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On the Performance of Sparse Recovery
Via ��-Minimization �� � ��
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Abstract—It is known that a high-dimensional sparse vector ��

in �� can be recovered from low-dimensional measurements � �
��� where ������ � �� is the measurement matrix. In this
paper, with � being a random Gaussian matrix, we investigate the
recovering ability of ��-minimization �� � � � �� as � varies,
where ��-minimization returns a vector with the least �� quasi-
norm among all the vectors � satisfying�� � �. Besides analyzing
the performance of strong recovery where ��-minimization is re-
quired to recover all the sparse vectors up to certain sparsity, we
also for the first time analyze the performance of “weak” recovery
of ��-minimization �� � � � �� where the aim is to recover all
the sparse vectors on one support with a fixed sign pattern. When
���� �

�
� � �, we provide sharp thresholds of the sparsity ratio

(i.e., percentage of nonzero entries of a vector) that differentiates
the success and failure via ��-minimization. For strong recovery,
the threshold strictly decreases from ��� to ���	
 as � increases
from � to �. Surprisingly, for weak recovery, the threshold is �		
for all � in ��
 ��, while the threshold is � for ��-minimization. We
also explicitly demonstrate that ��-minimization �� � �� can re-
turn a denser solution than ��-minimization. For any� � ��
 ��, we
provide bounds of the sparsity ratio for strong recovery and weak
recovery, respectively, below which ��-minimization succeeds. Our
bound of strong recovery improves on the existing bounds when �
is large. In particular, regarding the recovery threshold, this paper
argues that ��-minimization has a higher threshold with smaller
� for strong recovery; the threshold is the same for all � for sec-
tional recovery; and ��-minimization can outperform ��-minimiza-
tion for weak recovery. These are in contrast to traditional wisdom
that ��-minimization, though computationally more expensive, al-
ways has better sparse recovery ability than ��-minimization since
it is closer to ��-minimization. Finally, we provide an intuitive ex-
planation to our findings. Numerical examples are also used to un-
ambiguously confirm and illustrate the theoretical predictions.

Index Terms—Compressed sensing, -minimization, phase
transition, recovery threshold, sparse recovery.

I. INTRODUCTION

W E consider recovering a vector in from an -di-
mensional measurement , where

is the measurement matrix. Obviously, given and
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is an underdetermined linear system and admits an infinite
number of solutions. However, if is sparse, i.e., it only has a
small number of nonzero entries compared with its dimension,
one can actually recover from under certain conditions. This
topic is known as compressed sensing and draws much attention
recently, for example, [7], [8], [18], and [20].

Given , its support is defined as
. The cardinality of set is the sparsity

of , which also equals to the -norm .
We say is -sparse if for some . Given the
measurement and the measurement matrix , together with
the assumption that is sparse, one natural estimate of is the
vector with the least -norm that can produce the measurement

. Mathematically, to recover , we solve the following -min-
imization problem:

s.t. (1)

However, (1) is combinatorial and computationally intractable
except for small problems, and one commonly used approach is
to solve a closely related -minimization problem

s.t. (2)

where . Equation (2) is a convex problem and
can be recast as a linear program, thus can be solved efficiently.
Conditions under which (2) can successfully recover have
been extensively studied in the literature of compressed sensing.
For example, the restricted isometry property (RIP) conditions
[6]–[8] can guarantee that (2) accurately recovers the sparse
vector.

Among the explosion of research on compressed sensing
[1]–[3], [5], [14], [28], [34], [35] recently, there has been
great research interest in recovering by -minimization for

[9], [10], [12], [13], [15], [24], [31] as follows:

s.t. (3)

Recall that for . Though is a
quasi-norm when as it violates the triangular inequality,

follows the triangular inequality. We say can be recov-
ered by -minimization if and only if it is the unique solution
to (3). Equation (3) is nonconvex, and finding the global min-
imum is in general computationally hard. Chartrand [9], Char-
trand [10], and Chartrand and Yin [12] employ heuristic algo-
rithms to compute a local minimum of (3) and show numeri-
cally that these heuristics can indeed recover sparse vectors, and
the support size of these vectors can be larger than that of the
vectors recoverable from -minimization. Then, the question
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is what is the relationship between the sparsity of a vector and
the successful recovery with -minimization ? How
sparse should a vector be so that -minimization can recover it?
What is the threshold of sparsity that differentiates the success
and failure of recovering by -minimization? Gribonval and
Nielsen [26] show that the sparsity up to which -minimiza-
tion can successfully recover all the sparse vectors at least does
not decrease as decreases. Saab et al. [31] provide a sufficient
condition for successful recovery via -minimization based on
restricted isometry constants and provide a lower bound of the
support size up to which -minimization can recover all such
sparse vectors. A later paper [13] improves this result by con-
sidering a modified restricted -isometry constant. Foucart and
Lai [24] provide a lower bound of recovery threshold by con-
sidering a generalized version of RIP condition, and Blanchard
et al. [4] numerically calculate this bound.

Here are the main contributions of this paper. For strong re-
covery where -minimization needs to recover all the vectors
up to a certain sparsity, we provide a sharp threshold of the
ratio of the support size to the dimension which differentiates the
success and the failure of -minimization when .
This is an exact threshold compared with a lower bound of suc-
cessful recovery in previous results. When increases from
to , decreases from to . This coincides with the
intuition that the performance of -minimization is improved
when decreases. When is fixed, we provide a pos-
itive bound for all and all of
strong recovery such that with a Gaussian measurement matrix

-minimization can recover all the -sparse
vectors with overwhelming probability. improves on
the existing bounds in large region.

We also analyze the performance of -minimization for weak
recovery where we need to recover all the sparse vectors on one
support with one sign pattern. To the best of our knowledge,
there is no existing result in this regard for . We char-
acterize the successful weak recovery through a necessary and
sufficient condition regarding the null space of the measurement
matrix. When , we provide a sharp threshold of the
ratio of the support size to the dimension which differentiates the
success and the failure of -minimization. The weak threshold
indicates that if we would like to recover every vector over one
support with size less than and with one sign pattern,
(though the support and sign patterns are not known a priori),
and we generate a random Gaussian measurement matrix inde-
pendently of the vectors, then with overwhelmingly high prob-
ability, -minimization will recover all such vectors regardless
of the amplitudes of the entries of a vector. For -minimiza-
tion, given a vector, if we randomly generate a Gaussian matrix
and apply -minimization, then its recovering ability observed
in simulation exactly captures the weak recovery threshold; see
[17] and [18]. Interestingly, when and is large enough,
we prove that the weak threshold is for all ,
and is lower than the weak threshold of -minimization, which
is . In this region, -minimization outperforms -minimiza-
tion for all if we only need to recover sparse vectors
on one support with one sign pattern. We also explicitly show
that -minimization can return a vector denser

than the original sparse vector while -minimization success-
fully recovers the sparse vector. Finally, for every ,
we provide a positive bound such that -minimiza-
tion successfully recovers all the -sparse vectors on
one support with one sign pattern.

The rest of the paper is organized as follows. We introduce the
null space condition of successful -minimization in Section II.
We especially define the successful weak recovery for
and provide a necessary and sufficient condition. We use an ex-
ample to illustrate that the solution of -minimization can be
sparser than that of -minimization . Section III
provides thresholds of the sparsity ratio of the successful re-
covery via -minimization for all both in strong re-
covery and in weak recovery when the measurement matrix is
random Gaussian matrix and . For , Section IV
provides bounds of sparsity ratio below which -minimization
is successful in the strong sense and in the weak sense, respec-
tively. We compare the performance of -minimization
and the performance of -minimization in Section V and pro-
vide numerical results in Section VI. Section VII concludes the
paper. We only state the results in the main text; refer to the
Appendix for the proofs.

II. SUCCESSFUL RECOVERY OF -MINIMIZATION

We first introduce the null space characterization of the
measurement matrix to capture the successful recovery via

-minimization . Besides the strong recovery that
has been studied in [4], [14], [24]–[26], [31], and [31], we
especially provide a necessary and sufficient condition for the
success of weak recovery in the sense that -minimization
only needs to recover all the sparse vectors on one support with
one sign pattern. For example, in practice, given an unknown
vector to recover, we randomly generate a measurement matrix
and solve the -minimization problem, the simulation result of
recovery performance with respect to the sparsity of the vector
indeed represents the performance of weak recovery.

Given a measurement matrix , let denote
a matrix whose columns form a basis of the null space of ,
then we have . Let denote the
th row of . Let denote the submatrix of with

as the set of row indices. Let be
the complimentary set of . In this paper, we will study the
sparse recovery property of -minimization by analyzing the
null space of .

We first state the null space condition for the success of strong
recovery via -minimization [23], [26] in the sense that -min-
imization should recover all the sparse vectors up to a certain
sparsity.

Theorem 1 [23], [26]: is the unique solution to -min-
imization problem for every vector up to

-sparse if and only if

(4)

for every nonzero , and every support with
.
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One important property is that if the condition (4) is satisfied
for some , then it is also satisfied for all
[15], [27]. Therefore, if -minimization could recover all the

-sparse vectors , then -minimization could
also recover all the -sparse vectors. Intuitively, the strong re-
covery performance of -minimization should be at least as
good as that of -minimization when .

A. Weak Recovery for -Minimization

Though -minimization should be at least as good
as -minimization for strong recovery, the argument may not
be true for weak recovery. For weak recovery, we would like
to recover all the vectors on some support with some sign
pattern , and for every in . if a
vector is positive on index , and if a vector is negative
on index . Given any nonzero vector , we define

,
and . Note that when is given,

, and depend on , and they can be empty. In this paper,
for weak recovery, we consider recovering nonnegative vectors
on some support for notational simplicity. In this case,
and are simplified to be and

. However, all the results also hold
for any specific support and any sign pattern.

We first state the null space condition for successful weak
recovery via -minimization as follows; see [21], [26], [32],
[36], and [38] for this result.

Theorem 2: For every nonnegative on some support
is the unique solution to -minimization problem (2) if

and only if

(5)

holds for all nonzero .

Note that for every nonnegative vector on a fixed support
, the condition to successfully recover it via -minimization

is the same, as stated in Theorem 2. Therefore, if one vector
can be successfully recovered, all the other nonnegative sparse
vectors on can also be recovered. Conversely, if some vector
cannot be successfully recovered, then every other nonnegative
vector on cannot be recovered either. However, the condition
of successful recovery via -minimization varies
for different nonnegative sparse vectors even if they have the
same support. In other words, the recovery condition depends
on the amplitudes of the entries of the vector. Here we consider
the worst case scenario for weak recovery in the sense that the
recovery via -minimization is defined to be “successful” if
it can recover all the nonnegative vectors on a fixed support.
The null space condition for weak recovery in this definition
via -minimization is still the same as that in Theorem 2. We
characterize the -minimization case in Theorem
3 and the -minimization case in Theorem 4.

Theorem 3: Given any -minimization (3) can
successfully recover all the nonnegative vectors on

some support if and only if the following condition holds for
every nonzero . If is not empty, then

(6)

and if is empty, then

Similarly, the null space condition for the weak recovery of
-minimization is as follows; we skip its proof as it is similar

to that of Theorem 3.

Theorem 4: -minimization problem (1) can successfully
recover all the nonnegative vectors on support , if
and only if

(7)

for all nonzero .

For the strong recovery, the null space conditions of -min-
imization and -minimization share the same
form (4), and if (4) holds for some , it also holds for all

. However, for recovery of sparse vectors on one sup-
port with one sign pattern, from Theorem 2–4, we know that
although the conditions of -minimization and

-minimization share a similar form in (6) and (7), the condi-
tion of -minimization has a very different form in (5). More-
over, if (6) holds for some , it does not necessarily
hold for all . Therefore, the way that the performance
of weak recovery changes over may be quite different from
the way that the performance of strong recovery changes over .
Moreover, the performance of weak recovery of may be sig-
nificantly different from that of -minimization for .
We will further discuss this issue.

B. The Solution of -Minimization Can Be Sparser
Than That of -Minimization

-minimization may not perform as well as
-minimization in some cases, for example, in the weak re-

covery which we will discuss in Sections III and IV. Here we
employ a numerical example to illustrate that in certain cases

-minimization can recover the sparse vector while -mini-
mization cannot, and the solution of -minimiza-
tion is denser than the original sparse vector.

Example 1: -minimization returns a denser solution than
-minimization.

Let the measurement matrix be a matrix
with as a basis of its null space, and for all

for all , and
for all . Then, every vector

in the null space can be represented as , for some .
Note that , and

for all with
and for all , and for
all if . Then, according to Theorem 1,

-minimization can recover all the -sparse vectors
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in , but fails to recover some -sparse vector. Simi-
larly, , and

for all with and
for all , and for all

if . Therefore, by Theorem 1, -mini-
mization can recover all the -sparse vectors in ,
but fails to recover some -sparse vector. Therefore, in terms
of strong recovery, -minimization has a better performance
than -minimization as it can recover all the vectors up to a
higher sparsity.

Before discussing the weak recovery performance, we should
first point out that when the null space is only 1-D, the -min-
imization problem for all can be easily solved. Let

denote the sparse vector we would like to recover, and let
denote a vector that can produce the same measurements as ,
and mathematically, . Then, every vector such that

holds should satisfy for some .
Then, the -minimization problem is equivalent to

(8)

Given and is a function of . Define set
, let denote the number of different elements

in , and let denote the ordered elements in
, and if . Let denote the interval ,

let denote the interval , and let
denote the interval . Note that for each interval

is concave on for every ,
and is linear on . Therefore, the minimum value
of on should be
achieved at one of the endpoints of , either or . Since
when goes to or goes to , then
the minimum value of on should
be achieved at , and the minimum value on should be
achieved at . Thus, let for every ,
and let , then is the solution to

-minimization problem. We call ’s as “singular vectors.”
Therefore, to solve (8), we only need to find all the singular
vectors, and the one with the least quasi-norm (or -norm)
is the solution to -minimization (or -minimization). If

, then we say can be successfully recovered.
Now consider the “weak” recovery as to recover all the non-

negative vectors on support . According to
Theorems 2 and 3, one can check that -minimization can in-
deed recover all the nonnegative vectors on support , however,

-minimization fails to recover some vectors in this case.
For example, consider a -sparse vector with for
all for all ,
and for all . There are three
singular vectors in this case: , and

. Since , and
, then is the solution of -minimiza-

tion, and is successfully recovered. Now consider -min-
imization, since , and

, then is the solution of -min-
imization, and it is -sparse. Thus, the solution of -mini-
mization is a -sparse vector although the original vector
is only -sparse. Therefore, -minimization fails to recover

some nonnegative -sparse vector while is the solu-
tion to -minimization, and the solution of -minimization
is denser than the original vector .

III. RECOVERY THRESHOLDS WHEN

In this paper, we focus on the case that the measurement ma-
trix has independent identically distributed (i.i.d.) standard
Gaussian entries. Then, for a matrix with
i.i.d. entries, the column space of is equivalent in
distribution to the null space of ; refer to [8] and [37] for de-
tails. Then, in later analysis, we will use to represent a basis
of the null space of .

We first focus on the case that and provide
recovery thresholds of -minimization for every .
We consider two types of thresholds: one in the strong sense
as we require -minimization to recover all -sparse vectors
(Section III-A), and one in the weak sense as we only require

-minimization to recover all the vectors on a certain support
with a certain sign pattern (Section III-B). Since in our setup
the measurement matrix has i.i.d. entries, the weak
recovery performance does not depend on the specific choice of
the support and the sign pattern. We call it a threshold as for any
sparsity below that threshold, -minimization can recover all
the sparse vectors either in the strong sense or the weak sense
when is close enough to and is large enough, and for any
sparsity above that threshold, -minimization fails to recover
some sparse vector no matter how large and are. These
thresholds can be viewed as the limiting behavior of -mini-
mization, since for any constant , the recovery thresh-
olds of -minimization would be no greater than the ones pro-
vided here.

A. Strong Recovery

In this section, for given , we will provide a threshold
of strong recovery such that for any -minimiza-
tion (3) can recover all -sparse vectors with overwhelming
probability when is close enough to . Our technique here
stems from [22], which only focuses on the strong recovery of

-minimization.
We have already discussed in Section II that the performance

of -minimization should be no worse than -minimization for
strong recovery when . Although there are results
about bound of the sparsity below which -minimization can
recover all the sparse vectors, no existing result has explicitly
calculated the recovery threshold of -minimization for
which differentiates the success and failure of -minimization.
To this end, we will first define in the following lemma,
and then prove that is indeed the threshold of strong re-
covery in later part.

Lemma 1: Let be i.i.d. random vari-
ables and let be the sorted ordering (in non-in-
creasing order) of for some .

For given , define as . Let denote , the

expected value of . Then there exists a constant such
that .
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Fig. 1. Threshold � of successful recovery with � -minimization.

is a function of , and in fact is strictly decreasing as stated
in Proposition 1.

Proposition 1: The function is strictly decreasing in
on .

Note that goes to as tends to zero from (13) and
(14). We plot against numerically in Fig. 1. We also obtain
that , which coincides with the result in [22].

Now we proceed to prove that is the threshold of successful
recovery with -minimization for in . First, we state the
concentration property of in the following lemma.

Lemma 2: For any , let
and be as in Lemma 1. For any and any , there
exists a constant such that when is large enough, with
probability at least .

Roughly speaking, Lemma 2 states that is concentrated
around its expectation for every . For our purpose in this
paper, the following two corollaries of Lemma 2 are important
for the later proof.

Corollary 1: For any , there exists a and a con-
stant such that when is large enough, with probability
at least .

Corollary 2: For any , there exists a constant
such that when is large enough, with probability at least

, it holds that .

From the above two corollaries and applying the union bound,
one can easily show that with overwhelming probability the sum
of the largest terms of ’s is less than half of the total sum

if . The following lemma extends the result to all the
vectors simultaneously where matrix has i.i.d.
Gaussian entries and is any nonzero vector in .

Lemma 3: For any , given any , there
exist constants such that when

and is large enough, with probability at least
, an matrix with i.i.d. entries has

the following property: for every nonzero and every
subset with

.

We remark here that in Lemma 3 and all the following results
in this paper, when we say “with probability at least
for some constant ,” by “constant” we mean does not
depend on the measurement matrix , but could depend on
other parameters in various occasions.

Lemma 3 indicates that when and is large
enough, with overwhelming probability

holds for every nonzero and
every set with , then from Theorem 1, in this
case every -sparse vector is the unique solution to the

-minimization problem (3) with overwhelming probability.
We can now establish one main result regarding the threshold
of successful recovery via -minimization.

Theorem 5: For any , given any , there
exist constants such that when and

is large enough, with probability at least , an
matrix with i.i.d. entries has the following property:
for every with its support satisfying
is the unique solution to the -minimization problem (3).

We remark here that is a sharp bound for successful re-
covery. For any , from Lemmas 1 and 2, for any
in , with overwhelming probability the sum of the largest

terms of ’s is more than the half of the total sum
, i.e., the null space condition stated in Theorem 1 for suc-

cessful recovery via -minimization fails with overwhelming
probability. Therefore, -minimization fails to recover some

-sparse vector with overwhelming probability if .
Proposition 1 implies that the threshold strictly decreases as
increases. The performance of -minimization is better than
that of -minimization for in strong re-
covery as -minimization can recover vectors up to a higher
sparsity.

B. Weak Recovery

We have demonstrated in Section III-A that the threshold for
strong recovery strictly decreases as increases from to .
Here we provide a weak recovery threshold for all
when . As we will see, for weak recovery, the threshold
of -minimization is the same for all , and is lower
than the threshold of -minimization.

Recall that for successful weak recovery, -minimization
should recover all the vectors on some fixed support with a fixed
sign pattern, and the equivalent null space characterization is
stated in Theorems 3 and 4.

Note that to simplify the notation, for the remaining part of
the paper, we will say a vector is -sparse or the size of the
support is instead of using the notation . However, the
support size should always be an integer.

We define for all , and . To characterize
the recovery threshold of -minimization in this case, we first
state the following lemma.

Lemma 4: Let be i.i.d. random vari-
ables and be a set of indices with size for some
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. For every , for every , when is large
enough, with probability at least for some constant

, the following two properties hold simultaneously:
• ;
• ;

where .

The proof of Lemma 4 is based on concentration of measure,
and the arguments are similar to those in the proof of Lemma 2.
Lemma 4 implies that holds
with high probability when . Applying the net
arguments similar to those in the proof of Lemma 3, we can also
show that with overwhelming probability the statement holds
for all vectors simultaneously where matrix has
i.i.d. Gaussian entries and is any nonzero vector in .
Then, we can establish the main result regarding the threshold of
successful recovery with -minimization from vectors on one
support with the same sign pattern.

Theorem 6: For any , given any ,
there exist constants such that when
and is large enough, with probability at least , an

matrix with i.i.d. entries has the following
property: for every nonnegative vector on some support
satisfying is the unique solution to the -mini-
mization problem.

We remark here that is a sharp bound for successful
recovery in this setup. For any , from Lemma 4,
with overwhelming probability that

, then Theorems 3 and 4 indicate that the -min-
imization fails to recover some nonnegative

-sparse vector on in this case. Note that for a random
Gaussian measurement matrix, from symmetry one can check
that this result does not depend on the specific choice of the
support and the sign pattern. In fact, in Theorem 6 is the
weak recovery threshold for any fixed support and any fixed
sign pattern.

Surprisingly, the successful recovery threshold when we
only consider recovering vectors on one support with one sign
pattern is for all in and is strictly less than the threshold
for , which is [17]. Thus, in this case, -minimiza-
tion has better recovery performance than -minimization

in terms of the sparsity requirement for the sparse vector.
Although the strong recovery performance can be improved if
we apply -minimization with a smaller -minimization can
indeed outperform -minimization for all in weak re-
covery if is close to and is large enough.

It might be counterintuitive at first sight to see that the weak
threshold of -minimization is less than that of -minimiza-
tion, so let us take a moment to consider what the result means.
We choose recovering all nonnegative vectors on some support

for the weak recovery; the argument follows for
all the other supports and all the other sign patterns. The re-
sults about weak recovery threshold indicate that for any

, when is sufficiently large and is close enough to
, for a random Gaussian measurement matrix -minimiza-

tion would recover all the nonnegative vectors on support with
overwhelming probability, while -minimization would fail to

recover some nonnegative vector on with overwhelming prob-
ability. The failure of -minimization indicates that there exists
a nonnegative vector on support and a vector on support

such that , and . Note that could
have negative entries, or may not be a subset of . There-
fore, if is the sparse vector we would like to recover from

-minimization would fail since . However,
should hold since -minimization can success-

fully return as its solution. Of course, when is the sparse
vector we would like to recover, -minimization would return

and fail to recover . However, since -minimization would
recover all the nonnegative vectors on , then either
holds or has negative entries. Therefore, when we consider
recovering nonnegative vectors on for the weak recovery, is
not taken into account, and -minimization works better than

-minimization. Thus, although the performance of -mini-
mization is not as good as that of -minimization
in the strong recovery which requires to recover all the vec-
tors up to certain sparsity, -minimization can recover all the

-sparse vectors on some support with some sign
pattern, while for -minimization , the size of the
largest support on which it can recover all the vectors with one
sign pattern is no greater than . In a word, when we aim
to recover all the vectors up to certain sparsity, -minimization
is better for smaller , however, when we aim to recover all the
vectors on one support with one sign pattern, -minimization
may have a better performance.

IV. RECOVERY BOUNDS FOR FIXED

We considered the limiting case that in Section III and
provided the limiting thresholds of sparsity ratio for successful
recovery via -minimization both in the strong sense and
in the weak sense. Here we focus on the case that is fixed

. For any and , we will provide a bound
for strong recovery and a bound for weak recovery
such that -minimization can recover all the -sparse
vectors with overwhelming probability, and recover all the

-sparse vectors on one support with one sign pattern
with overwhelming probability. Note that the thresholds we
provided in Section III is tight in the sense that for any
in the strong recovery or any in the weak recovery, with
overwhelming probability -minimization would fail to re-
cover some -sparse vector. However, and
we provide in this section are lower bounds for the thresholds
of strong recovery and weak recovery, respectively, and might
not be tight in general.

A. Strong Recovery

From Theorem 1, we know that in order to successfully re-
cover all the -sparse vectors via -minimization,

should hold for every nonzero vector ,
and every set with . The key idea
to obtain a lower bound is as follows. We first calcu-
late a lower bound of for all in , where is the unit
sphere in . Then, for any , we calculate an upper bound
of for all with and all in . Then, we
define to be the largest such that the aforementioned



WANG et al.: ON THE PERFORMANCE OF SPARSE RECOVERY VIA -MINIMIZATION 7261

upper bound is less than half of the lower bound. According to
Theorem 1, -minimization is now guaranteed to recover all
the -sparse vectors. The problem regarding character-
izing the lower bound and the upper bound here is that has
i.i.d. entries, and therefore, for any and any
and for any constant , there always exist a positive prob-
ability that is less than , and similarly a positive proba-
bility that is greater than . Thus, strictly speaking, no finite
value would be a lower bound of , nor an upper bound of

. To address this issue, we will look for a “lower bound”
of for all in in Lemma 5 in the sense that the vio-
lation probability decays to zero exponentially, and likewise an
“upper bound” of for all with and all in

in Lemma 6 such that the probability it is exceeded decays ex-
ponentially to zero. We want the “lower bound (upper bound)”
to be as large (small) as possible as long as its violation proba-
bility has exponential decay to zero, and we do not focus on the
decay rate here. We still define to be the largest such
that the “upper bound” is less than half of the “lower bound.”
We then show in Theorem 7 that -minimization can recover
all the -sparse vectors with overwhelming probability.

Lemma 5: For any and , there exists a constant
and some constant such that with proba-

bility at least , for every .

Lemma 6: Given any and corresponding ,
there exists a constant and some constant
such that with probability at least , for every
and for every set with

.

Together with Lemmas 5 and 6, we are ready to present our
result on bounds for strong recovery of -minimization with
given .

Theorem 7: For any , any , for
matrix with i.i.d. entries, there exists a
constant such that with probability at least

is the unique solution to the -minimization problem (3) for
every vector up to -sparse.

Theorems 7 implies that for every and every
, there exists a positive constant such that

-minimization can recover all the -sparse vectors with
overwhelming probability. Since is a lower bound of
the threshold of the strong recovery, we would like the lower
bound to be as high as possible. Clearly, the value of
depends on the “lower bound” of and the “upper bound”
of with for a given . In order to improve

, we need to improve the “lower bound” of and
the “upper bound” of . Therefore, besides establishing
the existence of “lower (upper) bound,” we make some efforts
to increase (decrease) the “lower (upper) bound” while making
sure that the probability of violating these bounds has expo-
nential decay to zero. To be more specific, we first calculate

in Lemma 5 as a “lower bound” of . The key
idea is as follows. Given any constant , we characterize
the probability that holds for some by
techniques like -net arguments, the Chernoff bound and the

Fig. 2. � ��� �� against � for different �.

union bound. Then, is chosen to be the largest value
such that the probability still maintains exponential decay to

zero. With the obtained , we next calculate
in Lemma 6. The idea is similar to that in calculating .
For any given , we calculate an upper bound of the prob-
ability that there exists some and some support with

such that . Then,
is chosen to be the largest such that the probability still has ex-
ponential decay to zero. Refer to parts J and K of the Appendix
for the detailed calculation of and .

We numerically compute by calculating first
in Lemma 9 from (43), and then in

Lemma 5 from (53), and finally in Lemma 6 from
(58). Fig. 2 shows the curve of against for different

, and Fig. 3 shows the curve of against for different
. Note that for any is slightly smaller

than the limiting threshold of strong recovery we obtained
in Section III-A. For example, when , the threshold

we obtained in Section III-A is , and the bound
we obtained here is approximately when

goes to . This is because in Section III-A we employed a
finer technique to characterize the sum of the largest terms
of i.i.d. random variables directly, while in Section IV-A
introducing the union bound causes some slackness.

Compared with the bound obtained in [4] through restricted
isometry condition, our bound is tighter when is rel-
atively large. For example, when , the bound in [4, Fig.
3.2(a)] is in the order of for all and upper
bounded by , while is greater than for all

and increases to as . When , the
bound in [4, Fig. 3.2(c)] is in the order of for all
and upper bounded by , while here is greater than

for all and increases to as . There-
fore, although [4] provides a better bound than ours when is
small, our bound improves over that in [4] when is rela-
tively large.

Chartrand and Staneva [13] provide a lower bound of strong
recovery threshold for every and very . For example, they
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Fig. 3. � ��� �� against � for different �.

show that when is large enough, -minimization can recover
all the -sparse vectors for given . Their result is better than
ours when is small. However, our bound is higher than that in
[13] when is large. For example, when , Chartrand and
Staneva [13] indicate that a lower bound of recovery threshold
in terms of the ratio of sparsity to the dimension is

for -minimization. Our result shows that is
already , and is as high as , which is
approximately ten times the bound in [13].

Donoho [17] applies geometric face counting technique to
the strong bound of successful recovery of -minimization [17,
Fig. 1.1]. Since if the necessary and sufficient condition (4) is
satisfied for , then it is also satisfied for all , therefore
the bound in [19] can serve as the bound of successful recovery
for all . Our bound in Section IV is higher
than that in [17] when is relatively large.

B. Weak Recovery

Theorem 3 provides a sufficient condition for successful re-
covery of every nonnegative -sparse vector on one support

, which requires to hold for all nonzero
, where given . We will use

arguments similar to those in Section IV-A to obtain a lower
bound of the weak recovery threshold. Given and

, we will establish a “lower bound” of for all
in Lemma 7 in the sense that the violation probability of

this “lower bound” decays exponentially to zero, and likewise
establish an “upper bound” of in Lemma 8. If there
exists such that the corresponding “lower bound”
of is greater than the “upper bound” of ,
then serves as a lower bound of recovery threshold of

-minimization for vectors on a fixed support with a fixed sign
pattern.

The techniques used to establish the “lower bound” of
for all is the same as that in Lemma 5. We

state the result in Lemma 7, refer to part M of the Appendix for
its proof.

Lemma 7: Given and set with ,
with probability at least for some , for all

, and with probability
at least for some , for all

, where and are
defined in (43) and (53), respectively.

Given with , Lemma 7 provides a “lower bound”
of which holds with overwhelming probability for all

. Next we will provide an “upper bound” of for
all in Lemma 8. One should be cautious that the set
varies for different .

Lemma 8: Given and set with
, with probability at least for some

, for every , for
some .

To improve the lower bound of weak recovery threshold,
given , we want in Lemma 8 to be as small
as possible while at the same time the probability that

for some with
and some in still has exponential decay to zero. Efforts
are made in part N of the Appendix to improve ,
which can be computed from (70).

With the help of Lemmas 7 and 8, we are ready to present
the result regarding the lower bound of recovery threshold via

-minimization in the weak sense for given .

Theorem 8: For any , any , for matrix
with i.i.d. entries, there exist con-

stants and such that with probability at
least is the unique solution to the -minimiza-
tion problem (3) for every nonnegative -sparse vector

on fixed support .

Theorem 8 establishes the existence of a positive bound
of weak recovery threshold. To obtain , for

every , we first calculate in Lemma 7 from
(53) to obtain a “lower bound” of for all in and
calculate in Lemma 8 from (70) to obtain an
“upper bound” of for all in . We then find the
largest such that the “lower bound” of is
larger than the “upper bound” of , or mathematically,
(71) holds. We numerically calculate this bound and illustrate
the results in Figs. 4 and 5. Fig. 4 shows the curve of
against for different , and Fig. 5 shows the curve of
against for different . When goes to
for all , which coincides with the limiting threshold
discussed in Section III-B. As indicated in [20, Fig. 1.2], the
weak recovery threshold of -minimization is greater than

for all that is greater than , since the weak recovery
threshold of -minimization when is all

, therefore for all , the weak recovery threshold of
-minimization is greater than that of -minimization for all

.
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Fig. 4. � ��� �� against � for different �.

Fig. 5. � ��� �� against � for different �.

V. -MINIMIZATION CAN PERFORM BETTER THAN

-MINIMIZATION FOR SPARSE RECOVERY

For strong recovery, if -minimization can recover all the
-sparse vectors, then -minimization is also guaranteed to re-

cover all the -sparse vectors for all . However, for
weak recovery, the performance of -minimization is better
than that of -minimization for all in at least the large

region , and the same result holds for all choices of
supports and sign patterns. Then, one may naturally ask why

-minimization outperforms -minimization in re-
covering vectors on every specific support with every specific
sign pattern, but is not as good as -minimization in recovering
vectors on all the supports with all the sign patterns? We next
provide an intuitive explanation.

Let be very close to , let be large enough, and
let be a random Gaussian matrix. Then, with overwhelming
probability -minimization can recover all the vectors up to

-sparse and -minimization with some can re-
cover all the vectors up to -sparse, and we know

from our discussion on strong bound. Note that since the lim-
iting threshold of strong recovery via -minimization increases
to as decreases to , then we have . How-
ever, if we only consider the ability to recover all the vectors
on one support with one sign pattern, with overwhelming prob-
ability -minimization can recover vectors up to -sparse,
while -minimization can recover vectors up to -sparse.
From previous discussion about weak recovery threshold, we
know that when is very close to , . And
this result holds for any specific choice of the support and the
sign pattern. Therefore, we have . We il-
lustrate the difference of and -minimization in Figs. 6 and
7. Let be the set of all matrices with entries drawn
from standard Gaussian distribution, and the probability mea-
sure . We pick in Fig. 6. Since ,
for any fixed support with and any fixed sign pat-
tern , with high probability -minimization can recover all
the -sparse vectors on with sign pattern . Let denote
the event that -minimization can recover all the -sparse vec-
tors on support with sign patter . There are different
supports, and for each support, there are different sign pat-
terns. Then, is very close to for every and as
shown in Fig. 6(a). Since we also have , then with high
probability strong recovery of -minimization fails, in other
words, -minimization would fail to recover at least one vector
with at most nonzero entries. Let denote the event that

-minimization can recover all the -sparse vectors, then we
have

Then, although is the same for all and and is
very close to , is close to , as indicated in Fig. 6(a).
For -minimization, since , then with high probability,

-minimization can recover all the -sparse vectors. In
Fig. 6(b), denotes the event that -minimization can recover
all the -sparse vectors, then

where denotes the event that -minimization recovers all
the vectors on support with sign pattern . In this case,

is close to as indicated in Fig. 6(b). In Fig. 7, we pick
. Then, given any support and any sign pattern

-minimization can recover all the vectors on with sign
pattern with high probability, while -minimization fails to
recover at least one vector on with sign pattern with high
probability. Therefore, is close to , while is
close to for any given and . Therefore, if the sparse vec-
tors we would like to recover are on one same support and share
the same sign pattern, -minimization can be a better choice
than -minimization for all regardless of the ampli-
tudes of the entries of a vector.

To better understand how the recovery performance changes
from strong recovery to weak recovery, let us consider another
type of recovery: sectional recovery, which measures the ability
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Fig. 6. Comparison of � and � -minimization for � � �� � � �. (a) � -mini-
mization. (b) � -minimization.

Fig. 7. Comparison of � and � -minimization for � � �� � � �. (a) � -min-
imization. (b) � -minimization.

of recovering all the vectors on one support . Therefore, the re-
quirement for successful sectional recovery is stricter than that
of weak recovery, but is looser than that of strong recovery.
The necessary and sufficient condition of successful sectional
recovery can be stated as follows.

Theorem 9: -minimization problem can re-
cover all the -sparse vectors on some support if and only
if

(9)

for all nonzero .

The difference of the null space condition for strong recovery
and sectional recovery is that (9) should hold for every support

for strong recovery, but only needs to hold for one specific
support for sectional recovery. Though for strong recovery, if
the null space condition holds for , it also holds for all

, and this argument is not true for sectional recovery.
Consider a simple example that the basis of null space of

contains only one vector in and . If
, then one can check that

, but . If ,
then , and . Therefore,
the null space condition of successful sectional recovery holds
for does not necessarily imply that it holds for another .

Using the techniques as in Section III-B, one can show that
when and is large enough, the recovery threshold of
sectional recovery is for all . We skip the proof
here as it follows the lines in Section III-B. To summarize, re-
garding the recovery threshold when -minimization

has a higher threshold for smaller for strong re-
covery; the threshold is for all for sectional re-
covery; and the threshold is for all and is for

for weak recovery. We can see how recovery performance

changes when the requirement for successful recovery changes
from strong to weak.

VI. NUMERICAL EXPERIMENTS

We present the results of numerical experiments to explore
the performance of -minimization. First, we consider the spe-
cial case that the null space of the measurement matrix is only
1-D. In this case, we can in fact compute the recovery threshold
easily.

Experiment 1. Recovery thresholds when measurement
matrices have 1-D null space.

The null space of the measurement matrix is only 1-D, and
let vector denote the basis of the null space of . Then, is in
the null space of for every , and every vector in the null
space of can be represented as for some . Thus, the
strong recovery threshold and the weak recovery threshold of

-minimization and -minimization can be directly computed
by Theorems 1–3, since we only need to check whether the null
space condition holds for both and . From Theorem 1,
the strong recovery threshold of -minimization
is the integer such that the sum of the largest terms of

is less than and the sum of the
largest terms of is greater than or
equal to . For weak recovery, we consider recovering all
the nonnegative -sparse vectors on support .
From Theorem 2, the weak recovery threshold of -minimiza-
tion is the largest integer such that both

and hold. From Theorem
3, the weak recovery threshold of -minimization is the largest
integer such that both and

hold.
We generate one hundred random Gaussian matrices

, and for each random matrix , we compute its
corresponding strong (and weak) recovery threshold of (and

)-minimization. For each between and , we count the
percentage of random matrices with which (and )-min-
imization can recover all the -sparse vectors in the strong
sense (and in the weak sense). Fig. 8 shows the strong recovery
thresholds for different and Fig. 9 shows the weak recovery
thresholds. We can see that the strong recovery threshold
strictly decreases as increases. However, the weak recovery
threshold of -minimization is close to , which is greater
than the weak recovery threshold of -minimization for every

.
Except for special cases like Experiment 1, (3) is indeed non-

convex and it is hard to compute its global minimum. In fol-
lowing experiments, we employ the iteratively reweighted least
squares algorithm [11], [12] to compute the local minimum of
(3), refer to [12] about the details of the algorithm.

Experiment 2. -minimization using IRLS [12]
We fix and , and increase from to
. For each , we repeat the following procedure 100 times.

We first generate an -dimensional vector with nonzero en-
tries. The location of the nonzero entries are chosen randomly,
and each nonzero value follows from standard Gaussian distri-
bution. We then generate an matrix with i.i.d.
entries. We let and run the iteratively reweighted least
squares algorithm to search for a local minimum of (3) with
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Fig. 8. Strong recovery threshold with 499� 500 Gaussian matrix.

Fig. 9. Weak recovery threshold with 499� 500 Gaussian matrix.

chosen to be , and , respectively. Let be the output
of the algorithm, if , we say the recovery of

is the successful. Fig. 10 records the percentage of times that
the recovery is successful for different sparsity . Note that the
iteratively reweighted least squares algorithm is designed to ob-
tain a local minimum of the -minimization problem (3), and
is not guaranteed to obtain the global minimum. However, as
shown in Fig. 10, it indeed recovers the sparse vectors up to
certain sparsity. For and -minimization computed
by the heuristic, the sparsity ratios of successful recovery are

, and , respectively.
Experiment 3. Strong recovery versus weak recovery
We also compare the performance of -minimization and
-minimization both for strong recovery in Fig. 11 and for

weak recovery in Fig. 12 when is large. We employ the
trial version of MOSEK [30] to solve -minimization and still
employ the iteratively reweighted least squares algorithm to
compute a local minimum of -minimization. We fix

Fig. 10. Successful recovery of ��-sparse vectors via � -minimization.

and and independently generate 100 random matrices
with i.i.d. entries and evaluate the performance

of strong recovery and weak recovery. For each matrix, we
increase from to . In weak recovery, we consider recov-
ering nonnegative vectors on a fixed support .
For a given , we generate 1000 vectors and claim the weak
recovery of -sparse vectors to be successful if and only if
all the vectors are successfully recovered. For each vector

, and is generated from with prob-
ability , and with probability . As discussed
in Section II, the condition for successful weak recovery via

-minimization is the same for every nonnegative vector on
, therefore for a fixed matrix , if -minimization recovers

all the vectors we generated, it should also recover all the
nonnegative vectors on . -minimization , on the
other hand, can recover some nonnegative vectors on while at
the same time fails to recover some other nonnegative vectors
on . Therefore, since we could not check every nonnegative

on -minimization can still fail to recover
some other nonnegative vector on even if we declare the
weak recovery to be “successful.” In strong recovery, for each

, we generate 1000 vectors and claim the strong recovery
to be successful if and only if all these vectors are correctly
recovered. For each such random -sparse vector , we first
randomly pick a support with , and then for each

is generated from with probability ,
from with probability , and from
with probability . The average performance of 100 random
matrices for strong recovery is plotted in Fig. 11, and the
average performance of weak recovery is plotted in Fig. 12.
Note that we only apply iteratively reweighted least squares
algorithm to approximate the performance of -minimization,
therefore the solution returned by the algorithm may not always
be the solution of -minimization. Simulation results indicate
that for strong recovery, the recovery threshold increases as

decreases, while for the weak recovery, interestingly, the
recovery threshold of -minimization is higher than any other

-minimization for .
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Fig. 11. Successful strong recovery of ��-sparse vectors.

Fig. 12. Successful weak recovery of ��-sparse vectors.

VII. CONCLUSION

This paper analyzes the ability of -minimization
to recover high-dimensional sparse vectors

from low-dimensional linear measurements where the mea-
surement matrix has i.i.d. standard Gaussian entries.
When , we provide a tight threshold of
the sparsity ratio separating the success and failure of strong
recovery which requires to recover all the sparse vectors.
strictly decreases from to as increases from to .
For weak recovery which only needs to recover sparse vectors
on some support with some sign pattern, we first provide an
equivalent null space characterization of successful weak re-
covery, then prove that the threshold of sparsity ratio separating
the success and failure of -minimization is for all ,
compared with the threshold for -minimization. For any

, we provide a bound of sparsity ratio below
which strong recovery via -minimization succeeds with

overwhelming probability, and our bound improves
on the existing bounds in the large region. We also provide
a bound of sparsity ratio below which weak recovery
succeeds with overwhelming probability.

Throughout the paper, we assume that the measurements
are exact, and it would be interesting to consider the case

that the measurements are noisy, i.e., where is the
vector of noise. Moreover, we assume that is exactly sparse,
i.e., most of its entries are exactly zero. The extension of results
to approximately sparse vectors whose coefficients (if ordered)
decay rapidly is also worth pursuit.

APPENDIX

A. Proof of Theorem 3

Proof: Necessary part. Suppose the condition fails for
some , then there are two cases: 1) is empty, and 2) is
not empty for that particular .

First, consider the case is empty, then we have
since we assume the condition in

Theorem 3 fails for . Define a vector as follows. Let
for every in , let for every in . Let be
any positive value for every in . Then, according to the
definition of , we have

Since , (3) cannot successfully recover ,
which is a contradiction.

Second, consider the case that is not empty. Then,
since we assume the condition in The-

orem 3 fails for . Let . Define a
vector as follows. Let for every in , let
for every in , and let be any positive value for every
in . For every in , since , we can pick
large enough such that . Then

Thus, is not a solution to (3), which is
also a contradiction.
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Sufficient part. Assume the null space condition holds, then
for any nonnegative on support , and any nonzero

, we have

(10)

where the inequality follows from the triangular property that
holds for all and all .

If is not empty, then since
for every in , and and have the same sign.

Since we also have from assumption,
therefore by (10), we have . If is empty,
then from assumption, therefore by (10),
we also have . Thus,
for all nonzero , then is the solution to (3).

B. Proof of Lemma 1

Proof: Let and let . Let and
denote the probability density function (pdf) and cumula-

tive distribution function (cdf) of , respectively. Then

if
if

(11)

if
if

(12)

Define . is continuous and decreasing
in , and . Then,
there exists such that , i.e.,

(13)

Define

(14)

We claim has the desired property.
Let

where is the indicator function. Then

Let be the smallest integer such that and
, then . We also have that

. Note that
, thus follows the Binomial

distribution . Then, its expectation , and
the variance .

We claim that

(15)

To see this, consider three different cases,
and . If , then

, and (15) holds trivially. If , then
. Note that for every

, then (15) follows. If ,

then . Since for all ,

then , which leads to

,
and (15) follows. Combining three cases, we conclude that (15)
always holds. Then

(16)

where the second inequality follows from the Cauchy–Schwarz
inequality. We have

Besides

where the third equality follows since are i.i.d.
random variables. Then, from (16), we have

Since is upper bounded by
, and , we have

C. Proof of Proposition 1

Proof: From the definition of in (13), we have

(17)
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where and are defined in (11) and (12). From the
implicit function theorem

From (14), we have . From the chain rule, we
know , thus

(18)

Note that

(19)

where the equality follows from (17). Then, the numerator of
(18) is less than from (19), thus .

D. Proof of Lemma 2

Proof: Let . If two vectors and
only differ in coordinate , then for any

. Thus, for any and

Since for all

(20)

From the isoperimetric inequality for the Gaussian measure
[29], for any set with measure at least a half, the set

has measure at least ,
where . Let be the median value
of . Define set ,
then

We claim that implies that
. If , then , thus the claim

holds as is nonnegative. If , then there exists
such that . Let for all and let

. From Hölder’s inequality

(21)

From (20) and (21), . Since
and , then . Thus,

, which verifies our claim. Then

(22)

Similarly

(23)

Combining (22) and (23)

(24)

The difference of and can be bounded as follows:

Note that is a finite constant for all
. As and , thus for any

when is large enough.
Let , from (24) with

probability at least .
Thus, with
probability at least for some constant .

E. Proof of Corollary 1

Proof: From Lemma 1 we know that for every , there
exists large enough such that

(25)

for all where . Then,
. Since is a sum-

mation of terms, and for all
, then we have

(26)

Then, for any , for every , when is large enough
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where the first inequality holds since each with
has expectation at least as large as , and the second
inequality follows from (25) and (26). Then, for any , we
can pick small enough such that

for a suitable when is
large enough. The result follows by combining the above with
Lemma 2.

F. Proof of Lemma 3

Proof: For any given , there exists a -net in
of cardinality less than [29]. A -net is a

set of points in such that for all in and
for any with , there exists some such
that .

Since has i.i.d entries, then has i.i.d.
entries for every . From Corollaries 1 and 2, we

know that given any , for some and for every
, there exists and such that with probability at

least , we have

(27)

and

(28)

both hold for one vector in . Then, applying union bound,
we know that (27) and (28) hold for all vectors in with prob-
ability at least

(29)

Let , then as long as is large enough, say greater
than , then (29) is greater than
for some constant .

For any such that , there exists in such that
. Let denote , then

for some in . Repeating this process, we
have

(30)

where and . Thus, for any ,
we have .

For any index set with

where the first inequality holds from the triangular inequality
and the fact that . The second inequality holds with
overwhelming probability by (27) and (29)

where the first inequality holds from the triangular inequality
and the third inequality holds with overwhelming probability by
(28) and (29). Thus,
holds with probability at least . For the given
from Corollary 1, we can pick and small enough such that

.

G. Proof of Lemma 4

Proof: We first consider the case that . Now
, where . We have

. Since
independently for all in , then ,
and from the Chernoff bound, we have

and

It is easy to see that with probability one
holds. Therefore, Lemma 4

follows for .
Now we consider the case that . Let

. Let . For any
and

(31)
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where the first inequality follows from the triangular in-
equality. To see why the second inequality holds, we consider
three different cases. If both and hold, then

where the inequality holds since . If both and
are nonnegative, then clearly

. If only one of and is nega-
tive, we assume without loss of generality, then

, where
the inequality holds since and . Combining the
three cases, we know that

always holds, thus the second inequality in (31)
holds.

From the isoperimetric inequality for the Gaussian measure
[29], for any set with measure at least a half, the set

has measure at least
, where . Let be the

median value of . Define set
, then

We claim that implies that
. If , then , thus the claim

holds as is nonnegative. If , then there exists
such that . For in , let and let

. From Hölder’s inequality

(32)

From (31) and (32), .
Since and , then .
Thus, , which verifies our
claim. Then

(33)

Similarly

(34)

Combining (33) and (34)

(35)

The difference of and can be bounded as
follows:

Note that is a finite constant for all
. Since , for any

when is large enough.
Let , from (35) with probability at least

. Thus,
holds with proba-

bility at least for some constant . Since
, where , then

holds with probability at least .
Similarly, we can prove that with probability at least

for some

holds. Then, by a simple union bound, the above two statements
hold at the same time with probability at least

, thus Lemma 4 follows.

H. Proof of Theorem 6

Proof: From Lemma 4, applying similar arguments in the
proof of Lemma 3, we get that when for some

and is large enough, with probability for some
:

•
•

hold for all the vectors in a -net at the same time. Let be
the unit sphere in . Pick any , from (30); we have

, where for all and .
Given , let . For any in

where the first inequality holds as . Then

(36)

(37)
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where the last inequality holds with overwhelming probability.
We also have

(38)

where the second inequality holds with overwhelming
probability.

Combining (37) and (38), we have for every

holds at the same time with overwhelming probability. Then,
with overwhelming probability, for every nonzero ,
we have

. For any , we can pick and small
enough such that the right-hand side is positive. The result
follows by applying Theorems 3 and 4.

I. Upper Bound of for all

Lemma 9: Given any and , there exists a constant
and some constant such that

with probability at least , for every
.

To help improve the lower bound of the recovery threshold,
we would like to be as small as possible, while at
the same time, the probability that exceeds
for some in still has exponential decay to zero. Therefore,
in the following proof, besides establishing the existence of

, we make some efforts to reduce the value of
, and can be computed following the

lines and finally through (43).
Proof: Define , then for any

nonzero vector . Let be a -net of
with cardinality at most [29] and to be

chosen later, and define

Then, from the definition of -net, for every , there ex-
ists such that . Note that for every

, where the first inequality
follows from the triangular inequality and the second inequality
follows from the definition of and . Then,

, which leads to

(39)

To characterize , we first characterize . For any
where , we calculate the probability that

for some in . Note that

are i.i.d. random variables where is the
th row of . Then

s.t.

(40)

where , the first inequality follows from the union
bound, and the second inequality follows from the Chernoff
bound.

To obtain a good upper bound of , we would like to find the
smallest such that the upper bound of in (40) still
exponentially decays to zero; note that we do not care about
the decay rate here. To solve the minimization problem in the
right-hand side of (40), note that is the cumulant
generating function and is known to be convex [16] with respect
to , then is also convex, and its minimum is
achieved where its first derivative with respect to is . Define

, then we have

(41)

Equation (41) determines given . The derivative of with
respect to is

Note that
, where the

inequality follows from Cauchy–Schwarz inequality and
the fact that the functions and are not
linearly dependent. Thus, . Since when ,
we have from (41), then when we
have . Thus, when , it holds that

. Given , we can
numerically compute by (41) and plug it into (40) to
obtain an upper bound of . Then, the question is
how small can be while the exponent on the right-hand
side of (40) is still negative. Note that given , the exponent
on the right-hand side of (40) is negative when is large
enough. To see this, if we let ,
then goes to
as goes to infinity. Thus, when is sufficiently large,

,
in other words, the exponent on the right-hand side of (40)
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is negative. Pick such that the exponent on the
right-hand side of (40) is negative for all , and
positive for all for a very small .
Therefore

(42)

Then, there exists some constant such that

Then, the probability that holds for some
is

where the first inequality follows from (39). Thus, for all
can be viewed as an upper bound

of for all in the sense that the probability that
for some decays expo-

nentially to zero for every in . Since we would like such
an upper bound to be as small as possible, we let

(43)

then with probability at least for some
, for every holds.

Thus, the statement follows.

J. Calculation of in Lemma 5

Given and , define

where the second equality holds by compactness. Thus, for any
vector . Define

Pick a -net of with cardinality at most
[29] and to be chosen later, we define

Then, for every , there exists such that
. We have

(44)

where the first inequality follows from triangular inequality and
the second inequality follows from the definition of . Since
(44) holds for every in , we have

(45)

We aim to find a value as large as possible such
that still holds with overwhelming proba-
bility. We will calculate a “lower bound” of and an “upper
bound” of , and then obtain a “lower bound” of by
(45).

We first consider the lower bound of . For any constant
, we will calculate the probability that is less than . We want

to obtain a value large enough but this probability still decays
exponentially to . And we treat such a value as the lower bound
of . Given any constant

s.t.

(46)

where , and the first inequality follows from the
union bound. The second inequality follows from the Chernoff
bound and the fact that is the same for all

since has i.i.d. entries. Note that

(47)

(48)

where (47) holds from changing variables using , and

the inequality follows from the fact that for all
. When , then , then from (47), we have

Since exists and is positive, then combining
(48) and (49), we have when

(49)

Since (46) holds for all , we let for
any such that and let , then from (46), we
have

Note that since , when is sufficiently small, we have

(50)

Therefore, when for some small enough , there
exists (depending on and ) such that

(51)
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Thus, for every and for all with some de-
pending on , the probability that decays expo-
nentially to zero, though the decaying rate depends on and .

Lemma 9 indicates that there exists and
such that

(52)

Then, after characterizing and separately, we are ready
to characterize . We have

where the first inequality follows from (45), and the last in-
equality follows from (51) and (52). Then, for every ,
for all , there exists constant (depending on

and ) such that
. Given , let

(53)

Note that since when
is sufficiently small, therefore , and Lemma 5 follows.

K. Calculation of in Lemma 6

For any given set with
, define

Since has i.i.d. Gaussian entries, then the distribution of
is the same for any with . Given a -net of with
cardinality at most and to be chosen later,
define

Then, for every , there exists such
that . Then, for every , we have

. That
means , which implies

(54)

Given (denoted by here for simplicity), in
order to obtain in Lemma 6, we essentially need to
find the largest such that the probability that
holds for some support with can still decay expo-
nentially to . From (54), we first consider the probability that

holds for a given set

given

s.t.

(55)

where , the first inequality follows from the union
bound and the second inequality follows from the Chernoff
bound. Note that since has i.i.d. entries, (55) holds
for any as long as .

Now consider the probability that for
some and with , as shown in (56) at the bottom
of the page, where the first inequality follows from the union
bound, the second inequality follows from (54), and the third
inequality follows from (55) and the fact that ,
where .

To obtain a good upper bound of s.t.
, we first would like to solve the

s.t. s.t.

for given and

given

given

given

(56)



7274 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER 2011

minimization problem on the right-hand side of (56). Note
that is the cumulant generating function
and is known to be convex [16] with respect to . Then,

is also convex, then its
minimum is achieved where its first derivative with respect to
is . Define .

We have

which is equivalent to

(57)

Equation (57) determines given , and . The
derivative of with respect to is shown in the equa-
tion at the bottom of the page. Note that

,
where the inequality follows from Cauchy–Schwarz inequality
and the fact that functions and are not lin-
early dependent. Therefore, from (58), we know . Since
when , one can obtain from (57)
that , therefore when ,
the corresponding is always positive. Thus, when

defined in (57) is the
solution to .
Given , and , we can numerically compute by
(57) and plug it into (56) to obtain an upper bound of

s.t. .
Now that given and , for any , (56) provides an upper

bound of the probability that there exists some and some
with such that holds. The

next question is how large could be such that this upper bound
still decays exponentially to zero. The largest is indeed the

we would like to calculate.
Note that given , and , for every , as goes to ,

goes to , and

goes to , thus, there exists such that the
exponent on the right-hand side of (56) is negative for all

, and is positive for all for
some very small . In other words, for each

s.t. for
some positive depending on . We then optimize
over , and let

then with probability at least for some , for
every and for every set with

holds simultaneously. Then,
Lemma 6 follows.

L. Proof of Theorem 7

Proof: Let be the unit sphere in . Then

Strong recovery succeeds to recover vectors up to

-sparse

nonzero with

with

with

and

s.t.

with s.t.

(58)

where the first equality follows from Theorem 1, and the second
equality holds since for any nonzero

. From Lemma 5, we know there exists such that
s.t. , and from

Lemma 6, we know there exists such that
s.t. , then there ex-

ists which depends on and such that the
right-hand side of (58) is greater than . Therefore,

-minimization can recover all the -sparse vectors
with probability at least .

M. Proof of Lemma 7

Proof: Let . Define
. Let be a -net of with

cardinality at most and be the value where
is achieved in (43). We use to denote

for simplicity here in the proof. Then, from (43),
we have

(59)
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where according to (42), has the property that

(60)

Combining (59) and (60), we have

(61)

Define

Then, by arguments similar to those that lead to (39), we have

We first show that with overwhelming probability,
for all in , or equivalently,

. Note that

s.t.

(62)

where . Combining (61) and (62), we conclude
that there exists such that .
Therefore, with probability at least , for all

holds.
Similarly, define . Let be

a -net of with cardinality at most and be
the value where is achieved, note that from (53) we
have

for some . From (50), we also have that

(63)

We use and to denote and
for simplicity. We define

Using the same arguments as those for (45), we have

We next show that with overwhelming probability,
for all in , or equivalently,

. Note that the probability that is

(64)

where the last inequality follows from
. To calculate , note that

s.t.

(65)

where , the first inequality follows from the union
bound, the second inequality follows from the Chernoff bound,
and the last equality follows from (49). Combining (63) and
(65), we have

(66)

for some positive . Thus, from (64) and (66), we have

for some . Then, with probability at least ,
for all .

N. Calculation of in Lemma 8

Proof: Define . Let be a
-net of with cardinality at most and to

be chosen later, and define . Then,
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from (30), for any holds, where
and . From (36), we have

(67)

where the second inequality follows from the definition of .
Since (67) holds for every , then ,
which leads to . For any given , define a
random variable for each in , and is equal to if

and equal to otherwise. Then, .
Given , for any , we will characterize the probability that

is greater than . We will find the smallest value
of such that this probability still exponentially decays to zero,
and take the corresponding as an upper bound of

. Note that

s.t.

(68)

where if and otherwise.
To solve the minimization problem in the right-hand side

of (68), note that is the cumulant gener-
ating function and is convex [16] with respect to , then

is also convex, and its minimum is
achieved where its first derivative with respect to is . Define

, then we have

(69)

Equation (69) determines given . The derivative of with
respect to is

where the inequality follows from Cauchy–Schwarz in-
equality. Since when from
(69), then when , we have . Thus,

when . Given
, we can numerically compute by (69) and plug it into (68)

to obtain an upper bound of .
Then, the question is how small can be while the expo-

nent on the right-hand side of (68) is still negative. Given ,
the exponent on the right-hand side of (68) is negative when
is large enough. To see this, note that if

, then goes to
as goes to infinity. Thus, when is sufficiently large,

.
Therefore, the exponent on the right-hand side of (68) is nega-
tive when is large enough. Thus, we can pick such
that the exponent on the right-hand side of (68) is negative for
all , and positive for all
for some small enough . Therefore

Then, there exists some constant such that

Thus, for all can be viewed
as an upper bound of for all in the sense that the
probability that for some

decays exponentially to zero. Since we would like such
an upper bound to be as small as possible, we let

(70)

then with overwhelming probability, ,
or equivalently, for every

. Thus, Lemma 8 follows.

O. Proof of Theorem 8

Proof: We first consider the case that there exists some
(denoted by for simplicity here in this proof) such

that , where is the lower bound of strong
threshold in Theorem 7, and the following inequality holds:

(71)

We will show that such indeed has the property that Theorem
8 states, i.e., it is a lower bound of weak recovery threshold.

Now consider the probability that -minimization can re-
cover all the -sparse on one fixed support with one
fixed sign pattern. From Theorem 3, we know that
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for all nonzero is a sufficient condition for
the success of weak recovery, thus

Weak recovery succeeds up to -sparse

nonzero

and

(72)

where the first equality holds since for any nonzero
, and the second inequality follows from (71). From

Lemma 7, we know there exists such that
,

and from Lemma 8, we know there exists such that
,

then the third inequality of (72) holds from the union bound.
Thus, there exists such that with probability at least

-minimization problem can recover all -sparse
vectors on fixed support with fixed sign pattern, then Theorem
8 holds.

Now consider the case that there is no sat-
isfying (71), where is the lower bound of strong
threshold in Theorem 7, then we can simply define

. Since is a lower bound of strong threshold
and then a lower bound of weak threshold, thus Theorem 8
follows.
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