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Abstract—This paper investigates the uniqueness of a nonnega-
tive vector solution and the uniqueness of a positive semidefinite
matrix solution to underdetermined linear systems. A vector so-
lution is the unique solution to an underdetermined linear system
only if the measurement matrix has a row-span intersecting the
positive orthant. Focusing on two types of binary measurement ma-
trices, Bernoulli 0–1 matrices and adjacency matrices of general
expander graphs, we show that, in both cases, the support size of a
unique nonnegative solution can grow linearly, namely ����, with
the problem dimension �. We also provide closed-form characteri-
zations of the ratio of this support size to the signal dimension. For
the matrix case, we show that under a necessary and sufficient con-
dition for the linear compressed observations operator, there will
be a unique positive semidefinite matrix solution to the compressed
linear observations. We further show that a randomly generated
Gaussian linear compressed observations operator will satisfy this
condition with overwhelmingly high probability.

Index Terms—Compressed sensing, linear system, nonnegative
solution, rank minimization, sparse recovery, uniqueness.

I. INTRODUCTION

T HIS paper is devoted to recover a “nonnegative” decision
variable from an underdetermined system of linear equa-

tions. When the decision variable is a vector, “nonnegativity”
means each entry is nonnegative. When the decision variable
is a matrix, “nonnegativity” indicates that the matrix is positive
semidefinite. The problem is ill-conditioned in general, how-
ever, we can correctly recover the vector or the matrix if the
vector is sparse, or the matrix is low rank.

Finding the sparest vector among vectors satisfying a set of
linear equations is NP-hard [7]. One frequently used heuristic
is -minimization, which returns the vector with the least
norm. Recently, there has been an explosion of research on this
topic, see, e.g., [2], [7]–[9], [14]. Reference [7] gives a sufficient
condition known as Restricted Isometry Property (RIP) on the
measurement matrix that guarantees the recovery of the sparest
vector via minimization. In many interesting cases, the vector
to recover is nonnegative [5], [12], [31]. [12] gives a necessary
and sufficient condition known as the outwardly neighborliness
property of the measurement matrix for minimization to suc-
cessfully recover a sparse nonnegative vector. Moreover, recent
studies [5], [13], [20] suggested that a sparse solution could be
the unique nonnegative solution. This can potentially lead to
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better alternatives to minimization as in this case any opti-
mization problem (with any objective function, for example,
norm) over this constraint set can recover the original unknown.
In addition, the sparsest solution can be viewed as a biased so-
lution to an underdetermined system, which is undesired in the
unbiased networks diagnosis [31]. However, if the uniqueness
property holds, the sparse solution is indeed the only nonneg-
ative solution, and thus, unbiased. Therefore, the uniqueness
property could be useful in providing unbiased networks diag-
nosis.

Motivated by networking inference problems such as network
tomography , we are particularly interested in systems where the
measurement matrix is a 0–1 matrix. There have not been many
existing results on this type of systems except a few very re-
cent papers [29], [3], [4], [20]. We focus on two types of binary
matrices, Bernoulli 0–1 matrices and adjacency matrices of ex-
panders, and provide conditions under which a sparse vector is
the unique nonnegative solution to the underdetermined system.
For random Bernoulli measurement matrices, we prove that, as
long as the number of equations divided by the number of vari-
ables remains constant as the problem dimension grows, with
overwhelming probability over the choices of matrices, a sparse
nonnegative vector is a unique nonnegative solution provided
that its support size is at most proportional to its dimension for
some positive ratio. For general expander matrices, we further
provide a closed-form constant ratio of support size to dimen-
sion under which a nonnegative vector is the unique solution.

The phenomenon that an underdetermined system admits a
unique “nonnegative” solution is not restricted for the vector
case. Finding the minimum rank matrix among all matrices sat-
isfying given linear equations is a rank minimization problem.
Among the rank minimization problems, one particularly
important class is the rank minimization problem for pos-
itive semidefinite matrices under compressed observations.
For example, minimizing the rank of a covariance matrix,
which is a positive semidefinite matrix, arises in statistics,
econometrics, signal processing and many other fields where
second-order statistics for random processes are used [16]. A
positive semidefinite matrix is special in that its eigenvalues
(also its singular values) are nonnegative. In fact, the nuclear
norm minimization heuristic for general matrices was preceded
by the trace norm heuristic for positive symmetric matrices
in rank minimization problems. While the general analytic
frameworks and computational techniques, for example, [25],
[26], are applicable to the rank minimization problems for
positive semidefinite matrices, the special properties of positive
semidefinite matrices may open the way to new structures and
new analysis, which more efficient computational techniques
may exploit to provide faster matrix recovery.
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Parallel to the influence of the nonnegative constraint on a
vector variable, the positive semidefinite constraint on a matrix
variable may dramatically reduce the size of the feasible set in
rank minimization problems. In particular, we show that under a
necessary and sufficient condition for the linear compressed ob-
servations operator, there will be a unique positive semidefinite
matrix solution to compressed linear observations. We further
show that a randomly generated Gaussian linear compressed
observations operator will satisfy this necessary and sufficient
condition with overwhelmingly high probability. This result is
akin to the one in the vector case for the unique nonnegative
solution, but the transition from a nonnegative vector to a pos-
itive semidefinite matrix requires very different analytical ap-
proaches.

This paper is organized as follows. Section II discusses the
phenomena that a sparse vector can be the unique nonnegative
vector satisfying an underdetermined linear system. Focusing
on 0–1 matrices, we prove that a sparse vector is a unique non-
negative solution as long as its support size is at most propor-
tional to the dimension for some positive ratio. We further give
a closed-form ratio of the support size and the dimension if the
matrix is an adjacent matrix of an expander graph. Section III
shows a low-rank matrix can be the unique positive semidefi-
nite matrix satisfying compressed linear measurements. We pro-
vide a necessary and sufficient condition for this phenomenon
to happen and prove the existence of compressed measurements
satisfying the proposed condition. Numerical examples are dis-
cussed in Section IV and Section V concludes the paper.

II. UNIQUE NONNEGATIVE VECTOR TO AN

UNDERDETERMINED SYSTEM

How to recover a vector from the measurement
, where is the measurement matrix?

In many applications, is nonnegative, which is our main focus
here. In general, the task seems impossible as we have fewer
measurements than variables. However, if is sparse, it can be
recovered by solving the following problem:

(II.1)

where the norm measures the number of nonzero en-
tries of a given vector. Since (II.1) in general is NP-hard, people
solve an alternative convex problem by replacing norm with

norm where . The minimization problem
can be formulated as follows:

(II.2)

In fact, for a certain class of matrices, if is sufficiently
sparse, not only can we recover from (II.2) , but also is
the only solution to . In other words,

is a singleton. Then can possibly be
recovered by other techniques to be developed besides min-
imization, since in this case the set con-
tains only one solution, which can be recovered by optimizing
any objective function over this constraint set.

[5] analyzed the singleton property of matrices with a row-
span intersecting the positive orthant. Here we first show only
these matrices can possibly have the singleton property.

Definition 1 ([5]): has a row-span intersecting the positive
orthant, denoted by , if in the row
space of , i.e., such that .

There is a simple observation regarding matrices in .
Lemma 1: Let be the th column

of matrix , then if and only if , where

(II.3)

Proof: If , then such that
. Suppose we also have , then

such that and . Then
as and . But as

. Contradiction! Therefore .
Conversely, if , there exists a separating hyperplane

that strictly separates and .
We assume without loss of generality that and

for any point in . Then .
Thus we conclude .

The next theorem states a necessary condition on matrix
for to be a singleton.

Theorem 1: If is a singleton for
some , then .

Proof: Suppose , from Lemma 1 we know
. Then such that

and . Clearly and .
Then for any we have

, and provided . Hence
, and .

Theorem 1 shows that is a necessary condition
for an underdetermined system to admit a unique nonnegative
vector. If is a random matrix such that every entry is inde-
pendently sampled from Gaussian distribution with zero mean,
then the probability that , or equiva-
lently is not a singleton for any ,
is ([28]), which goes to 1 asymptoti-
cally as increases if . Thus, if

, then for a random Gaussian ma-
trix , would not be a singleton with
overwhelming probability no matter how sparse is. This phe-
nomenon is also characterized in [13].

The property that is a singleton can
also be characterized in both high-dimensional geometry [13]
and the null space property of [20]. We state three equivalent
statements in Theorem 2.

Theorem 2 ([13], [20]): The following three properties of
are equivalent:

• For any nonnegative vector with a support size
no greater than is a singleton.

• The polytope in (II.3) has vertices and is -neighborly.
• For any in the null space of , both the

positive support and the negative support of have a size
of at least .

Note that a polytope is -neighborly if every set of ver-
tices spans a face of . is a face of if there exists

and a constant such that , and
and .

[13] (Corollary 4.1) shows that there exists a special par-
tial Fourier matrix with rows such that
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is a singleton for every nonnegative -sparse
signal . Here we will show the result is the “best” we can
hope for in the sense that a matrix should have at least
rows if is a singleton for every non-
negative -sparse signal .

Proposition 1: For a matrix , if
is a singleton for any nonnegative -sparse signal

, then .
Proof: Pick the first columns of , denoted by

. Since there are equations and
variables in (II.4), then (II.4) admits a

nonzero solution.

(II.4)

From Theorem 1 we know that , i.e., there exists
such that . Taking the inner product of both

sides of (II.4) with , we have .
Since , from we know vector

should have both positive and negative
terms. Collecting positive and negative terms of separatively,
we can rewrite (II.4) as follows:

(II.5)

where is the set of indices of positive terms of and is
the set of indices of negative terms. Note that

. We also have by
multiplying to the left of both sides of (II.5).

Suppose , then , thus
we know that , or , or both hold. Let us first
consider the case that . Define and
let . Then there is a one-to-one correspondence

between the two sets
and , where .

Note that for any nonnegative and sparse vector
is also nonnegative and sparse. And the converse statement
also holds. Since is a singleton for
every nonnegative -sparse signal , then

is also a singleton for every nonnegative -sparse signal .
From Theorem 2
is -neighborly, which implies that for any index set with

, there exists and constant such that for
any , and for all . We consider specifically
an index set , which contains but does not contain , and its
corresponding vector . Taking the inner product of both sides
of (II.5) with , we would get on the left and some value
strictly smaller than rc on the right, and reach a contradiction.
For the case that we can reach a contradiction through
similar arguments, thus holds.

Sparse recovery problems appear in different fields. Specific
problem setup may impose further constraints on the mea-
surement matrix. We are particularly interested in network
inference problems, in which the measurement matrix is a 0–1
routing matrix. Network inference problems attempt to extract
individual parameters based on aggregate measurements in
networks. There has been active research in this area including
a wide spectrum of approaches ranging from theoretical rea-
soning to empirical measurements [11], [23], [15], [30], [24].

Since the measurement matrices in network inference prob-
lems are 0–1 matrices, the instances when is a 0–1 matrix are
our main focus. Sections II-A and B prove that a sparse vector
can be the unique nonnegative vector satisfying compressed
linear measurements if the measurement matrix is a random
Bernoulli matrix or an adjacency matrix of an expander graph.
Moreover, the support size of the sparse vector can be propor-
tional to the dimension, in other words, the support size of the
unique nonnegative vector is where is the dimension,
while the provable support size for uniqueness property in [5] is

. Besides, for any , the sup-
port size of a sparse vector that is a unique nonnegative solution
can always be , while for Gaussian measurement matrices,
with high probability, would not be a
singleton for any nonnegative (with linearly growing spar-
sity) if [13]. This also shows the fundamental dif-
ference between 0–1 measurement matrices and Gaussian mea-
surement matrices.

A. Uniqueness With 0–1 Bernoulli Matrices

First we consider the uniqueness property with dense 0–1
Bernoulli matrix. The measurement matrix is an

measurement matrix, with each element in the first rows
of being i.i.d. Bernoulli random variables, taking values ‘0’
with probability and taking values ‘1’ with probability

. The last row of is a all ‘1’ vector. The frac-
tion ratio is assumed to be a constant as the dimen-
sion grows. It turns out that as goes to infinity, with over-
whelming probability there exists a constant such that

is a singleton for any nonnegative
-sparse signal . To see this, we first present the fol-

lowing theorem:
Theorem 3: For any , there exists a constant

such that, with overwhelmingly high probability as ,
any nonzero vector in the null space of mentioned above
has at least negative and at least positive elements.

Proof: Let us consider an arbitrary nonzero vector
in the null space of . Let be the support set for the negative
elements of and let be the support set for the nonnegative
elements of . We now want to argue that, with overwhelmingly
high probability, the cardinality of the set can not be too
small.

From the large deviation principle and a simple union bound,
for any , with overwhelmingly high probability as goes
to infinity, simultaneously for every column of the measurement
matrix, the sum of its elements will be in the range

.
Since , then , where

, and are, respectively, the part of matrix and vector
indexed by the sets and . Multiplying an all ‘1’ vector
to both sides of this equation, we get

(II.6)

where , and .
From the concentration result of the column sums,

we know , and
. Combining these two

inequalities with (II.6), we have
thus

(II.7)
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Now we look at the null space of the measurement matrix .
First, notice that the null space of is a subset of the null space
of the matrix comprising of the first rows of subtracted
by the last row of (the all ‘1’ vector). Then the matrix is
a random Bernoulli measurement matrix, which is known
to satisfy the restricted isometry condition. Recall one result
about the null space property of a matrix satisfying the restricted
isometry condition.

Lemma 2 ([6]): Let be any vector in the null space
of and let be any set of cardinality . Then

where is the restricted isometry constant ([8]) such that for
any set with , and any vector , the following
holds:

Reasoning from Lemma 2 and (II.7), after some algebra, we
know immediately, for must satisfy

We also know there exists a such that for any ,
with overwhelmingly high probability as ,

thus with overwhelmingly high probability as , the size
of the negative support, namely , is at least .

Similarly, we have the same conclusion for the cardinality of
the support set of the positive elements for any nonzero vector
from the null space of the matrix .

Theorem 3 immediately indicates that
is a singleton for all nonnegative that is sparse.

Thus the support size of the unique nonnegative vector can be
as large as , while the previous result in [5] is .

B. Uniqueness With Expander Adjacency Matrices

Section II-A considers 0–1 Bernoulli matrices, here we con-
sider another type of 0–1 matrices where is the adjacency ma-
trix of a bipartite expander graph. [4], [29], [20] studied related
problems using expander graph with constant left degree. We
employ a general definition of expander which does not require
constant left degree.

Every binary matrix is the adjacency matrix of an
unbalanced bipartite graph with left nodes and right nodes.
There is an edge between right node and left node if and only
if . Let denote the degree of left node , and let
and be the minimum and maximum of left degrees. Define

, then . For example, the bipartite graph
in Fig. 1 corresponds to the matrix in (II.8). Here

, and .

(II.8)

Definition 2 ([22]): A bipartite graph with left nodes and
right nodes is an expander if for any set of left nodes

of size at most , holds, where is the

Fig. 1. The bipartite graph corresponding to matrix � in (II.8).

set of edges connected to nodes in , and is the set of right
nodes connected to .

Our next main result regarding the singleton property of an
adjacency matrix of a general expander is stated as follows.

Theorem 4: For an adjacency matrix of an expander
with left degrees in the range , if

, then for any nonnegative -sparse vector with
is a singleton.

Proof: From Theorem 2, to prove that
is a singleton for any nonnegative

-sparse vector , we only need to argue that
for any nonzero with and as its negative
support and positive support, and

hold.
We will prove by contradiction. Suppose without loss of gen-

erality that there exists a nonzero such that
, then the set of edges con-

nected to nodes in satisfies . Then the
set of neighbors of satisfies

where the third equality comes from the expander property.
Notice that , since oth-

erwise does not hold, then
.

Now consider the set , we have
. Pick an arbitrary subset such that

. From expander property, we have

The last inequality holds since provided
. But .

A contradiction arises, which completes the proof.
Corollary 1: For an adjacency matrix of an ex-

pander with constant left degree , if , then
for any nonnegative -sparse vector with

is a singleton.
Theorem 4 together with Corollary 1 is an extension to ex-

isting results. Theorem 3.5 of [20] shows that for an ex-
pander with constant left degree , if , then there exists
a matrix (a perturbation of ) such that

is a singleton for every nonnegative -sparse . Our re-
sult instead can directly quantify the sparsity threshold needed
for a vector to be a unique solution to compressed measurements
induced by , not its perturbation. Reference [4] discussed the
success of recovery of a general vector for expanders with
constant left degree. If we apply [4, Th. 1] to cases where is
known to be nonnegative, the result can be interpreted as that

is a singleton for any nonnegative
-sparse vector if . Our result
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in Corollary 1 implies that if
can be -sparse and still be the unique nonnegative
solution.

References [27] and [17] proved that for any and ,
there exists an expander with constant left degree for
some and , and such an expander can be generated
through random graphs. There also exist explicit constructions
of expander graphs [10]. Combining the results with Corol-
lary 1, for any and , we can generate an expander
with adjacency matrix such that
is a singleton for any nonnegative -sparse , where

. Thus, same as Bernoulli 0–1 matrices, the ad-
jacency matrix of an expander has the property that

is a singleton as long as the sup-
port size of is . We further provide an explicit con-
stant of the ratio of the support size to the dimen-
sion. Note that this result is independent of , while as
discussed earlier, if the matrix has i.i.d. Gaussian entries and

is not
a singleton despite the sparsity of .

III. UNIQUE POSITIVE SEMIDEFINITE SOLUTION TO AN

UNDERDETERMINED SYSTEM

A. When Is Low-Rank Positive Semidefinite Solution the
Unique Solution?

Section II studies the case when a sparse nonnegative vector
is the only nonnegative solution to the system of compressed
linear measurements. Here we extend the problem into the ma-
trix space. Let be an matrix decision variable. Let

be a linear map, and let . The
low-rank matrix recovery problem is

(III.1)

In this paper, we are interested in looking at the property of
the feasible set . Indeed, if there exists a
such that , then plus any matrix in the null space
of also satisfies . However, in applications, one is
often interested in recovering a positive semidefinite symmetric
matrix , ( and , where is the set of
real symmetric matrices) from compressed observations. To de-
termine a positive semidefinite symmetric matrix , we only
need to determine unknowns in the upper tri-
angular part of . Thus the linear operator in (III.1) is
equivalent to an operator ,
where and denotes the upper trian-
gular part of the symmetric matrix . The null space
of is a subset of such that each point from this
set, arranged accordingly as the upper triangular part of an
matrix , satisfies .

Now we ask this question, can we uniquely determine the pos-
itive semidefinite symmetric matrix from , namely
can the feasible set be a
singleton? The next theorem gives an affirmative answer to this
question, and shows that if the linear measurement operator sat-
isfies certain conditions and the positive semidefinite symmetric
matrix is of low rank, then the feasible set

is a singleton, namely is not only the
only low-rank solution, but also the only possible solution.

Theorem 5: Let be a positive semidefinite symmetric ma-
trix of rank and be a linear oper-
ator which operates on the upper triangular part of , where

. Then
is a singleton for all with rank no greater than

, if and only if for every non-all-zero symmetric matrix gen-
erated from the null space of has at least negative
eigenvalues.

Proof: Sufficiency: we first show that if every non-all-zero
symmetric matrix generated from the null space of has
at least negative eigenvalues, then

is a singleton. Suppose instead there
exist a such that and ,
then the upper triangular part of is in the null space
of the linear operator . By the assumption, we know that

has at least negative eigenvalues. Since
is a symmetric matrix, its eigenvalues are real. For a matrix, we
denote these eigenvalues in an nondecreasing order, namely,

.
By a classical variational characterization of eigenvalues

[19], if and are both Hermitian matrices and
has rank at most , then , for

. By taking and ,
we have .
But then is not a positive semidefinite matrix. This
contradiction shows that is the only element in the set

.
Necessity: we need to show that if there exists a nontrivial

symmetric matrix (say ), with its upper triangular part from
the null space of the linear operator , has at most negative
eigenvalues, then we can find an such that

is not a singleton. Since is a
symmetric matrix, it can be diagonalized as ,
where is an unitary matrix, and is a diagonal matrix with

. We then pick , where is a di-
agonal matrix, and for and

for . Thus is a positive semidefinite matrix
with rank no larger than (note that the eigenvalues of are
not necessarily arranged in nondecreasing order with respect to
). Then obviously , where the diagonal en-

tries in the diagonal matrix are all nonnegative.
Since is not a all-zero matrix, is an element in the set

besides .
Theorem 5 establishes the necessary and sufficient condition

for the uniqueness of low-rank positive semidefinite solution
under compressed linear measurements. However, checking this
condition for a specific set of linear measurements seems to be
a hard problem and, in addition, it is not clear whether asymp-
totically there exist such linear compressed measurements sat-
isfying the given condition. So in Section III-B, we will inves-
tigate whether a set of linear measurements (namely the linear
measurement ) sampled from a certain distribution will
satisfy this condition.

B. The Null Space Analysis of the Gaussian Ensemble

We say that the linear operator
is sampled from an independent Gaussian ensemble if its th

operation, denoted by
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, is the inner product , where is
an symmetric matrix with independent random elements
in its upper triangular part. The diagonal elements of are dis-
tributed as real Gaussian random variables . The off-di-
agonal elements of are distributed as . Across
the index , the ’s are also sampled independently. One main
result of this paper is stated in the following theorem.

Theorem 6: Consider a linear operator
sampled from an independent Gaussian ensemble. Let

. Then there exists a constant , inde-
pendent of , such that with overwhelming probability as goes
to , any nonzero symmetric square matrix with its upper
triangular part from the null space of the linear operator has
at least negative eigenvalues, where is a constant that is
independent of . Thus with overwhelmingly high probability,
any positive semidefinite matrix of rank no larger than
will be the singleton in the set

.
Note that in Theorem 6, the constant depends on . The-

orem 6 confirms that there indeed exists a sequence of linear op-
erators such that every nonzero element in their null spaces nec-
essarily generates a symmetric matrix having a sufficiently large
number of negative eigenvalues. The “guaranteed” number
of negative eigenvalues is highly nontrivial in the sense that
grows proportionally with while the null space for the linear
operator has dimension at least ,
which grows proportionally with . This seems counterintu-
itive at first sight: a null space of such a large dimension should
have been able to accommodate at least one point which gen-
erates a symmetric matrix with very few or even none negative
eigenvalues.

The main difficulty in proving Theorem 6 is to show that for
all the nonzero symmetric matrices generated from the points in
the null space of the random linear operator , the claimed fact
holds universally with overwhelming probability. In fact, we
have the following probabilistic characterization with a short-
ened proof for the null space of the linear operator sampled from
the independent Gaussian Ensemble.

Lemma 3: If the linear operator
is sampled from independent Gaussian Ensemble, by

representing the vectors from the null space of by
column vectors, the distribution of

its null space is (almost everywhere) equivalent to the
distribution of a -dimensional sub-
space in whose basis can be represented by a

matrix whose ele-
ments are independent Gaussian random variables, for
elements in the rows corresponding to the diagonal elements
of and for elements in the rows corresponding
to the off-diagonal elements.

Proof: This lemma follows from the fact that a random
matrix with zero mean i.i.d. Gaussian distributed entries gen-
erates a random subspace whose distribution is rotationally in-
variant (namely the distribution of that random subspace does
not change when it is rotated by a unitary rotation). We also
note that if a random subspace has a rotationally invariant dis-
tribution, its null space also has a rotationally invariant distri-
bution, which again can be generated by a matrix with zero
mean i.i.d. Gaussian distributed entries of appropriate dimen-

sions (with probability 1, the dimension of this null space is
). With a normalization for the variance

of the Gaussian distributed entries, we have this lemma.
By Lemma 3, the null space of the linear operator

sampled from independent Gaussian Ensemble can be repre-
sented by where is a

matrix as mentioned
in Lemma 3.

We should first notice that in order to prove the property that
“any nonzero symmetric square matrix with its upper tri-
angular part from the null space of the linear operator has
at least negative eigenvalue,” we only need to restrict our
attention to prove that property for the set of symmetric ma-
trices generated by the set of points

in the null space of the linear op-
erator .

Building on this observation, we can proceed to divide
the formal Proof of Theorem 6 into three steps. First, since
we can not show directly our theorem for every point in
the null space, instead we first try to discretize the sphere

into a finite -net.
Formally, an -net is a subset

such that for every point in the set
, one can find in

such that . The following lemma is well known
in high dimensional geometry about the size estimate of such
a -net, for example, see [21].

Lemma 4: There is an -net of the unit
sphere of of cardinality less than

, which is no larger than
.

Second, using the large deviation technique or concentration
of measure result, we establish the relevant properties for the
symmetric matrices generated from these discrete points on the
-net, e.g., the symmetric matrices have a large number of nega-

tive eigenvalues with overwhelming probability. Third, we show
how property guarantees on the -net can be used to establish the
null space property for the whole null space of the linear oper-
ator . Sections III-C and D are then devoted to completing
these steps to prove Theorem 6.

C. Concentration for a Single Point

We take any point from the -net for the set
and its corresponding point

in the null space of the linear operator , where
is the random basis as mentioned in Lemma 3. We argue that

the symmetric matrix with upper triangular part generated
from has many negative eigenvalues with overwhelming prob-
ability. Obviously with the i.i.d. Gaussian probabilistic model
for , the elements of are independently Gaussian distributed

random variables on the diagonal and indepen-
dently Gaussian distributed on the off-diagonal.

Theorem 7: The smallest eigenvalues
of the symmetric matrix with its upper triangular part gen-
erated from are upper bounded by with probability

, where is determined from the semicircular
law is an arbitrarily
small positive number, is a constant as a function of
and but independent of , and is the indicator function.
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Proof: Theorem 7 can be derived from known large
deviations or concentration of measure results for the empir-
ical eigenvalue distribution of random symmetric Gaussian
matrix [1], [18]. The strategy is to show that the probability
distributions for eigenvalues where the smallest eigen-
values are not upper bounded by will be in a set of
small measure. Obviously, has real eigenvalues
arranged in a nondecreasing order and its spectral measure

, where
is the delta function. As in [1], we denote the space of

probability measure on as and will endow
with its usual weak topology. [1] then gives the following large
deviation result for the empirical eigenvalue distribution for the
matrix ,

Theorem 8 ([1]): Let , define the rate function

where is the noncommutative entropy
. Then

•
— is well defined over the set and takes its value

in ;
— is infinite as long as satisfies the following:

*
* there exists a subset of with a positive mass
but null logarithmic capacity, i.e., a set such that

and

— is a good rate function, namely is
a compact subset of for .

— is a convex function on .
— achieves its minimum value at a unique probability

measure on which is described by the Wigner’s Semi-
circle Law.

• The law of the spectral measure
satisfies a full large deviation principle with good rate func-
tion and in the scales , that is, for any open subset
of ,

for any closed subset of of

We take and determine from the semicircular law as
in the statement of Theorem 7. Then the set of spectral
measures satisfying the statement of Theorem 7 can be denoted
by , whose complement
(in the set of -dimensional spectral measure) is then

.
Now we take a continuous function equal to over the

region , equal to 0 on , and linear in between

over the region . Then the complement of is a
subset of the following:

where , and is the
integral of the function over .

This set is closed for the weak topology and so we can
apply the large deviation principle as in [1] to get that

with as defined in Theorem 8. However, from the definition of
and the function , we simply know that the semicircle law

does not belong to the set and so we can conclude that
. This is because the rate function is a good rate

function which achieves its unique minimum at the semicircle
law. So in summary, we can take in the statement of this
theorem as .

Following Theorem 7, we know that with overwhelming
probability, the symmetric matrix generated from a single
point on the -net will be very likely to have a large number
(proportional to ) of negative eigenvalues. In Section III-D,
we will show how to synthesize the results for isolated points
so that we can prove the eigenvalue claim for the null space of
the linear operator .

D. Concentration for the Null Space: -Net Analysis

Building on the concentration results for the single point on
the -net, we now begin proving the claims in Theorem 6 for all
the possible symmetric matrices generated from the set

where is a
matrix as mentioned in Lemma 3.

First, we make a simple observation regarding every
point on the Euclidean sphere

.
Since is an -net on the sphere, we can find a point

with such that . For the error term
, we can still find a point on the -net such that

. By iterating
this process, we get that any on the unit Euclidean sphere can
be expressed as , where for
and for .

Before we proceed further to look at the spectrum of the sym-
metric matrix generated from , we state the following
theorem by Hoffmann and Wielandt [19].

Theorem 9 [19]: Let , assume that and
are both normal, let be the eigenvalues of in some
given order, and let be the eigenvalues of in
some order. Then there exists a permutation of the integers

such that .
Now we can give a closer study of the symmetric matrix

generated from . From the -net decomposi-
tion, it follows that where is
the symmetric matrix generated from for .
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Since can be viewed as plus some perturbation,
from Theorem 9, there exists a permutation of the integers

such that

(III.2)

where , and , are the eigenvalues of
the and arranged in an increasing order, respectively.

But from the triangular inequality, we know

(III.3)

where we use the condition that, with overwhelmingly
high probability as is upper bounded
by simultaneously for all by choosing

appropriately (which we will show
soon), where is a chosen constant. Note
that can be a constant because scales as and
is the same for every .

We pick , small enough such that , and
let be determined from as in Theorem 7. Assume also
that the smallest eigenvalues of is upper bounded by

. We can then officially argue that the number, say , of
negative eigenvalues of , can not be small. In particular, we
will upper bound for . For whatever ordering
the eigenvalues of take,

(III.4)

because at least negative eigenvalues (which are all
smaller than ) of will be matched to nonnegative eigen-
values of in Theorem 9.

Connecting (III.2), (III.3) and (III.4), if ,
(otherwise already nicely bounded), then

, namely,
. If we pick

small enough, the number of negative eigenvalues of will
be proportionally growing with .

We have shown that, if for all is upper
bounded by , and the smallest eigenvalues of are
upper bounded by , then the number of negative eigenvalues
of every nonzero matrix from the null space would be at least

. However, these two
regularity conditions indeed will happen with overwhelming
probability by choosing appropriately.

From Theorem 7, for , with probability at most
, (where is a constant determined solely by

and ), the smallest eigenvalues of are upper
bounded by . Also, by a standard Chernoff bound or a large
deviation argument, for happens
with probability at most , where is a constant that
depends only on .

Now by a union bound over the -net, which has at most
discrete points, the two regularity conditions

will happen with overwhelming probability, if
and , namely,

and
. We can achieve this by taking large enough, but still

keeping , since we have ,
and .

It is necessary to clarify the relationships between the vari-
ables , and . We first pick and
then pick such that . As we state in Theorem
7 and its proof, is determined completely by from the
semicircular law; can be solely characterized as a function of

and . is another independent constant
which we pick, and the exponent is determined solely from

using the large deviation principle. We then pick such
that . In justifying the two reg-
ularity conditions, we finally determine
appropriately to let the union bound exponent overridden by the
two decaying exponents and .

Thus, we have arrived at a complete Proof of Theorem 6.

IV. SIMULATION

In the vector case, we generate a random 0–1 matrix
with i.i.d. entries and empirically study the uniqueness property
and the success of minimization for nonnegative vectors with
different sparsity. Each entry of takes value 1 with probability
0.2 and value 0 with probability 0.8. The size of is 50 200
and 100 200, respectively. For a sparsity , we select a support
set with size uniformly at random, and generate a
nonnegative vector on with i.i.d. entries uniformly on the
unit interval. Then we check whether

is singleton. This can be realized as follows. We minimize
and maximize the same objective function over , where

is a random vector in . Note that if is not a singleton,
then the set has measure 0.
Thus the probability that the minimizer and the maximizer are
the same when is not a singleton is 0. We generate several
different ’s and claim to be singleton if the minimizer and
the maximizer are the same for every . For each instance, we
also check whether minimization can recover from or
not. Under a given sparsity , we generate 200 ’s and repeat
the above procedure 200 times.

We fix to be 200, and is 50 in Fig. 2(a) and 100 in
Fig. 2(b). When increases from to , the support
size of a sparse vector which is a unique nonnegative solution
increases from to . Note that when ,
for this 0–1 matrix, the singleton property still exists linearly
in , while for a random Gaussian matrix, with overwhelming
probability no vector can be a unique nonnegative solution. Be-
sides, the thresholds where the singleton property breaks down
and where the fully recovery of minimization breaks down
are quite close.

In the matrix case, we generate a 40 40 matrix such that
all the elements are i.i.d. , then
has its diagonal elements distributed as and off-diag-
onal elements distributed as . We generate such
matrices ’s as the linear operator , is 500 and 600, re-
spectively, for comparison. is a low-rank positive semidef-
inite symmetric matrix. We increase the rank of from 0 to

, and for each fixed rank, generate 200 ’s randomly. For
each , we minimize and maximize the same objective func-
tion over the set

, where is random matrix with i.i.d.
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Fig. 2. Comparison of � recovery and singleton property for (a) 50� 200 0–1
matrix and (b) 100� 200 0–1 matrix (a) 50� 200 0–1 matrix, (b) 100� 200
0–1 matrix.

entries. Similarly to the vector case, if is not a singleton,
then the set has mea-
sure 0. Thus the probability that the minimizer and the max-
imizer are the same when is not a singleton is 0. We gen-
erate several different ’s and claim the set to be a singleton
if the minimizer and the maximizer of from the set

are the same for
every . As indicated by Fig. 3, when , the singleton
property holds if is at most 2, which is . When

increases to 600, the singleton property holds if is
at most 8, which is .

V. CONCLUSION

This paper studies the phenomenon that an underdetermined
system admits a unique nonnegative vector solution or a unique
positive semidefinite matrix solution. This uniqueness property
can potentially lead to more efficient sparse recovery algo-
rithms. We show that only for a class of matrices with a row span
intersecting the positive orthant that
could possibly be a singleton if is sparse enough. Among

Fig. 3. System of � measurements admitting a unique 40� 40 semidefinite
matrix solution. (a) � � ���. (b) � � ���.

these matrices, we are interested in 0–1 matrices which fit the
setup of network inference problems. For Bernoulli 0–1 ma-
trices, we prove that with high probability the unique solution
property holds for all -sparse nonnegative vectors where is

, instead of the previous result . For the adjacency
matrix of a general expander, the same phenomenon exists and
we further provide a closed-form constant ratio of to . One
future direction is to obtain uniqueness property threshold for a
given measurement matrix. So far, we have only discussed the
ideally sparse nonnegative vectors, but we would also like to
consider recovering approximately sparse nonnegative signal
vectors. In approximate sparse recovery problems, instead of
being a singleton, the feasible set can contain an infinite number
of solutions, but we conjecture its measure is “small.”

For the matrix case, we develop a necessary and sufficient
condition for a linear compressed operator to admit a unique fea-
sible positive semidefinite matrix solution. We further show that
this condition will be satisfied with overwhelmingly high proba-
bility for a randomly generated Gaussian linear compressed op-
erator with vastly different approaches from those used in vector
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case. Computing explicitly the threshold as a function of ,
for the uniqueness property to happen will be one part of future
works.
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