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Abstract—This paper studies the performance difference of
joint routing and congestion control when either single-path
routes or multipath routes are used. Our performance metric
is the total utility achieved by jointly optimizing transmission
rates using congestion control and paths using source routing. In
general, this performance difference is strictly positive and hard
to determine—in fact an NP-hard problem. To better estimate
this performance gap, we develop analytical bounds to this “cost
of not splitting” in routing. We prove that the number of paths
needed for optimal multipath routing differs from that of optimal
single-path routing by no more than the number of links in the
network. We provide a general bound on the performance loss,
which is independent of the number of source–destination pairs
when the latter is larger than the number of links in a network.
We also propose a vertex projection method and combine it with
a greedy branch-and-bound algorithm to provide progressively
tighter bounds on the performance loss. Numerical examples are
used to show the effectiveness of our approximation technique and
estimation algorithms.

Index Terms—Duality gap, multipath routing, performance gap,
single-path routing, sparse representation, utility optimization.

I. INTRODUCTION

R OUTING is one of the key network functions in com-
munication networks such as the Internet. It selects

paths for traffic to flow from all the sources to their respective
destinations. Even though there are proposals to allow flexible
multipath routing in the Internet [17], the current Internet Pro-
tocol (IP) within an autonomous system (AS), e.g., the Open
Shortest Path First (OSPF) protocol, primarily uses single-path
routing where one user (source–destination pair) uses only one
path from the source to the destination, with the exception that
traffic may be split evenly among equal-cost paths.

Recently, there has been an interest to consider cross-layer
resource allocation, where routing paths and congestion-con-
trolled transmission rates by Transmission Control Protocol
(TCP) are jointly optimized [10], [24], [25], [28]. More specifi-
cally, assuming every user has a utility function that depends on
its total transmission rate, one seeks to maximize the total util-
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ities of all users subject to the link capacity constraints.1 This
problem is analytically tractable if users can use all available
paths because allowing source-based multipath routing makes
the problem convex and admits an elegant optimality charac-
terization. When each user optimizes its transmission rate over
only one out of all available paths, i.e., using source-based
single-path routing, this combinatorial problem is however
nonconvex and known to be NP-hard [28].

This paper focuses on a key question: As compared to
multipath routing, how is the performance affected in terms of
the aggregate utility by restricting to single-path routing? Or
what is the “cost of not splitting”? It can guide the decision
on whether to support multipath routing with flexible splitting,
which is more expensive to support, since single-path routing
has a smaller overhead. Allowing users to use all possible paths
does not necessarily increase the network utility significantly
as we show that, for any network topology, the number of
paths needed for optimal multipath routing differs from that
of optimal single-path routing by no more than the number
of links in the network. We also provide analytical bounds as
well as algorithms to estimate the performance gap between
multipath and single-path routing.

Our problem belongs to the general multicommodity flow cat-
egory [20]. Though our formulation is closely related to that in
[28], there are other formulations in the multicommodity flow
category. In particular, there has been recent study on “unsplit-
table flows” [3], [7], [16], [18], [19], [26]. We remark that even
though formulations may differ, the intrinsic difficulty is the
same when they are considered as a class of combinatorial opti-
mization problems. Therefore, we expect our work will also be
useful to other related multicommodity problems.

The paper is organized as follows. After introducing the
model and notations in Section II, we give graph-theoretic
characterizations of the existence of the positive performance
gap between single-path and multipath routing in Section III.
We then derive a general upper bound on the performance
loss based on the analysis of the solution set of the multipath
problem in Section IV. The analysis motivates a vertex pro-
jection method to find a near-optimal single-path solution,
which is discussed in Section V-A. In Section V-B, we further
refine our estimation by combining vertex projection with a
greedy branch-and-bound technique. Numerical examples are
provided in Section VI to demonstrate the effectiveness of our
estimation. We conclude the paper in Section VII.

II. MODEL AND NOTATIONS

A network consists of a set of unidirectional links with
finite capacities and supports a set of

1Other formulations are possible, e.g., minimizing the total link cost while
satisfying the traffic demand between the sources and destinations [31].
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Fig. 1. Network of seven links supporting two users. User one: A to C (dotted
line). User two: E to B (dashed line).

source–destination pairs or users, indexed by . There are
acyclic paths for user , and it is represented by an matrix

, where if path of user uses link , and
otherwise. The overall routing matrix is given by

For example, as shown in Fig. 1, a seven-link network sup-
ports two users, each of which has two possible paths to choose
from, and the corresponding routing matrices are

For every , define a vector with the rate of
path of user as the th entry of . The total rate of user
is . Let a vector represent the
complete bandwidth allocation

Each user has a utility function that is a function of its
total transmission rate . We assume to be strictly in-
creasing and concave, which is the case for most TCP algo-
rithms [21]. Let . We call
a network.

The joint congestion control and multipath routing problem
is to maximize the aggregate network utility by allocating the
transmission rates for all users over all possible paths subject to
link capacity constraints. We assume fairness in the sense that
every user receives a positive rate, i.e., for any user .
It can be formulated as a convex optimization problem

s.t. (1)

Compared to problem (1), there are additional constraints in
the joint flow control and single-path routing problem, namely
each user only uses one path out of its finite set of possible
paths. Let denote the number of nonzero entries of the

TABLE I
SUMMARY OF KEY NOTATION

vector .2 Then, the single-path problem can be formulated as
the following optimization problem:

s.t.

(2)

Unlike (1), (2) is nonconvex and in fact NP-hard due to the car-
dinality constraints.

Let and denote the values of (1) and (2) respec-
tively. Then, can be interpreted as a measure of
performance loss due to the additional single-path routing con-
straints, or the “cost of not splitting.” Moreover, it was shown
in [28] that the dual problem of (2) has the same value as (1).
Therefore, the duality gap of (2) is precisely the performance
loss of utilizing only one out of a finite choice of paths by each
user. We will refer to as the performance gap in
this paper.

Throughout the paper, we assume , i.e., the
total number of paths that can be used by all users is greater
than the sum of the number of users and the number of links.
This is the case when the network is large and each user has
many available paths. The key notation used is summarized in
Table I.

III. SUFFICIENT CONDITIONS FOR POSITIVE

PERFORMANCE GAP

A previous work in [28] focuses on the cases when the perfor-
mance gap is zero. However, one may expect the performance
gap to be positive in the general case. In this section, we quan-
tify this intuition by providing sufficient conditions for the exis-
tence of a positive performance gap. For many cases, there exists
a positive performance loss between an optimal multipath allo-
cation and an optimal single-path allocation. This motivates the
need to estimate this difference in the later sections.

Note that the existence of the positive performance gap im-
plies that every optimal solution to (1) has more than paths,
and vice versa. If an optimal solution to (1) uses only paths,
then it is also an optimal solution to (2), therefore the perfor-
mance gap is zero. Conversely, if every solution to (1) has more
than paths, then the network utility achieved by any single-
path allocation is strictly less than the value of (1), therefore
the performance gap is positive. Based on this observation, if
under certain conditions every optimal solution to (1) has more
than paths, then we can conclude that the performance gap is
positive.

To facilitate the presentation of Theorem 1, we order all paths
and let be the set of indices of paths of user . We call two

2Our notation for the cardinality of a vector is the same as that used in the
compressed sensing literature and is commonly known as the � norm.
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paths disjoint if there does not exist a link that belongs to both
paths.

Theorem 1: For a given network , if there exists a set
of paths with cardinality such that
for all user , and every pair of paths in are disjoint, then there
exists a positive performance gap between (1) and (2).

Proof: We prove the statement by arguing that for every
single-path allocation, there exists a multipath allocation that
has a strictly higher network aggregate utility than that of this
single-path allocation. Thus, no single-path allocation could be
a solution to (1), which implies a positive performance gap.

Let denote a feasible single-path allocation, thus,
for all , and . Define

, which is the minimum redundant link capacity on links
that are not fully utilized under . If every link is fully utilized
under , i.e., the set is empty, we set to be

. Let be the set of indices of paths used by , i.e.,
for every in . Let be some positive constant that
is strictly less than the transmission rate for every user under

, i.e., . Let . is a
single-path allocation obtained from by reducing the rate
of every path in by , then for every link , one can check

. Now we increase the rate of every path
in by , and let denote the resulting rate allocation. Since

, is a multipath rate allocation. Since every two
paths in are disjoint, for every link .
Therefore, we have . Furthermore, from the definition
of , we know that there exists exactly one user, say user , that
has two paths in , and every other user has only one path in .
Thus, , and for every other
user . Thus, the network aggregate utility under is strictly
greater than that under , which completes the proof.

Note that the paths in as defined in Theorem 1 are not
necessarily used by an optimal multipath allocation, but the ex-
istence of such a set of paths guarantees a positive performance
gap. Theorem 1 provides a sufficient condition on paths for the
existence of a positive performance gap. We next provide an-
other sufficient condition based on the links in the network. We
need two definitions to proceed.

Definition 1 [6]: Given a directed graph , where
is the set of nodes and is the set of links, an – cut

is a partition of such that and ,
where and are the source and the destination of one user.

Definition 2: Given an – cut , let
be the set of out-

going links from , and let
be the set of incoming links to , the algebraic value of
cut is the number of outgoing links of minus the number
of incoming links of , i.e., , where
denotes the cardinality of a set.

Theorem 2: Given a network represented by a directed graph
that supports users, if there exists a user (with

and as the source and the destination) such that for every
– cut , holds, then every optimal

multipath allocation has positive flow rates on at least
paths.

Proof: Suppose there exists an optimal multipath alloca-
tion that has positive flow rates on at most paths. Let
be the set of links that transmits positive rates on. Let be
the set of links that are saturated by , i.e., for

every in . Let be the reduced network by
removing the links in from . Define to be a subset of nodes
in such that for every node there exists a path from
to in the reduced network , and for every node , there
does not exist a path from to in .

We consider two possibilities: and . If
, then there exists an – path in on which we can

send positive flow rate. Thus, we can send positive flow rate
on besides the flow allocation and increase the network
aggregate utility, which contradicts the fact that is an optimal
allocation.

If , is an – cut, thus
by assumption. Since uses at most paths, then the number
of outgoing links from that are also in minus the number of
incoming links to that are also in is at most . Therefore,
there exists an outgoing edge from such that ,

and . Since , then . This
contradicts the fact that there is no link from to on
graph .

Under the condition of Theorem 2, every optimal multipath
solution uses at least paths, thus no single-path allocation
could achieve the optimal multipath aggregate utility. There-
fore, there always exists a positive performance gap between
(1) and (2).

Theorem 2 requires for all – cut for
some user . For cases where users share the same source or
the same destination, the condition of Theorem 2 can be further
relaxed as follows.

Theorem 3: A network supports users, and all
users have the same source , and the destination of user is ,

. If for every set such that and for
every user , the algebraic value of cut satisfies

, then there always exists a positive performance
loss between (1) and (2).

Similarly, if all users share the same destination and user
has source , , and for every set such that

and for every user , the algebraic value of cut
satisfies , then there always

exists a positive performance loss between (1) and (2).
Proof: We will prove the first half of the theorem and omit

the second half, as it is the same as the first half by simply in-
terchanging the source and the destination.

The proof technique is similar to that of Theorem 2. Suppose
there exists an optimal multipath allocation that has positive
flow rates on at most paths. Let be the set of links that

transmits positive rates on. Let be the set of links that are
saturated by . Let be the reduced network
by deleting the links in from . Define to be a subset of
nodes in such that there exists a path from to in
the reduced network , and , there is no path from to

in . Then, there is no link from to on graph .
Note that for all , since otherwise there would exist an

– path in for some , and we could increase the network
aggregate utility of by sending additional positive flow rate
on without violating capacity constraints. Since for all
, then the cut has an algebraic value

from the assumption. Since uses at most paths, then
the number of outgoing links from that are also in minus
the number of incoming links to that are also in is at most

. Therefore, there exists an outgoing edge from
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such that , and . Since , then
. This contradicts the fact that there is no link from to
on graph .

We need to mention that one implicit assumption for both
Theorems 2 and 3 is that every user can use every path from
its source to its destination as long as the path is on the graph.
However, there may be cases when some user is not admitted to
a certain path even though the path connects its source to its des-
tination in the graph. For these cases, conditions in Theorems 2
and 3 need slight modification, which we omit here. However,
Theorem 1 is applicable to all the cases.

Theorems 1–3 do not impose any constraint on the link capac-
ities. Note that even if none of the conditions in these theorems
holds, the performance gap can still be positive under certain
link capacity configurations.

IV. GENERAL BOUND OF PERFORMANCE GAP

Section III establishes the existence of a positive performance
gap. In this section, we obtain a general upper bound of the per-
formance gap, and then show that the average cost of not split-
ting goes to zero asymptotically as the number of users goes
to infinity. We start with analyzing the vertices of the solution
set of (1), which turns out to be important for both obtaining a
general bound of the performance gap and estimating the per-
formance gap for a given network.

A. Vertices of Optimal Multipath Solution Set

In general, the multipath problem (1) may not admit a unique
optimal solution. Among those solutions, we can find one that
uses at most paths, as the following result shows, even
though the total available paths can potentially be exponential
in or .

Theorem 4: Given an -link network supporting users, for
any multipath allocation , there exists a multipath allocation
using at most paths such that they both achieve the same
aggregate utility.

Proof: Given a multipath allocation , consider the fol-
lowing nonempty and bounded polyhedron:

and

Clearly, contains at least one vertex [6], denoted by . Since
is a vertex, there are linearly independent constraints

that are active at . Note that we call a constraint active if it
holds with equality. Since we already have active constraints
from for every , and at most active constraints
from , then there are at least constraints
from that are active. Therefore, at least
entries of are zero, indicating that contains at most
positive entries.

Remark 1: We can obtain a similar result by applying the
Shapley–Folkman theorem in [5] such that the optimal multi-
path utility can be achieved by a multipath allocation using at
most paths. Theorem 4 is thus a slightly stronger
result than a direct application of [5].

Remark 2: Similar arguments hold for a more general class of
delay-sensitive utility functions proposed in [27]. The objective
function is where stores the delay

of each link. An additional constraint exists
in the set , making the upper bound on the number of paths

. All later results hold accordingly.
If the multipath allocation is a solution to (1), similarly we

can define a polyhedron as follows:

and

Clearly, is a convex polyhedron that is bounded, finite, and
pointed. Every point in is a solution to the multipath problem
as it has the same optimal network utility. In fact, if is as-
sumed to be strictly concave for all , one can check that also
contains all the optimal solutions. Thus, we have the following
lemma.

Lemma 1: If is increasing and strictly concave, then is
the solution set of (1).

Proof: Suppose there exists an optimal multipath solu-
tion that does not belong to .

Since is an optimal multipath solution, then the optimal
network utility is . Since is an optimal solu-
tion, then and .

, let . Clearly . Since ,
then there exists some such that . Then,

and . Since is strictly concave, then
. From concavity,

we also know
for all . Thus, , which contra-
dicts the fact that is the optimal solution. Therefore, every
optimal multipath solution belongs to .

Conversely, for all in , since , then
, thus is also optimal.

Similar to the proof of Theorem 4, one can also argue that
every vertex of is an optimal multipath allocation that uses
at most paths. Since an optimal single-path allocation
uses paths, then the difference of number of paths needed
to achieve optimal multipath routing and optimal single-path
routing can be reduced to at most .

Our previous discussions indicate that a vertex of the multi-
path solution set is guaranteed to use at most paths.
In fact, there are other useful properties of the vertices of that
we examine next.

Theorem 5: Let be the minimum
number of paths needed to achieve the optimal multipath aggre-
gate utility, then there exists a vertex of such that

.
To prove Theorem 5, we first state a more general result in

Lemma 2. Please refer to Appendix A for its proof.
Lemma 2: Let be a

nonempty polyhedron, and let , then there
exists a vertex of such that .

Proof: (Theorem 5) Since can be rep-
resented by two inequalities and

, then can be expressed in the form
. The result follows by applying Lemma 2.
Theorem 5 implies that there exists a vertex of using the

minimum number of paths among all the optimal multipath so-
lutions. However, we need to clarify that not every optimal mul-
tipath solution that uses the minimum number of paths is a
vertex of . For example, consider a simple network in Fig. 2
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Fig. 2. Example of a simple network supporting one user with two paths.

Fig. 3. Optimal multipath solution set � to the network in Fig. 2. (a) �� � ��,
�� � �� � �. (b) �� � �� � ��, �� � �.

supporting one user with two paths. If , ,
the optimal multipath solution set of (1) is

as shown in Fig. 3(a). Now, for every in , but
only has two vertices.

Though in general the statement is not necessarily true that
an optimal multipath solution that uses the minimum number of
paths is a vertex of , it is actually the case if the performance
gap is zero. More formally, we have the following theorem.

Theorem 6: If the performance gap is zero, i.e., there exists a
single-path solution in , then every optimal single-path solu-
tion corresponds to a vertex of .

Proof: Let denote an optimal single-path solution. Then,
, are constraints

that are active at . has entries that equal zero.
Thus, there are at least constraints that are active at ,
and it is easy to check that these constraints are linearly
independent. Therefore, is a vertex.

When the performance gap is zero, an optimal single-path so-
lution must be a vertex of . However, in this case not every
vertex of needs to be an optimal single-path solution. Con-
sider the example in Fig. 2. If , , then the
optimal solution set of (1) is

has two vertices and , as shown in Fig. 3(b),
and the former one is an optimal single-path solution, while the
latter one is not.

The above three theorems indicate that although many op-
timal multipath allocations may use a large number of paths,
there exist optimal multipath allocations, i.e., the vertices of the
solution set , which only use at most paths. Moreover,
the smallest number of paths used by these vertices is indeed the
smallest number of paths needed to achieve optimal multipath

routing. In the remaining sections, we will exploit the proper-
ties of the vertices of to provide a bound to the performance
gap in the general case and propose algorithms to give a good
estimate of the duality gap for a given network.

B. Upper Bound of the Performance Gap

Theorem 4 implies that to achieve optimal network utility,
at most users (assuming ) need to use multiple paths,
while every other user only uses one path. We next use this prop-
erty to upper-bound the performance gap.

Theorem 7: Given an -link network supporting users, the
performance gap of (1) and (2) is upper-bounded by

(3)

where

(4)
Proof: Let be an optimal solution to (1). Following

Theorem 4, there exists an optimal allocation and a set
of indices such that for

every , , for every , and
for every . Note that if is empty, then the performance
gap is zero.

Next, we project to a feasible single-path solution by
picking the maximum-rate path for each user. More formally,
for any , let be the index of the largest entry of ,
i.e.,

Then, we define a vector such that

For any , let . Then, one can check that
, and , thus is a feasible single-path

allocation. Since is an optimal solution to (1), we have

where is given by (4).
Note that measures the performance loss of user by re-

stricting itself to single-path routing in our problem setup, and
it was first proposed in [1]. Moreover, it can be upper-bounded
as follows.

Theorem 8:

(5)
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Fig. 4. Network supporting � users.

where is the maximum total transmission rate of user that
can be supported by a network , i.e.,

Proof: For any such that , , we have
. Since is strictly increasing, then

The inequality still holds if we maximize over all feasible ,
thus

Now, (5) is easy to calculate for a given network. Also, since
is always finite, it implies that is finite for any user . For

the logarithm utility function, we indeed have an exact formula
of as follows.

Corollary 1: If where is some
constant, then

(6)

Proof: By Theorem 8, we have . Also,
there always exists some such that
satisfies , thus, from (4), . This proves
(6).

Both the TCP Vegas protocol in [22] and the FAST TCP pro-
tocol in [30] implicitly solve (2) using the logarithm utility func-
tion. Thus, (6) gives a simple formula of , which only de-
pends on the number of paths of user regardless of the network
topology and .

The significance of Theorem 7 is that when , the
upper bound of the performance gap depends on and ,
but not on . Therefore, when the number of users goes
to infinity, the performance gap is always upper-bounded by

, which is finite. Note that can grow to infinity
as grows even the network topology and is fixed. For ex-
ample, consider a network with two nodes and and two links
connecting them, as show in Fig. 4. Let . The net-
work supports users, and each user wants to transmit from

to . The utility function is for all . Then, the
optimal multipath utility is achieved when each user has a total
transmission rate , and , which
goes to infinity as goes to infinity. In fact, one can check
that in this simple network, as long as for some

and for all , we have , which goes to
infinity with . Therefore, even though can grow to in-
finity as goes to infinity, the performance loss
is always finite.

V. ESTIMATION OF THE PERFORMANCE GAP

A. Vertex Projection

In general, (3) may not be a tight upper bound of the per-
formance gap. However, for a given network, if we can find an
optimal solution of (1) and its corresponding index set of
the users that use more than one path, a better upper bound to
the performance gap than that given by (3) can be obtained as
follows.

Suppose we have a vertex of the solution set of (1). We
will discuss how to obtain such a vertex in a minute. Since
is a vertex of , then it has positive flow rates on at most
paths. Like the arguments in the proof of Theorem 7, we can
find a feasible single-path allocation by keeping the largest
path rate of each and setting other path rates to zero. In this
case, an improved upper bound to the performance gap is given
by

(7)

However, may not achieve the maximum utility for this
particular fixed single-path configuration. By solving a fixed
routing congestion control problem using the path configu-
ration of , we obtain a single-path allocation such that

. Thus, a better upper bound
of the performance gap than (7) is

(8)

Therefore, we first solve (1) to obtain a multipath opti-
mizer . This can be done efficiently as (1) is convex. We then
check whether satisfies for all ,
or not. If so, (2) has the same optimal value as (1), and the
performance gap is zero. Otherwise, we want to find an optimal
multipath solution that corresponds to a vertex of . Then,
by the arguments above, we obtain an improved upper bound
of the performance gap in (8). Then the question is which
vertex we should choose if there is more than one vertex in .
Ideally, we want to find an optimal multipath solution that uses
the smallest number of paths, i.e., a solution to the following
problem:

(9)

There are several reasons why we are interested in solving (9).
First, if , then there is no duality gap, and (9) returns
an optimal single-path solution. Second, if , then per-
formance gap is strictly positive. Since is the minimum
number of paths needed to achieve optimal multipath utility,
it gives another way to characterize the “cost of not splitting”
in terms of the number of paths needed to achieve optimality.
Moreover, the solution of (9) can be used to estimate the perfor-
mance gap via (8). Since it uses the smallest number of paths
for all solutions in , the number of paths needed to delete in
order to obtain a single-path solution is also minimized.

However, (9) is NP-hard [23], and solving it requires a combi-
natorial search. Since we know (9) has a solution that is a vertex
of , instead of solving it directly as an optimization problem,
we can enumerate all the vertices of . Then, the vertex using
the minimum number of paths is guaranteed to be a solution
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to (9). A practical pivot-based algorithm has been proposed in
[2] to find vertices of a polyhedron in defined by a non-
degenerate system of inequalities in time and
space. In some cases, the number of vertices of can be expo-
nential in the number of users (see Appendix B for an example
of such a network), thus vertex enumeration is not practical es-
pecially in large network scenarios.

Given a nonconvex problem (9), one naturally considers its
convexified problem. is a convex set, and the nonconvexity
of (9) comes from the nonconvex function . Define
as the convex envelope [14] of over , which
is equivalent to the biconjugate function of as defined by
Fenchel [15]. According to the definition of the convex enve-
lope, is a convex function on , and for
every in . Moreover, for any convex function on such
that for every in , we have for
every in . Then, the convexified problem of (9) is

(10)

and we have

In general, the convex envelope of a function is hard to compute
analytically. However, notice that ,
where is the indicator function. Therefore, the objective func-
tion is separable in the decision variables ’s. Define a

vector such that for all and all in
. Define , clearly . The

convex envelope of over in fact is very easy to com-
pute [13], [14], which is

(11)

Clearly, for every in , we have

Thus, (9) can be further relaxed as

(12)

whose value serves as a lower bound of (9). Since here we also
have the constraint that is nonnegative, then (11) is simplified
as , and (12) is simplified as

(13)

which is an LP. The solution of (13), denoted by , is a vertex
of . In general, may not be the optimal solution of (9).
However, since is a vertex of , the cardinality of is no
greater than (cf. Theorem 4). Thus, we have

Clearly, depends on the choice of region . With a good
choice of , can be very small, even as small as . In
other words, could also be the solution of (9) if is smartly
chosen. Then, how to choose such ?

One simple way to choose is as follows. As , then

. Since , then we have for all

. Let . We have

. Then, (13) is equivalent to

(14)

Note that can be interpreted as the total usage of link ca-
pacities. Thus, by minimizing the total usage of link capacities
among all the optimal multipath solutions, (14) returns a multi-
path solution that is a vertex of .

In summary, we first solve (1) to obtain an optimal multipath
solution and the solution set . We then obtain a vertex of

through solving (14), project the vertex to a single-path con-
figuration by picking the maximum-rate path for each user, and
lastly maximize the network utility over this particular single-
path configuration. We refer to this method as the vertex pro-
jection method as described in Algorithm 1. It gives a lower
bound of and a feasible single-path configuration. As the
set of users that use multiple paths is small for a vertex so-
lution , we expect the performance loss to
be small after the optimal multipath configuration is projected
to a single-path configuration. Therefore, the vertex projection
method can give a relatively “good” lower bound of and
also upper-bound the performance gap by (8).

Algorithm 1: Vertex Projection

1 Solve (2) to obtain an optimal multipath solution and
.

2 Solve (14) to obtain a vertex of using at most
paths.

3 Project to a single-path configuration by picking the
current largest-rate-path for each user.

4 Maximize the network utility over the chosen single-path
configuration.

We should remark here that if is chosen to be
for some , then (13) is equivalent to

(15)

The objective function of problem (15) is the norm of a vector,
which is closely studied in the area of compressed sensing [4],
[9], [11], [12]. In fact, both (9) and (15) are closely related to
the sparse recovery problem in compressed sensing (we omit the
comparison here). However, norm is not a good candidate for
the objective function here, as is a constant for all

in .

B. Refined Vertex Projection via Greedy Branch-and-Bound

The vertex projection in Section V-A gives a single-path allo-
cation with its corresponding network aggregate utility serving
as a lower bound of (2). In this section, we show how to in-
tegrate it with a greedy branch-and-bound algorithm to give a
better estimate of . An -level tree is introduced to repre-
sent a progressively finer partition of the set of paths that each
user considers. In particular, the tree has at its root node the
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Fig. 5. Feasible path sets of two users (user A has three paths 1, 2 and 3; user B
has two paths 4 and 5).

original single-path problem (2). The intermediate nodes corre-
spond to problems where some users fix their path choices while
every other user can still choose its path from several paths. At
each tree node, one user that has not fixed its path choice, say
user , partitions its set of paths producing different subtree
nodes. The tree has leaf nodes, and each leaf node
corresponds to a utility maximization problem over a specific
single-path configuration. Fig. 5 illustrates the feasible path sets
in a two-user case.

We first state how to find via branch-and-bound. The
algorithm starts from the root and branches from the current
tree node into several subproblems at each step. For each new-
found tree node, we find an upper bound and a lower bound of
the maximum utility of (2) over the reduced feasible set for this
subproblem. The upper bound is given by the value of its dual
problem, which is equivalent to the value of its corresponding
multipath problem, and the lower bound can be found by the
vertex projection in Section V-A. Let be the maximum lower
bound that has been found till the current step. If the upper
bound for some tree node is smaller than , then and all
its offspring can be safely pruned from future considering. After
pruning, we pick a tree node that has the maximum lower bound
among the remaining tree nodes (not including leaf nodes) to
branch from for the next step. The algorithm stops when there
are no more tree nodes to branch from. It always finds ,
which is attained at the leaf node that has the maximum value.
However, there is no guarantee that the algorithm will terminate
in polynomial time.

To get a polynomial-time approximation algorithm, we pro-
pose to do greedy pruning at each step. Specifically, at each level
of the tree, we only keep the node that has the maximum lower
bound among all the nodes at the same level and delete all its
peers. Then, we branch from this node, but also only keep one
of its offspring, and so on. Thus, we get a path from the root to
a leaf node. Though this leaf node may not solve (2) optimally
as we greedily prune all but one node at each step, it gives a
good lower bound of . This algorithm terminates in at most

steps as we fix the path choice for one user at each step.
Another issue is which user to branch from at each level. Let
be the set of users that have already fixed their single-path

choices until the current step. Let be a vertex of the optimal
sets of the sub-multipath problem in the last step. First, we find
the user that solves

and tentatively branch from . We solve subproblems and
find a lower bound of in the th subproblem, where
user only uses its th path. Let . If

, we update with , make this branch permanent and
fix user ’s path choice to be its th path. Otherwise, as
cannot be improved in this step by branching from user , we
discard this tentative branch, find the user that has the second
largest value of , and make another ten-
tative branch from it. The algorithm stops if all users have made
their path choices or if we cannot make any tentative branch
permanent at some step. Clearly, the algorithm gives a better es-
timate of in each step and thus produces a tighter lower
bound of than the vertex projection in Section V-A. The
algorithm is summarized in Algorithm 2.

Algorithm 2: Refined vertex projection via greedy
branch-andbound (MP: multipath; SP: single-path)

Initial: users that have fixed SP choice

1 Solve the MP problem, find a vertex of , obtain a
lower bound of via vertex projection.

2 while , and do
3 if , then
4 x is also a SP solution.
5 else
6 ,
7 while , do
8

pick a tentative user to branch
9 for each path of user do

10 Solve a sub MP problem and obtain a lower
bound of the sub SP problem via vertex
projection.

11 end for
12 if then
13 make this branch permanent
14 ,
15 , fix path for user
16 ,
17 the vertex found in the th subproblem
18 else
19
20 if then
21
22 end if
23 end if
24 end while
25 end if
26 end while
27 return ,

C. Extension to Convex-Cardinality Problems

Our techniques in the previous sections and Algorithms 1 and
2 can be extended to other constrained routing problems, similar
to that of (2), as a convex-cardinality problem. A convex-cardi-
nality problem is one that would be convex, except for the ap-
pearance of the cardinality constraint in the objective or the con-
straints [8]. For example, the number of paths used by each user
can be generalized from a single path to an arbitrarily subset of
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TABLE II
VERTICES OF THE OPTIMAL SOLUTION SET �

the possible paths. The utility maximization can then be stated
in the following optimization problem:

s.t.

(16)

Obviously, when for all , then (16) is reduced to
the single-path problem (2); when for all , (16) is
equivalent to the convex problem (1). In general, (16) is hard to
solve. As previously, (1) can be viewed as a convex relaxation to
(16) by removing the cardinality constraints. When viewed as a
convex-cardinality heuristic, Algorithm 1 can be adapted to find
a feasible solution to (16) by first solving (14) to obtain a vertex,
fixing the sparsity pattern of routing by keeping at most paths
for user , and resolving the utility maximization problem with
fixed routes. Likewise, Algorithm 2 can be easily adapted to find
a near-optimal solution to (16). Finding the conditions under
which (1) solves (16) exactly is an interesting open question.

VI. NUMERICAL EXAMPLES

In this section, we describe our numerical evaluation on a
random network of links supporting users. Every user can
use multiple paths. The link capacities are uniformly chosen
from the interval . A path uses a link with probability

. We vary , , and the number of paths that
each user can use in different simulation setups.

A. Vertices of the Optimal Solution Set of the Multipath
Problem

We fix , , and generate one realization of
the network. The five users use five, five, one, five, and four
paths, respectively. We use the same utility function

for all the users, and is 18.2982 in this case. We
also calculate that is 17.8609 by exhaustive search. Using
a vertex enumeration algorithm [2], we explicitly find all four
vertices of the optimal polyhedron as listed in Table II.

Though lying in , the optimal set contains only four
vertices. Moreover, after projecting the solutions to single-path
configurations by choosing the maximum-rate paths, there are

Fig. 6. Comparison of ��� , two lower bounds of ��� found by Algorithms 1
and 2, and a random single-path utility as � increases.

only two different configurations, and their maximum utilities
are 16.6122 and 16.9176, respectively. Then, the upper bounds
of the performance gap are 1.686 and 1.3806, respectively, while
the actual performance gap is 0.4374.

We observe that the number of paths used by these optimal
solutions are 11, 11, 10, and 10, respectively, while equals
15 in this case. Therefore, the conclusion from Theorem 4 that
optimal multipath routing can be achieved with at most
paths is a relatively conservative estimate, while it is likely that
an optimal multipath configuration requires far fewer paths.

B. Estimation of Performance Gap via Two Algorithms

We fix and let change from 3 to 40. Each user has
eight available paths. We let the utility function for
all the users. All the results are averaged over 100 realizations.
For each , we calculate and find lower bounds of
by both Algorithm 1, i.e., the vertex projection method, and the
improved version, Algorithm 2, that combines vertex projec-
tion with greedy branch-and-bound. Note that the difference of

and a lower bound of serves as an upper bound to
the performance gap. We also randomly choose one single-path
configuration and calculate its maximum utility. As shown in
Fig. 6, all four curves monotonically increase as the number
of users increases. The two lower bounds of are always
near , while the utility of a randomly chosen single-path
routing gradually deviates from . Thus, although is
always near , and the performance gap or, equivalently,
“the cost of not splitting” is not large, the utility of a randomly
chosen single-path configuration can be significantly less than

. This demonstrates the need for a routing algorithm to find
a near optimal single-path configuration. The single-path con-
figuration found by Algorithm 2 always has a higher utility than
that of a single-path configuration found by vertex projection
method, as Algorithm 2 can be viewed as a finer sequential ap-
plication of vertex projection.

Fig. 7 shows an upper bound of the performance gap,
which is minus the lower bound of obtained from
Algorithm 2, and an upper bound of the average cost of not
splitting over the number of users. Note that, from Theorem 7
and Lemma 1, the general upper bound of the performance gap
for this network is , which is a loose upper
bound compared to the bound in Fig. 7. Although both curves
in Fig. 7 are just upper bounds, they give good estimates of the
actual values. Therefore, we use them to study the trend of the
total and the average cost of not splitting. When the number of
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Fig. 7. Total duality and average performance gap as � increases.

users is small and the network is partially utilized,
users can benefit from using multiple paths, thus the cost of not
splitting increases rapidly as the network supports more users.
As the number of users increases, users begin to compete for
link capacities with one another, and the benefit of multipath
routing is no longer apparent. Thus, the cost of not splitting
does not increase too much after . Also, note that the
average cost of not splitting monotonically decreases and is
near 0 when .

VII. CONCLUSION

We studied the performance difference in utility maximiza-
tion when either single-path routes or multipath routes are used.
We gave a graph-theoretic characterization of the existence
of this “cost of not splitting” based on network topology.
We showed that the total number of paths needed to achieve
optimal multipath utility and that required to achieve the op-
timal single-path utility differs by no more than the number
of links in the network. We provided general bounds of this
performance loss, which is independent of the number of users.
We showed that the performance loss remains finite as the
number of users tends to infinity. To provide a good estimate of
the performance gap, we proposed a vertex projection method
that can also be combined with a branch-and-bound technique
to obtain a single-path configuration that can achieve near
optimal single-path network utility. The cardinality constraint
here appears in many other contexts of combinatorial resource
allocation problems. For future work, we plan to use similar
techniques to study related convex-cardinality multicommodity
flow problems.

APPENDIX A
PROOF OF LEMMA 2

Proof: Since is nonempty and contains no line, it con-
tains at least one vertex [6]. Let denote the
vertices of . Let be a vector in with the smallest car-
dinality, i.e., . Since is the
convex hull of , then

(17)

Fig. 8. Relay network with� relay nodes supporting � users.

for some , and . Note that there exists at
least one such that . We can assume without
loss of generality.

We claim that for every such that , is also zero.
To see this, note that for all and for all , then
by (17) we know that if and only if for all .
Since , then must be zero. Thus, the claim follows.
Therefore, we have .

Since we also have , then
we can conclude that , and Lemma 2
follows.

APPENDIX B
EXPONENTIAL NUMBER OF VERTICES IN

Consider a network in Fig. 8 with sources at the root,
relay nodes, and receives, one at each of the leaves.

Each link has capacity . All users have the same utility func-
tion, , which is increasing and strictly concave. The optimal
multipath utility is achieved when each user is allocated with a
total rate , and this optimal utility is . The perfor-
mance gap is zero if and only if is an integer. In this case,
every vertex of corresponds to an optimal single-path solu-
tion, and vice versa. can be represented as follows:

and

The number of vertices of is

which grows exponentially as increases.
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