ni<n̄i

ωin+ei
(23)

ωin ≥ 0, ∀0 < ni ≤ n̄i,n ∈ N , i ∈M (24)

ωin+ei
(vn+ei

− vn) = 0, ∀n,n+ ei ∈ N , i ∈M (25)

vn+ei
− vn ≥ 0, ∀n,n+ ei ∈ N , i ∈M (26)

Recall that after each update of the ADP algorithm, only

one value changes. Suppose state m is the updated state, then

after the update, there are three possibilities

a. y is already monotonic in the state space. set v = y
and we are done.

b. there exists i ∈M such that ym > ym+ei
.

c. there exists i ∈M such that ym < ym−ei
.

We will look at case b and show that our projection scheme,

as mentioned in Section V, is an optimal solution of (22) by

checking the KKT conditions. All the steps that follow can be

done analogously for case c.

To start with, we construct a tree structure with state m
as the root node and associate it with the value of ym. We

also construct a set L of nodes which initially has m as its

only element. (†)Next, we check all adjacent states of m for

monotonicity violation. All such adjacent states are added to

the tree as child nodes of m. If the node is m+ ei, associate
the node with value ym+ei

and the link connecting m+ ei
and m with ωin+ei

. Once we are done, we check all the child

nodes of nodes in L , find the node m′ with the minimum

value. If the value of m′ is not strictly lower than the value

of any node in L, we can proceed to update the value of the

links. If not, we add m′ to L. Following that, we average

the values of all nodes in L and update their values with the

average. Finally, we repeat the process from (†) onwards with

m′ instead of m until we have no more states to add to L.
Do note that any state can only be added to the tree once.

Before updating the link values, we remove all nodes that

are not in L from the tree. The final average value of all

nodes in L is denoted v̄. The link value update proceeds in

a bottom-up manner from the leaf nodes. Suppose the node

being updated is l, its parent node is l− ei and its g child

nodes are l+ ej1 , . . . , l+ ejg . We update by setting ωil =

v̄−yl+
∑g

k=1 ω
jk
l+ek

and thus the dual variable ωin represents

the aggregate increment due to averaging of state n and all its

descendants.

Setting all other dual variables that are not updated to zero,

vn = yn if n �∈ L and vn = v̄ if n ∈ L, we can easily check

that our ω and v satisfy the KKT conditions and are hence

optimal.
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