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Abstract
There are three key factors in a system of coupled oscillators that characterize
the interaction between them: coupling (how to affect), delay (when to affect)
and topology (whom to affect). The existing work on each of these factors has
mainly focused on special cases. With new angles and tools, this paper makes
progress in relaxing some assumptions on these factors. There are three main
results in this paper. Firstly, by using results from algebraic graph theory, a
sufficient condition is obtained that can be used to check equilibrium stability.
This condition works for arbitrary topology, generalizing existing results and
also leading to a sufficient condition on the coupling function which guarantees
that the system will reach synchronization. Secondly, it is known that identical
oscillators with sin() coupling functions are guaranteed to synchronize in phase
on a complete graph. Our results prove that in many cases certain structures such
as symmetry and concavity, rather than the exact shape of the coupling function,
are the keys for global synchronization. Finally, the effect of heterogenous
delays is investigated. Using mean field theory, a system of delayed coupled
oscillators is approximated by a non-delayed one whose coupling depends on
the delay distribution. This shows how the stability properties of the system
depend on the delay distribution and allows us to predict its behavior. In
particular, we show that for sin() coupling, heterogeneous delays are equivalent
to homogeneous delays. Furthermore, we can use our novel sufficient instability
condition to show that heterogeneity, i.e. wider delay distribution, can help
reach in-phase synchronization.

PACS number: 05.45.Xt

(Some figures may appear in colour only in the online journal)

1751-8113/13/505101+24$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/46/50/505101
mailto:em464@cornell.edu
mailto:atang@ece.cornell.edu
http://stacks.iop.org/JPhysA/46/505101


J. Phys. A: Math. Theor. 46 (2013) 505101 E Mallada and A Tang

1. Introduction

Systems of coupled oscillators have been widely studied in different disciplines ranging from
biology [1–5] and chemistry [6, 7] to engineering [8, 9] and physics [10, 11]. The possible
behavior of such systems can be complex. For example, the intrinsic symmetry of the network
can produce multiple limit cycles or equilibria with relatively fixed phases (phase-locked
trajectories) [12], which in many cases can be stable [13]. Also, the heterogeneity in the
natural oscillation frequency can lead to incoherence [14] or even chaos [15].

A particularly interesting question is whether the coupled oscillators will synchronize in
phase in the long run [16–20]. Besides its clear theoretical value, it also has rich applications
in practice.

In essence, there are three key factors in a system of coupled oscillators that characterize
the interaction between oscillators: coupling, delay and topology. For each of these, the existing
work has mainly focused on special cases as explained below. In this paper, further research
will be discussed on each of the three factors.

• Topology (whom to affect, section 3.2). Current results either restrict to complete graph or a
ring topology for analytical tractability [19], study local stability of topology independent
solutions over time-varying graph [21–23], or introduce dynamic controllers to achieve
synchronization for time-varying uniformly connected graphs [24, 25]. We develop a
graph-based sufficient condition which can be used to check equilibrium instability for
any fixed topology. It also leads to a family of coupling functions guaranteeing that the
system will reach global phase consensus for arbitrary connected undirected graphs using
only physically meaningful state variables.

• Coupling (how to affect, section 3.3). The classical Kuramoto model [14] assumes a sin()

coupling function. Our study suggests that certain symmetry and convexity structures
suffice to guarantee global synchronization. We show that most orbits that appear due to
symmetries on a complete graph are unstable provided that the coupling function is even
and concave on [0, π ] and its derivative is concave on [−π

2 , π
2 ].

• Delay (when to affect, section 4). Existing work generally assumes zero delay among
oscillators or requires them to be bounded up to a constant fraction of the period [26].
This is clearly unsatisfactory especially if the oscillating frequencies are high. We use
mean field theory to study unbounded delays by constructing a non-delayed phase model
that is equivalent to the original one in the large population limit. Using this novel
technique, we then show that when the system has sin() coupling, heterogeneous delays
and homogeneous delays are equivalent. Finally, we use our novel graph-based instability
condition to illustrate how a slight increase in the heterogeneity of the delays can make
certain non-in-phase equilibria unstable and therefore promote in-phase synchronization.

This paper focuses on weakly coupled oscillators, which can be either pulse-coupled or
phase-coupled. Although most of the results presented are for phase-coupled oscillators, they
can be readily extended for pulse-coupled oscillators (see, e.g., [27, 28]). It should be noted
that results in section 3 are independent of the strength of the coupling and therefore do not
require inclusion of the weak coupling assumption. Preliminary versions of this work have
been presented in [29, 30].

The paper is organized as follows. We describe pulse-coupled and phase-coupled oscillator
models, as well as their common weak coupling approximation, in section 2. Using some facts
from algebraic graph theory and potential dynamics in section 3.1, we present the negative cut
instability theorem in section 3.2.1 to check whether an equilibrium is unstable. This leads to
theorem 1 in section 3.2.2 which identifies a class of coupling functions that guarantee that
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the system always synchronizes in phase. It is well known that the Kuramoto model produces
global synchronization over a complete graph. In section 3.3, we demonstrate that a large
class of coupling functions, in which the Kuramoto model is a special case, guarantee the
instability of most of the limit cycles in a complete graph network. Section 4 is devoted to
the discussion of the effect of delay. An equivalent non-delayed phase model is constructed
whose coupling function is the convolution of the original coupling function and the delay
distribution. Using this approach, we show that for the Kuramoto model (with homogeneous
frequencies), heterogeneous delays and homogeneous delays are equivalent (section 4.1).
Finally, we show in section 4.2 that sometimes more heterogeneous delays among oscillators
can help reach synchronization. Our conclusions are presented in section 5.

2. Coupled oscillators

We consider two different models of coupled oscillators analyzed in the literature. The
difference between the models arises in the interactions between the oscillators, and their
dynamics can be quite different. However, when the interactions are weak (weak coupling),
both systems behave similarly and share the same approximation. This allows us to study them
under a common framework.

Each oscillator is represented by a phase θi in the unit circle S1 which in the absence of
coupling moves with constant speed θ̇i = ω. Here, S1 represents the unit circle, or equivalently
the interval [0, 2π ] with 0 and 2π identified (0 ≡ 2π ), and ω = 2π

T denotes the natural
frequency of the oscillation.

2.1. Pulse-coupled oscillators

In this model the interaction between oscillators is performed by pulses. An oscillator j sends
out a pulse whenever it crosses zero (θ j = 0). When oscillator i receives a pulse, it will change
its position from θi to θi + εκi j(θi). The function κi j represents how other oscillator actions
affect oscillator i and the scalar ε > 0 is a measure of the coupling strength. These jumps
can be modeled by a Dirac delta function δ satisfying δ(t) = 0 ∀t �= 0, δ(0) = +∞, and∫

δ(s)ds = 1. The coupled dynamics are represented by

θ̇i(t) = ω + εω
∑
j∈Ni

κi j(θi(t))δ(θ j(t − ηi j)), (1)

where ηi j > 0 is the propagation delay between oscillators i and j (ηi j = η ji), and Ni is
the set of i’s neighbors. The factor of ω in the sum is needed to keep the size of the jump
within εκi j(θi). This is because θ j(t) behaves like ωt when crosses zero and therefore the jump
produced by δ(θ j(t)) is of size

∫
δ(θ j(t))dt = ω−1 [28].

The coupling function κi j can be classified based on the qualitative effect it produces in
the absence of delay. After one period, if the net effect of the mutual jumps brings a pair of
oscillators closer, we call it attractive coupling. If the oscillators are brought further apart, it
is considered to be repulsive coupling. The former can be achieved, for instance, if κi j(θ ) � 0
for θ ∈ [0, π ) and κi j(θ ) � 0 for θ ∈ [π, 2π). See figure 1 for an illustration of an attractive
coupling κi j and its effect on the relative phases.

This pulse-like interaction between oscillators was first introduced by Peskin [2] in 1975
as a model of the pacemaker cells of the heart, although the canonic form did not appear in
the literature until 1999 [28]. In general, when the number of oscillators is large, there are
several different limit cycles besides the in-phase synchronization and many of them can be
stable [13].
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Figure 1. Pulse-coupled oscillators with attractive coupling. The jumps of oscillators i and j are
illustrated at the top. The bottom charts show the value of the coupling function at the instants
when either j or i send a pulse. After one cycle, both oscillators end up closer (attractive coupling).

The question of whether this system can collectively achieve in-phase synchronization
was answered for the complete graph case and zero delay by Mirollo and Strogatz in 1990
[20]. They showed that if κi j(θ ) is strictly increasing on (0, 2π) with a discontinuity in 0
(which resembles attractive coupling), then for almost every initial condition, the system can
synchronize in phase in the long run.

The two main assumptions of [20] are all to all communication and zero delay. Whether
in-phase synchronization can be achieved for arbitrary graphs has been an open problem for
over twenty years. On the other hand, when delay among oscillators is introduced the analysis
becomes intractable. Even in the case of two oscillators, there is a large number of possibilities
to be considered [31, 32].

2.2. Phase-coupled oscillators

In the model of phase-coupled oscillators, the interaction between neighboring oscillators i
and j ∈ Ni is modeled by change of the oscillating speeds. Although the speed change can
generally be a function of both phases (θi, θ j), we concentrate on the case where the speed
change is a function of the phase differences fi j(φ j(t −ηi j)−φi(t)). Thus, since the net speed
change of oscillator i amounts to the sum of the effects of its neighbors, the full dynamics is
described by

φ̇i(t) = ω + ε
∑
j∈Ni

fi j(φ j(t − ηi j) − φi(t)). (2)

The function fi j is usually called coupling function, and as before ηi j represents delay and Ni

is the set of neighbors of i.
A similar definition for attractive and repulsive couplings can be done in this model. We

say that the coupling function fi j is attractive if, without delays, the change in speeds brings
oscillators closer, and repulsive if they are brought apart. Figure 2 shows typical attractive
and repulsive coupling functions where arrows represent the speed change produced by the
other oscillator; if the pointing direction is counter clockwise, the oscillator speeds up, and
otherwise it slows down.
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Figure 2. Phase-coupled oscillators with attractive and repulsive coupling. The mutual influence
of oscillators i and j is illustrated at the top for both attractive (left) and repulsive (right) coupling.
The bottom charts show the corresponding coupling functions.

When fi j = K
N sin(), K > 0 (attractive coupling), this model is known as the classical

Kuramoto model [33]. Intensive research has been conducted on this model, but convergence
results are usually limited to cases with all to all coupling (Ni = N \{i}, i.e., complete graph
topology) and no delay (ηi j = 0), see e.g. [19, 34], or to some regions of the state space [26].

2.3. Weak coupling approximation

We now concentrate in the regime in which the coupling strength of both models is weak, i.e.
1 � ε > 0. For pulse-coupled oscillators, this implies that the effect of the jumps originated
by each neighbor can be approximated by their average [27]. For phase-coupled oscillators, it
implies that to the first order φi(t − ηi j) is well approximated by φi(t) − ωηi j.

The effect of these approximations allows us to completely capture the behavior of both
systems using the following equation where we assume that every oscillator has the same
natural frequency ω and only keep track of the relative difference using

φ̇i = ε
∑
j∈Ni

fi j(φ j − φi − ψi j). (3)

For pulse-coupled oscillators, the coupling function is given by

fi j(θ ) = ω

2π
κi j(−θ ), (4)

and the phase lag ψi j = ωηi j represents the distance that oscillator i’s phase can travel along
the unit circle during the delay time ηi j. Equation (4) also shows that the attractive/repulsive
coupling classifications of both models are in fact equivalent, since in order to produce the
same effect κi j and fi j should be mirrored, as illustrated in figures 1 and 2.

Equation (3) captures the relative change of the phases and therefore any solution to (3)
can be immediately translated to either (1) or (2) by adding ωt. For example, if φ∗ is an
equilibrium of (3), by adding ωt, we obtain a limit cycle in the previous models. Besides
the delay interpretation for ψi j, (3) is also known as a system of coupled oscillators with
frustration, see e.g. [35].

From now on we will concentrate on (3) with the understanding that any convergence
result derived will be immediately true for the original models in the weak coupling limit. We
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are interested in the attracting properties of phase-locked invariant orbits within T N , which
can be represented by φ(t) = ω∗t1N + φ∗, where 1N = (1, . . . , 1)T ∈ T N , and φ∗ and ω∗ are
solutions to

ω∗ = ε
∑
j∈Ni

fi j(φ
∗
j − φ∗

i − ψi j), ∀i. (5)

Whenever the system reaches one of these orbits, we say that it is synchronized or phase-
locked. Additionally, if all the elements of φ∗ are equal, we say that the system is synchronized
in-phase or that it is in-phase locked. It is easy to check that for a given equilibrium φ∗ of
(3), any solution of the form φ∗ + λ1N , with λ ∈ R, is also an equilibrium that identifies the
same limit cycle. Therefore, two equilibria φ1,∗ and φ2,∗ will be considered to be equivalent,
if both identifies the same orbit, or equivalently, if both belongs to the same connected set of
equilibria

Eφ∗ := {φ ∈ T N |φ = φ∗ + λ1N, λ ∈ R}. (6)

3. Effect of topology and coupling

In this section we concentrate on the class of coupling functions fi j that are symmetric ( fi j = f ji

∀i j), odd ( fi j(−θ ) = − fi j(θ )) and continuously differentiable. We also assume that there is
no delay within the network, i.e. ψi j = 0 ∀i j. Thus, (3) is reduced to

φ̇i = ε
∑
j∈Ni

fi j(φ j − φi). (7)

Remark 1. While the continuous differentiable assumption on fi j is technical, the symmetry
and odd assumptions have an intuitive interpretation: When fi j is symmetric and odd, the
effect of the oscillator j in i ( fi j(φ j − φi)) is equal in magnitude and opposite in sign to the
effect of i in j ( f ji(φi − φ j)), i.e. fi j(φ j − φi) = f ji(φ j − φi) = − f ji(φi − φ j). In other words,
there is a reciprocity in their mutual effect.

In the rest of this section we progressively show how with some extra conditions on fi j we
can guarantee in-phase synchronization for arbitrary undirected graphs. Since we know that
the network can have many other phase-locked trajectories besides the in-phase one, our target
is an almost global stability result [36], meaning that the set of initial conditions that does
not eventually lock in phase has zero measure. Later we show how most of the phase-locked
solutions that appear on a complete graph are unstable under some general conditions on the
structure of the coupling function.

3.1. Preliminaries

We now introduce some prerequisites used in our later analysis.

3.1.1. Algebraic graph theory. We start by reviewing basic definitions and properties from
graph theory [37, 38] that are used in the paper. Let G be the connectivity graph that describes
the coupling configuration. We use V (G) and E(G) to denote the set of vertices (i or j)
and undirected edges (e) of G. An undirected graph G can be directed by giving a specific
orientation σ to the elements in the set E(G). That is, for any given edge e ∈ E(G), we
designate one of the vertices to be the head and the other one to be the tail giving Gσ .

Although in the following definitions we need to give graph G a given orientation σ ,
the underlying connectivity graph of the system is assumed to be undirected. This is not a
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problem as the properties used in this paper are independent of a particular orientation σ and
they are therefore properties of the undirected graph G. Thus, to simplify notation we drop the
superscript σ from Gσ with the understanding that G is now an induced directed graph with
some fixed—but arbitrarily chosen—orientation.

We use P = (V −,V +) to denote a partition of the vertex set V (G) such that
V (G) = V − ∪ V + and V − ∩ V + = ∅. The cut C(P) associated with P, or equivalently
C(V −,V +), is defined as C(P) := {i j ∈ E(G)|i ∈ V −, j ∈ V +, or vice versa.}. Each partition
can be associated with a vector column cP where cP(e) = 1 if e goes from V − to V +,
cP(e) = −1 if e goes from V + to V − and cP(e) = 0 if e stays within either set.

There are several matrices associated with the oriented graph G that embed information
about its topology. However, the most significant one for our present work is the oriented
incidence matrix B ∈ R|V (G)|×|E(G)| where B(i, e) = 1 if i is the head of e, B(i, e) = −1 if i is
the tail of e and B(i, e) = 0 otherwise.

3.1.2. Potential dynamics. We now describe how our assumptions on fi j not only simplify
the dynamics considerably, but also allow us to use the graph theory properties introduced in
section 3.1.1 to gain a deeper understanding of (3).

While fi j being continuously differentiable is standard in order to study local stability
and sufficient to apply LaSalle’s invariance principle [39], the symmetry and odd assumptions
have a stronger effect on the dynamics.

For example, under these assumptions the system (7) can be compactly rewritten in a
vector form as

φ̇ = −εBF(BT φ), (8)

where B is the adjacency matrix defined in section 3.1.1 and the map F : E (G) → E (G) is

F(y) = ( fi j(yi j))i j∈E(G).

This new representation has several properties. First, from the properties of B one
can easily show that (5) can only hold with ω∗ = 0 for arbitrary graphs [16] (since
Nω∗ = ω∗1T

N1N = −ε1T
NBF(BT φ) = 0), which implies that every phase-locked solution

is an equilibrium of (7) and that every limit cycle of the original system (3) can be represented
by some E∗

φ on (7).
However, the most interesting consequence of (8) comes from interpreting F(y) as the

gradient of a potential function

W (y) =
∑

i j∈E(G)

∫ yi j

0
fi j(s) ds.

Then, by defining V (φ) = (W ◦ BT )(φ) = W (BT φ), (8) becomes a gradient descent law for
V (φ), i.e.,

φ̇ = −εBF(BT φ) = −εB∇W (BT φ) = −ε∇V (φ),

where in the last step above we used the property ∇(W ◦ BT )(φ) = B∇W (BT φ). This makes
V (φ) a natural Lyapunov function candidate since

V̇ (φ) = 〈∇V (φ), φ̇〉 = −ε|∇V (φ)|2 = −1

ε
|φ̇|2 � 0. (9)

Furthermore, since the trajectories of (8) are constrained into the N-dimensional torus
T N , which is compact, V (φ) satisfies the hypothesis of LaSalle’s invariance principle
(theorem 4.4 [39]), i.e. there is a compact positively invariant set, T N and a function
V : T N → R that decreases along the trajectories φ(t). Therefore, for every initial condition,
the trajectory converges to the largest invariant set M within {V̇ ≡ 0} which is the equilibria
set E = {φ ∈ T N |φ̇ ≡ 0} = ⋃

φ∗ Eφ∗ .
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Remark 2. The fact that symmetric and odd coupling induces potential dynamics is well
known in the physics community [40]. However, it has also been rediscovered in the control
community [17] for the specific case of sine coupling. Clearly, this does not suffice to show
almost global stability, since it is possible to have other stable phase-locked equilibrium sets
besides the in-phase one. However, if we can show that all the non-in-phase equilibria are
unstable, then almost global stability follows. That is the focus of the next section.

3.2. Negative cut instability condition

We now present the main results of this section. Our technique can be viewed as a generalization
of [19]. By means of algebraic graph theory, we provide a better stability analysis of the
equilibria under a more general framework. We further use the new stability results to
characterize fi j that guarantees almost global stability.

3.2.1. Local stability analysis. In this section we develop the graph theory based tools to
characterize the stability of each equilibrium. We will show that given an equilibrium φ∗ of
the system (8), with connectivity graph G and fi j as described in this section, if there exists a
cut C(P) such that the sum∑

i j∈C(P)

f ′
i j(φ

∗
j − φ∗

i ) < 0, (10)

the equilibrium φ∗ is unstable.
Consider first an equilibrium point φ∗. Then, the first order approximation of (8) around

φ∗ is

δφ̇ = −εB

[
∂

∂y
F(BT φ∗)

]
BT δφ,

where δφ := φ − φ∗ is the incremental phase variable, and ∂
∂y F(BT φ∗) ∈ R|E(G)|×|E(G)|is the

Jacobian of F(y) evaluated at BT φ∗, i.e., ∂
∂y F(BT φ∗) = diag({ f ′

i j(φ
∗
j − φ∗

i )}i j∈E(G)).

Now let A = −εB[ ∂
∂y F(BT φ∗)]BT and consider the linear system δφ̇ = Aδφ.Although it

is possible to numerically calculate the eigenvalues of A given φ∗ to study the stability, here
we use the special structure of A to provide a sufficient condition for instability that has nice
graph-theoretical interpretations.

Since A is symmetric, it is straight-forward to check that A has at least one positive
eigenvalue, i.e. φ∗ is unstable, if and only if xT Ax > 0. Now, given any partition P = (V −,V +),
consider the associated vector cP, define xP such that xi = 1

2 if i ∈ V + and xi = − 1
2 if i ∈ V −.

Then it follows from the definition of B that cP = BT xP which implies that
−1

ε
xT

PAxP = cT
P

[
∂

∂y
F(BT φ∗)

]
cP =

∑
i j∈C(P)

f ′
i j(φ

∗
j − φ∗

i ).

Therefore, when condition (10) holds, A = −εBDBT has at least one eigenvalue whose
real part is positive.

Remark 3. Equation (10) provides a sufficient condition for instability; it is not clear what
happens when (10) does not hold. However, it gives a graph-theoretical interpretation that can
be used to provide stability results for general topologies. That is, if the minimum cut cost is
negative, the equilibrium is unstable.

Remark 4. Since the weights of the graph f ′
i j(φ

∗
j − φ∗

i ) are functions of the phase difference,
(10) holds for any equilibria of the form φ∗ +λ1N . Thus, the result holds for the whole set Eφ∗

defined in (6).

8
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Figure 3. The network of six oscillators (example 4).

When (10) is specialized to P = ({i},V (G)\{i}) and fi j(θ ) = sin(θ ), it reduces to the
instability condition in lemma 2.3 of [19]; i.e.,∑

j∈Ni

cos(φ∗
j − φ∗

i ) < 0. (11)

However, (10) has a broader applicability spectrum as shown in the following example.

Example 1. Consider a six oscillators network as in figure 3, where each node is linked to its
four closest neighbors and fi j(θ ) = sin(θ ). Then, by symmetry, it is easy to verify that

φ∗ =
[

0,
π

3
,

2π

3
, π,

4π

3
,

5π

3

]T

(12)

is an equilibrium of (7).
We first study the stability of φ∗ using (11) as in [19]. By substituting (12) in cos(φ∗

j −φ∗
i )

∀i j ∈ E(G) we find that the edge weights can only take two values:

cos(φ∗
j − φ∗

i ) =
{

cos
(

π
3

) = 1
2 , if j = i ± 1 mod 6

cos
(

2π
3

) = − 1
2 , if j = i ± 2 mod 6

.

Then, since any cut that isolates one node from the rest (like C1 = C({1},V (G)\{1}) in
figure 3) will always have two edges of each type, their sum is zero. Therefore, (11) cannot
be used to determine stability.

If we now use condition (10) instead, we can explore a wider variety of cuts that can
potentially have smaller costs. In fact, if instead of C1 we sum over C2 = C({1, 2, 6}, {3, 4, 5}),
we obtain, ∑

i j∈C2

cos(φ∗
j − φ∗

i ) = −1 < 0,

which implies that φ∗ is unstable.
Figure 4 verifies the equilibrium instability. By starting with an initial condition

φ0 = φ∗ + δφ close to the equilibrium φ∗, we can see how the system slowly starts to
move away from φ∗ towards a stable equilibrium set.

Furthermore, we can study the whole family of non-isolated equilibria given by

φ∗ =
[
ε1,

π

3
+ ε2,

2π

3
+ ε3, π + ε1,

4π

3
+ ε2,

5π

3
+ ε3

]T

(13)

9
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−0.5

0

0.5

1

1.5

2 1 2 3 4 5 6

t

φi

π

Figure 4. Unstable equilibrium φ∗. Initial condition φ0 = φ∗+δp, where δp is a small perturbation.
The small perturbation gets amplified showing that the equilibrium is unstable.

Figure 5. Minimum cut value C∗(λ1, λ2) showing that the equilibria (13) are unstable.

where ε1, ε2, ε3 ∈ R, which due to remark 4, we can reduce (13) to

φ∗ =
[

0,
π

3
+ λ1,

2π

3
+ λ2, π,

4π

3
+ λ1,

5π

3
+ λ2

]T

(14)

with λ1 = ε2 − ε1 and λ2 = ε3 − ε1.
Instead of focusing on only one cut, here we compute the minimum cut value (10) over

the 31 possible cuts, i.e. C∗(λ1, λ2) := minP
∑

i j∈C(P) f ′
i j(φ j(λ1, λ2)

∗ − φ∗
i (λ1, λ2)). Figure 5

shows the value of C∗(λ1, λ2) for λi ∈ [−π, π ]. Since C∗(λ1, λ2) is 2π -periodic on each
variable and its value is negative for every λ1, λ2 ∈ [−π, π ], the family of equilibria (14) (and
consequently (13)) is unstable.

3.2.2. Almost global stability. Condition (10) also provides insight on which class of coupling
functions can potentially give us almost global convergence to the in-phase equilibrium set
E1N . If it is possible to find some fi j with f ′

i j(0) > 0, such that for any non-in-phase equilibrium
φ∗, there is a cut C with

∑
i j∈C f ′

i j(φ
∗
j − φ∗

i ) < 0, then the in-phase equilibrium set will be
almost globally stable [13]. The main difficulty is that for general fi j and arbitrary network G,
it is not easy to locate every phase-locked equilibria and it is therefore not simple to know in
what region of the domain of fi j the slope should be negative.

10
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We now concentrate on the one-parameter family of functions Fb, with b ∈ (0, π ), such
that fi j ∈ Fb whenever fi j is symmetric, odd, continuously differentiable and

• f ′
i j(θ; b) > 0,∀θ ∈ (0, b) ∪ (2π − b, 2π), and

• f ′
i j(θ; b) < 0,∀θ ∈ (b, 2π − b).

See figure 2 for an illustration with b = π
4 . Also note that this definition implies that if

fi j(θ; b) ∈ Fb, the coupling is attractive and fi j(θ; b) > 0 ∀θ ∈ (0, π ). This last property will
be used later. We also assume the graph G to be connected.

In order to obtain almost global stability we need b to be small. However, since the
equilibria position is not known a priori, it is not clear how small b should be or if there is any
b > 0 such that all non-trivial equilibria are unstable. Therefore, we first need to estimate the
region of the state space that contains every non-trivial phase-locked solution.

Let I be a compact connected subset of S1 and let l(I) be its length, e.g., if I = S1 then
l(I) = 2π . For any S ⊂ V (G) and φ ∈ T N , define d(φ, S) as the length of the smallest interval
I such that φi ∈ I ∀i ∈ S, i.e.

d(φ, S) = l(I∗) = min
I:φi∈I,∀i∈S

l(I).

Using this metric, together with the aid of theorem 2.6 of [16], we can identify two very
insightful properties of the family Fb whenever the graph G is connected.

Lemma 1. If φ∗ is an equilibrium point of (8) with d(φ∗,V (G)) � π , then either φ∗ is an
in-phase equilibrium, i.e. φ∗ = λ1N for λ ∈ R, or has a cut C with f ′

i j(φ
∗
j − φ∗

i ) < 0 ∀i j ∈ C.

Proof. Since d(φ∗,V (G)) � π , all the phases are contained in a half circle and for the
oscillator with smallest phase i0, all the phase differences (φ∗

j − φ∗
i0
) ∈ [0, π ]. However,

since fi j(·; b) ∈ Fb implies fi j(θ; b) � 0 ∀θ ∈ [0, π ] with equality only for θ ∈ {0, π},
φ̇∗

i0
= ∑

j∈Ni0
fi j(φ

∗
j − φ∗

i0
) = 0 can only hold if φ∗

j − φ∗
i0

∈ {0, π} ∀ j ∈ Ni0 . Now let
V − = {i ∈ V (G) : d(φ∗, {i, i0}) = 0} and V + = V (G)\V −. If V − = V (G), then φ∗ is an
in-phase equilibrium. Otherwise, ∀i j ∈ C(V −,V +), f ′

i j(φ
∗
j − φ∗

i ) = f ′
i j(π ) < 0. �

We are now ready to establish a bound on the value of b that guarantees the instability of
the non-in-phase equilibria.

Lemma 2. Consider fi j(·; b) ∈ Fb ∀i j ∈ E(G) and arbitrary connected (undirected)
graph G. Then, for any b � π

N−1 and non-in-phase equilibrium φ∗, there is a cut C with
f ′
i j(φ

∗
j − φ∗

i ; b) < 0,∀i j ∈ C

Proof. Suppose there is a non-in-phase equilibrium φ∗ for which no such cut C exists. Let
V −

0 = {i0} and V +
0 = V (G)\{i0} be a partition of V (G) for some arbitrary node i0.

Since such C does not exist, there is some edge i0 j1 ∈ C(V −
0 ,V +

0 ), with j1 ∈ V +
0 , such

that f ′
i0 j1

(φ∗
j1

− φ∗
i0
; b) � 0. Move j1 from one side to the other of the partition by defining

V −
1 := V −

0 ∪ { j1} and V +
1 := V +

0 \{ j1}. Now since f ′
i0 j1

(φ∗
j1

− φ∗
i0
; b) � 0, then

d(φ∗,V −
1 ) � b.

In other words, both phases should be within a distance smaller than b.
Now repeat the argument k times. At the kth iteration, given V −

k−1, V +
k−1, again we can find

some ik−1 ∈ V −
k−1, jk ∈ V +

k−1 such that ik−1 jk ∈ C(V −
k−1,V +

k−1) and f ′
ik−1 jk

(φ∗
jk

− φ∗
ik−1

; b) � 0.
Also, since at each step d(φ∗, {ik−1, jk}) � b,

d(φ∗,V −
k ) � b + d(φ∗,V −

k−1).

Thus by solving the recursion we get: d(φ∗,V −
k ) � kb.

11
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After N − 1 iterations we have V −
N−1 = V (G) and d(φ∗,V (G)) � (N − 1)b. Therefore,

since b � π
N−1 , we obtain

d(φ∗,V (G)) � (N − 1)
π

N − 1
= π.

Then, by lemma 1 φ∗ is either an in-phase equilibrium or there is a cut C with f ′
i j(φ

∗
j −φ∗

i ) < 0
∀i j ∈ C. Either case gives a contradiction to assuming that φ∗ is a non-in-phase equilibrium
and C does not exist. Therefore, for any non-in-phase φ∗ and b � π

N−1 , we can always find a
cut C with f ′

i j(φ
∗
j − φ∗

i ; b) < 0, ∀i j ∈ C. �

Lemma 2 allows us to use our cut condition (10) on every non-in-phase equilibrium. Thus,
since (8) is a potential dynamics (cf section 3.1.2), from every initial condition the system
converges to the set of equilibria E. But when b � π

N−1 the only stable equilibrium set inside
E is the in-phase set E1N . Thus, E1N set is globally asymptotically stable. We have summarized
this result in the following theorem.

Theorem 1 (Almost global stability). Consider fi j(θ; b) ∈ Fb and an arbitrary connected
graph G. Then, if b � π

N−1 , the in-phase equilibrium set E1N is almost globally asymptotically
stable.

This result provides a sufficient condition for almost global asymptotic stability to the
in-phase equilibrium set E1N . Although found independently, the same condition was proposed
for a specific piecewise linear fi j in [41]. Here we extend [41] in many aspects. For example,
instead of assuming equal coupling for every edge, our condition describes a large family of
coupling functions Fb where each fi j can be taken independently from Fb. Also, in [41] the
construction of fi j(θ ) assumes a discontinuity on the derivative at θ = b. This can pose a
problem if the equilibrium φ∗ happens to have phase differences φ∗

j −φ∗
i = b. Here we do not

have this problem as fi j is continuously differentiable.
The condition b � π

N−1 implies that, when N is large, fi j should be decreasing in most of
its domain. Using (4) this implies that κi j should be increasing within the region (b, 2π − b),
which is similar to the condition on [20] and equivalent when b → 0. Thus, theorem 1 confirms
the conjecture of [20] by extending their result to arbitrary topologies and a more realistic
continuous κi j for the system (1) in the weak coupling limit.

3.3. Complete graph topology with a class of coupling functions

In this subsection, we investigate how conservative the value of b found in section 3.2.2 is
for the complete graph topology. We are motivated by the results of [19] which show that
f (θ ) = sin(θ ) (b = π

2 ) with complete graph topology ensures almost global synchronization.
Since for general f it is not easy to characterize all the possible system equilibria, we

study the stability of the equilibria that appear due to the equivalence of (8) with respect to
the action group SN × T 1, where SN is the group of permutations of the N coordinates and
T 1 = [0, 2π) represents the group action of phase shift of all the coordinates, i.e. the action
of δ ∈ T 1 is φi �→ φi + δ ∀i. Readers should refer to [12, 16] for a detailed study of the effect
of this property.

These equilibria are characterized by the isotropy subgroups � of SN × T 1 that keep them
fixed, i.e., γφ∗ = φ∗ ∀γ ∈ �. In [12] it was shown that this isotropy subgroups take the form
of

(Sk0 × Sk1 × . . . × SklB−1 )
m

� Zm

12
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Figure 6. Equilibria with isotropy (Sk0 × Sk1 × Sk2 )4
� Z4 (left) and (Sk )

8
� Z8 (right).

where ki and m are positive integers such that (k0+k1+. . .+klB−1)m = N, S j is the permutation
subgroup of SN of j-many coordinates and Zm is the cyclic group with action φi �→ φi + 2π

m .
The semi-product � represents the fact that Zm does not commute with the other subgroups.

In other words, each equilibria with isotropy (Sk0 ×Sk1 × . . .×SklB−1 )
m

�Zm is conformed
by lB shifted constellations Cl (l ∈ {0, 1, . . . lB − 1}) of m evenly distributed blocks, with kl

oscillators per block. We use δl to denote the phase shift between constellation C0 and Cl . See
figure 6 for examples of these types of equilibria.

Here we will show that under mild assumptions on f and for b = π
2 most of the equilibria

found with these characteristics are unstable. We first study all the equilibria with m even. In
this case, there is a special property that can be exploited.

That is, when f ∈ F π
2

such that f is even around π
2 , we have

gm(δ) :=
m−1∑
j=0

f

(
2π

m
j + δ

)

=
m/2−1∑

j=0

f

(
2π

m
j + δ

)
+ f

(
π + 2π

m
j + δ

)

=
m/2−1∑

j=0

f

(
2π

m
j + δ

)
+ f

((
3π

2
+ 2π

m
j + δ

)
− π

2

)

=
m/2−1∑

j=0

f

(
2π

m
j + δ

)
+ f

(
−

(
2π

m
j + δ

))

=
m/2−1∑

j=0

f

(
2π

m
j + δ

)
− f

(
2π

m
j + δ

)
= 0 (15)

where the third step comes from f being even around π/2 and 2π -periodic, and the fourth
from f being odd.

Having gm(δ) = 0 is the key to prove the instability of every equilibria with even m. It
essentially states that the aggregate effect of one constellation Cl on any oscillator j ∈ V (G)\Cl

is zero when m is even, and therefore any perturbation that maintains Cl has null effect on j.
This is shown in the next proposition.

Theorem 2 (Instability for even m). Given an equilibrium φ∗ with isotropy (Sk1 × Sk2 × . . . ×
SklB

)m
� Zm and f ∈ F π

2
even around π

2 . Then, if m is even, φ∗ is unstable.

Proof. We will show the instability of φ∗ by finding a cut of the network satisfying (10). Let
V0 ⊂ V (G) be the set of nodes within one of the blocks of the constellation C0 and consider

13
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Figure 7. Cut of theorem 2, the red block represents one possible set V0.

the partition induced by V0 as shown in figure 7, i.e. P = (V0,V (G)\V0). Due to the structure
of φ∗, (10) becomes

∑
i j∈C(P)

f ′(φ∗
j − φ∗

i ) = −k1 f ′(0) +
lB∑

l=1

klg
′
m(δl ),

where g′
m(δ) is the derivative of gm and δl is the phase shift between the C0 and Cl . Finally,

since by assumptions gm(δ) ≡ 0 ∀δ it follows that g′
m(δ) ≡ 0 and∑

i j∈C(P)

f ′
i j(φ

∗
j − φ∗

i ) = −k1 f ′(0) < 0.

Therefore, by (10), φ∗ is unstable. �

The natural question that arises is whether similar results can be obtained for m odd. The
main difficulty in this case is that gm(δ) = 0 does not hold since we no longer evaluate f at
points with phase difference equal to π such that they cancel each other. Therefore, an extra
monotonicity condition needs to be added in order to partially answer this question. These
conditions and their effects are summarized in the following claims.

Lemma 3 (Monotonicity). Given f ∈ F π
2

such that f is strictly concave for θ ∈ [0, π ], then

f ′(θ ) − f ′(θ − φ) < 0, 0 � θ − φ < θ � π (16)

f ′(θ ) − f ′(θ + φ) < 0, −π � θ < θ + φ � 0. (17)

Proof. The proof is a direct consequence of the strict concavity of f . Since f (θ ) is strictly
concave, then basic convex analysis shows that f ′(θ ) is strictly decreasing within [0, π ].
Therefore, the inequality (16) follows directly from the fact that θ ∈ [0, π ],θ − φ ∈ [0, π ]
and θ − φ < θ . To show (17) it suffices to notice that since f is odd ( f ∈ F π

2
), f is strictly

convex in [π, 2π ]. The rest of the proof is analogous to (16). �

Lemma 4 ( f ′ Concavity). Given f ∈ F π
2

such that f ′ is strictly concave for θ ∈ [−π
2 , π

2 ].
Then for all m � 4, f ′( π

m ) � 1
2 f ′(0).

Proof. Since f ′(θ ) is concave for θ ∈ [−π, π ] then it follows

f ′
(π

m

)
= f ′

(
λm0 + (1 − λm)

π

2

)
> λm f ′(0) + (1 − λm) f ′

(π

2

)
> λm f ′(0)

14
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Figure 8. Cut used in theorem 3. The dots in red represent all the oscillators of some maximal set
S with d(φ∗, S) < 4π

m .

where λm = m−2
m . Thus, for m � 4, λm � 1

2 and

f ′
(π

m

)
>

1

2
f ′(0)

as desired. �
Now we show the instability of any equilibria with isotropy (Sk1 × Sk2 × . . .× SklB

)m
� Zm

for m odd and greater or equal to 7.

Theorem 3 (Instability for m � 7 and odd). Suppose f ∈ F π
2

with f concave in [0, π ] and
f ′ concave in [−π

2 , π
2 ], then for all m = 2k + 1 with k � 3 the equilibria φ∗ with isotropy

(Sk1 × Sk2 × . . . × SklB
)m

� Zm are unstable.

Proof. As in theorem 2 we will use our cut condition to show the instability of φ∗. Thus, we
define a partition P = (S,V (G)\S) of V (G) by taking S to be a maximal subset of V (G) such
that d(φ, S) < 4π

m , see figure 8 for an illustration of P. Notice that any of these partitions will
include all the oscillators of two consecutive blocks of every constellation.

Instead of evaluating the total sum of the weights in the cut, we will show that the sum
of edge weights of the links connecting the nodes of one constellation in S with the nodes
of a possibly different constellation in V (G)\S is negative. In other words, we will focus on
showing ∑

i j∈Kl1 l2

f ′(φ∗
j − φ∗

i ) < 0 (18)

where Kl1l2 = {i j : i ∈ Cl1 ∩ S, j ∈ Cl2 ∩ V (G)\S}.
Given any subset of integers J, we define

gJ
m(δ) = gm(δ) −

∑
j∈J

f

(
2π

m
j + δ

)
.

Then, we can rewrite (18) as∑
i j∈Kl1 l2

f ′(φ∗
j − φ∗

i ) = (
g{0,1}

m

)′
(δl1l2 ) + (

g{−1,0}
m

)′
(δl1l2 )

= 2g′
m(δl1l2 ) − f ′

(
δl1l2 + 2π

m

)
− 2 f ′(δl1l2 ) − f ′

(
δl1l2 − 2π

m

)
(19)

where δl1l2 ∈ [0, 2π
m ] is the phase shift between the two constellations. Then, if we can show

that for all δ ∈ [0, 2π
m ] (19) is less than zero, for any values of l1 and l2, (18) will be satisfied.
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Since f is odd and even around π
2 , f ′ is even and odd around π

2 and g′
m(δ) can be rewritten

as

g′
m(δ) = f ′(δ) +

∑
1�| j|�� k

2 �

{
f ′

(
δ + 2π

m
j

)
− f ′

(
δ − sgn( j)

π

m
+ 2π

m
j

)}

−
[

f ′
(
δ + π

m
k
)

+ f ′
(
δ − π

m
k
)]

1[k odd]

where 1[k odd] is the indicator function of the event [k odd], the sum is over all the integers j
with 1 � | j| � � k

2� and k = m−1
2 .

The last term only appears when k is odd and in fact it is easy to prove that it is always
negative, as shown in the following calculation:

− f ′
(
δ + π

m
k
)

− f ′
(
δ − π

m
k
)

= − f ′
(π

m
k + δ

)
− f ′

(π

m
k − δ

)
= − f ′

(π

2
− π

2m
+ δ

)
− f ′

(π

2
− π

2m
− δ

)
= f ′

(π

2
− δ + π

2m

)
− f ′

(π

2
− δ − π

2m

)
= f ′(θ ) − f ′(θ − φ) < 0

where in step one we used the fact of f ′ being even, in step two we used k = m−1
2 and in step

three we used f ′ being odd around π
2 . The last step comes from substituting θ = π

2 − δ + π
2m ,

φ = π
m and applying lemma 3, since for m � 7 we have 0 � θ − φ < θ � π .

Then it remains to show that the terms of the form f ′(δ + 2π
m j) − f ′(δ − sgn( j) π

m + 2π
m j)

are negative for all j s.t. 1 � | j| � � k
2�. This is indeed true when j is positive since for all

δ ∈ [0, 2π
m ] we get

0 � δ − π

m
+ 2π

m
j < δ + 2π

m
j � π, for 1 � j �

⌊
k

2

⌋
and thus we can apply again lemma 3.

When j is negative, there is one exception in which lemma 3 cannot be used since

−π � δ + 2π

m
j < δ + 2π

m
j + π

m
� 0, ∀δ ∈

[
0,

2π

m

]

only holds for −� k
2� � j � −2. Thus, the term corresponding to j = −1 cannot be directly

eliminated.
Therefore, by keeping only the terms of the sum with j = ±1, g′

m is strictly upper bounded
for all δ ∈ [0, 2π

m ] by

g′
m(δ) < f ′(δ) + f ′

(
δ − 2π

m

)
− f ′

(
δ − π

m

)
+ f ′

(
δ + 2π

m

)
− f ′

(
δ + π

m

)
. (20)

Now, substituting (20) in (19) we get∑
i j∈Kl1 l2

f ′(φ∗
j − φ∗

i ) < f ′
(

δ − 2π

m

)
− 2 f ′

(
δ − π

m

)
+ f ′

(
δ + 2π

m

)
− 2 f ′

(
δ + π

m

)

� f ′
(

δ − 2π

m

)
− 2 f ′

(
δ − π

m

)
− f ′

(
δ + π

m

)

� f ′
(

δ − 2π

m

)
− 2 f ′

(
δ − π

m

)
where in the last step we used the fact that for m � 6 and δ ∈ [0, 2π

m ], f ′(δ + π
m ) � 0.
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Finally, since for δ ∈ [0, 2π
m ] f ′(δ − 2π

m ) is strictly increasing and f ′(δ − π
m ) achieves its

minimum for δ ∈ {0, 2π
m }, then

f ′
(

δ − 2π

m

)
− 2 f ′

(
δ − π

m

)
� f ′(0) − 2 f ′

(π

m

)
� 0

where the last inequality follows from lemma 4.
Therefore, for all m odd greater or equal to 7 we obtain∑

i j∈Kl1 l2

f ′(φ∗
j − φ∗

i ) < f ′(0) − 2 f ′
(π

m

)
� 0

and since this result is independent on the indices l1, l2, then

∑
i j∈C(S,V (G)\S)

f ′(φ∗
j − φ∗

i ) =
lB∑

l1=1

lB∑
l2=1

∑
i j∈Kl1 l2

f ′(φ∗
j − φ∗

i ) < 0

and thus φ∗ is unstable. �

4. Effect of delay

In this section, we study how delay can change the stability in a network of weakly coupled
oscillators. Using mean field theory, we construct a non-delayed system with the same
continuum limit. This allows us to use our instability cut condition as well as other tools
available in the literature to study the effect of heterogeneous delays on the system’s behavior.
In particular, we show that for Kuramoto oscillators heterogeneous and homogeneous delays
are equivalent, and that large heterogeneous delays can help reach synchronization, which are
both a bit counterintuitive conclusions. Our analysis significantly generalizes previous related
studies for general coupling functions [28, 42, 43] and complements the study of Kuramoto
oscillators in [44, 45] by characterizing the parameters of the delay distribution that define the
behavior of the system when the frequencies are homogeneous.

Once delay is introduced in the system of coupled oscillators, the problem becomes
fundamentally harder. For example, for pulse-coupled oscillators, the reception of a pulse no
longer gives accurate information about the relative phase difference �φi j = φ j − φi between
the two interacting oscillators. Before, at the exact moment when i received a pulse from j, φ j

was zero and the phase difference was estimated locally by i as �φi j = −φi. However, now
when i receives the pulse, the difference becomes �φi j = −φi − ψi j. Therefore, the delay
propagation acts as an error introduced in the phase difference measurement and unless some
information is known about this error, it is impossible to predict the behavior. Moreover, as
we will see later, slight changes in the distribution can produce nonintuitive behaviors.

We will consider the case where the coupling between oscillators is all to all and identical
(Ni = N \{i}, ∀i ∈ N and fi j = f ∀i, j). And assume the phase lags ψi j are randomly and
independently chosen from the same distribution with probability density g(ψ). By letting
N → +∞ and ε → 0 while keeping εN =: ε̄ a constant, (3) becomes

v(φ, t) := ω + ε̄

∫ π

−π

∫ +∞

0
f (σ − φ − ψ)g(ψ)ρ(σ, t) dψ dσ, (21)

where ρ(φ, t) is a time-variant normalized phase distribution that keeps track of the fraction
of oscillators with phase φ at time t, and v(φ, t) is the velocity field that expresses the net
force that the whole population applies to a given oscillator with phase φ at time t. Since the
number of oscillators is preserved at any time, the evolution of ρ(φ, t) is governed by the
continuity equation
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Figure 9. Effect of delay in coupling shape. The delay distribution g modifies the shape of the
coupling function H of the equivalent system (23) according to (24). This has a significant impact
on the behavior of the system.

∂

∂t
ρ(φ, t) + ∂

∂φ
(ρ(φ, t)v(φ, t)) = 0 (22)

with the boundary conditions ρ(0, t) ≡ ρ(2π, t).
Equations (21)–(22) are not analytically solvable for general f and g. Therefore, instead

of studying (21)–(22), here we use a different strategy. We consider the non-delayed system
of the form

φ̇i = ω + ε
∑
j∈Ni

H(φ j − φi), (23)

where

H(θ ) = ( f ∗ g) (θ ) =
∫ +∞

0
f (θ − ψ)g(ψ) dψ (24)

is the convolution between f and g.
Although (23) is quite different from (3) and thus has a different behavior, both systems

have the same continuum limit since the velocity field of (23) is given by

vH (φ, t) = ω + ε̄

∫ 2π

0
H(σ − φ)ρ(σ, t) dσ

= ω + ε̄

∫ 2π

0

(∫ +∞

0
f ((σ − φ) − ψ)g(ψ) dψ

)
ρ(σ, t) dσ

= v(φ, t),

where in the first and second steps we used (24) and (21) respectively. Therefore, as N grows,
(23) starts to become a good approximation of (3) and therefore can be analyzed to understand
the behavior of (3).

Equations (23)–(24) also unveil the significant impact that the delay distribution may
have in the system. For example, figure 9 shows how the underlying delay (in this
case the delay distribution) determines what type of coupling (attractive or repulsive)
produces synchronization. The original function f produces repulsive coupling, whereas the
corresponding H is attractive. In fact, as we will soon see, the distribution of delay can not
only qualitatively affect the type of coupling but it can also modify the stability of certain
phase-locked limit cycles. In the rest of this section, we will use the system (23) to study
the effect of heterogeneous delays on (3). Our analysis builds on the local stability analysis
of section 3 and the analysis of non-delayed coupled oscillators in [46]. We also provide
numerical simulations to verify our predictions.

4.1. Kuramoto oscillators

We first consider the effect of delay when f (θ ) = K sin(θ ), i.e. when (3) is the Kuramoto model
[14]. Although this problem has been intensively studied [44, 45, 47, 48] for the heterogeneous
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frequency case using a local stability analysis on (22), our approach unveils new significant
implications. We show that when the frequencies are homogeneous, the Kuramoto model with
heterogenous delays can be reduced to the homogeneous delay case with possibly different
coupling gain. This has been numerically observed in [44] but not theoretically proved.
Moreover, we characterize the unique two parameters of the delay distribution that govern the
global behavior of the system.

We begin by computing (24). When f (θ ) = K sin(θ ), H(θ ) can be easily calculated:

H(θ ) =
∫ +∞

0
K sin(θ − ψ)g(ψ) dψ

= K
∫ +∞

0
�[ei(θ−ψ)g(ψ)] dψ = K�

[
eiθ

∫ +∞

0
e−iψg(ψ) dψ

]
= K�[eiθCe−iξ ] = KC sin(θ − ξ )

where � is the imaginary part of a complex number, i.e. �[a + ib] = b. The values of C > 0
and ξ are calculated using the identity

Ceiξ =
∫ +∞

0
eiψg(ψ) dψ. (25)

This complex number, usually called the ‘order parameter’, provides a measure of how the
phase lags are distributed within the unit circle. It can also be interpreted as the center of mass
of the lags ψi j’s when they are thought of as points (eiψi j ) within the unit circle S1. Thus, when
C ≈ 1, the ψi j’s are mostly concentrated around ξ . When C ≈ 0, the delay is distributed such
that

∑
i j eiψi j ≈ 0. Thus, the equivalent non-delayed system (23) becomes

φ̇i = ω + εKC
∑
j∈Ni

sin(φ j − φi − ξ ). (26)

In other words, when N → +∞ and the natural frequencies are homogeneous, the Kuramoto
model with heterogeneous delays behaves as if the delays were homogenous, with ηi j = ξ

ω∀i j.
Furthermore, we can see how the distribution of g(ψ) has a direct effect on the dynamics

through the parametersC and ξ defined in (25). For example, when the delays are heterogeneous
enough such that C ≈ 0, the coupling term disappears and therefore makes synchronization
impossible. A complete study of (26) under the context of superconducting Josephson
arrays was performed in [46]. There the authors characterized the condition for in-phase
synchronization in terms of K and Ceiξ . More precisely, when KCeiξ is on the right half of
the plane (KC cos(ξ ) > 0), the system almost always synchronizes. However, when KCeiξ is
on the left half of the plane (KC cos(ξ ) < 0), the system moves towards an incoherent state
where all of the oscillators’ phases spread around the unit circle such that its order parameter,
i.e. 1

N

∑N
l=1 eiφl ,becomes zero.

We now provide simulation results to illustrate how (26) becomes a good approximation
of the original system when N is large enough. We simulate the original repulsive (K < 0)
sine-coupled system with heterogeneous delays and its corresponding approximation (26). Two
different delay distributions, illustrated in figure 10, were selected such that their corresponding
order parameters lie in different half-planes.

The same simulation is repeated for N = 5, 10, 50. Figure 11 shows that when N is small,
the phases’ order parameter of the original system (in red/blue) draws a trajectory which is
completely different with respect to its approximation (in green). However, as N grows, in
both cases the trajectories become closer and closer. Since K < 0, the trajectory of the system
with wider distribution (C cos ξ < 0) drives the order parameter towards the boundary of the
circle, i.e., heterogeneous delay leads to homogeneous phase.
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Figure 10. Delay distributions and their order parameter Ceiξ .

Figure 11. Repulsive sine coupling with heterogeneous delays: the evolution of the order parameter
of the system (3) with K < 0 (repulsive) and delays drawn from the delay distribution of figure 10
are shown. The colors match the colors of the corresponding distributions. The green trajectory
corresponds to the non-delayed approximation (26). As N grows the trajectories become closer.

4.2. Effect of heterogeneity

We now explain a more subtle effect that can be produced by heterogeneity. Consider the system
in (23) where H is odd and continuously differentiable. Then, from section 3, all the oscillators
eventually end up running at the same speed ω with fixed phase difference such that the sum∑

i∈Ni
H(φ j − φi) cancels ∀i. Moreover, we can apply (10) to assess the stability of these

orbits. Therefore, if we can find a cut C of the network such that
∑

i j∈C H ′(φ∗
j − φ∗

i ) < 0,the
phase-locked solution will be unstable.

Although this condition is for non-delayed phase-coupled oscillators, the result of this
section allows us to translate it for systems with delay. Since H is the convolution of the
coupling function f and the delay distribution function g, we can obtain H ′(φ∗

j − φ∗
i ) < 0,

even when f ′(φ∗
j −φ∗

i ) > 0. This usually occurs when the convolution widens the region with
a negative slope of H. See figure 9 for an illustration of this phenomenon.

20



J. Phys. A: Math. Theor. 46 (2013) 505101 E Mallada and A Tang

(a)

(c)

(b)

Figure 12. Pulse-coupled oscillators with delay: stable equilibrium; (a) repulsive coupling f and
delay distribution g; (b) corresponding non-delayed approximation H; (c) oscillators phase snapshot
of the system for every time the oscillator number 1 (i = 1) fires.

(a)

(c)

(b)

Figure 13. Pulse-coupled oscillators with delay: unstable equilibrium; (a) repulsive coupling f
and delay distribution g; (b) corresponding non-delayed approximation H; (c) oscillators phase
snapshot of the system for every time the oscillator number 1 (i = 1) fires.

Figures 12 and 13 show two simulation setups of 45 oscillators pulse-coupled all to all.
The initial state is close to a phase-locked configuration formed by three equidistant clusters
of 15 oscillators each. The shape of the coupling function f and the phase lags distribution g
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Figure 14. Pulse-coupled oscillators with delay: synchronization probability; each point represent
the fraction of times the system with initial condition as in figures 12 and 13 synchronizes in phase
for given standard deviation σ and random chosen delays; the dashed line represents the critical σ

that makes the non-delayed approximation unstable.

are shown in part a; g is a uniform distribution with mean μ = π and variance σ 2. We used (4)
to implement the corresponding pulse-coupled system (1). While f is maintained unchanged
between both simulations, we change the variance, i.e. the heterogeneity, of the distribution
g. Thus, the corresponding H = f ∗ g changes as it can be seen in part b; the blue, red and
green dots correspond to the speed change induced in an oscillator within the blue cluster
by oscillators of each cluster. Since all clusters have the same number of oscillators, the net
effect is zero. Part c shows the time evolution of oscillators’ phases relative to the phase of a
blue cluster oscillator. Although the initial conditions are exactly the same, the wider delay
distribution on figure 13 produces negative slope on the red and green points of part b, which
destabilizes the clusters and drives oscillators toward in-phase synchrony.

Finally, we simulate the same scenario as in figures 12 and 13 but now changing N and
the standard deviation, i.e. the delay distribution width. Figure 14 shows the computation
of the synchronization probability versus standard deviation of the uniform distributions of
figure. The dashed line denotes the minimum value that destabilizes the equivalent system.
As N grows, the distribution shape becomes closer to a step, which is the expected shape in
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the limit. It is quite surprising that as soon as the equilibrium is within the region of H with
negative slope, the equilibrium becomes unstable as the theory predicts.

5. Conclusion

This paper analyzes the dynamics of identical weakly coupled oscillators while relaxing
several classical assumptions on coupling, delay and topology. Our results provide global
synchronization guarantees for a wide range of scenarios. There are many directions that
can be taken to further this study. For example, for different topologies, to guarantee global
in-phase synchronization, how does the requirement on coupling functions change? Another
specific question is to complete the proof in section 3.3 for the cases when m = 1, 3, 5.
Finally, it would be of great interest if we could apply results and techniques in this paper to
a wide range of applications such as transient stability analysis of power networks and clock
synchronization of computer networks.
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[42] van Vreeswijk C, Abbott L and Ermentrout G B 1994 When inhibition not excitation synchronizes neural firing

J. Comput. Neurosci. 1 313–21
[43] Gerstner W 1996 Rapid phase locking in systems of pulse-coupled oscillators with delays Phys. Rev.

Lett. 76 1755–8
[44] Aonishi T and Okada M 2002 Dynamically-coupled oscillators–cooperative behavior via dynamical interaction

arXiv:condmat/0207506
[45] Lee W S, Ott E and Antonsen T M 2009 Large coupled oscillator systems with heterogeneous interaction delays

Phys. Rev. Lett. 103 044101
[46] Watanabe S and Strogatz S H 1994 Constants of motion for superconducting Josephson arrays Physica

D 74 197–253
[47] Sakaguchi H and Kuramoto Y 1986 A soluble active rotator model showing phase transitions via mutual

entertainment Prog. Theor. Phys. 76 576–81
[48] Yeung M K S and Strogatz S H 1999 Time delay in the kuramoto model of coupled oscillators Phys. Rev.

Lett. 82 648

24

http://dx.doi.org/10.1137/0150098
http://dx.doi.org/10.1016/j.sysconle.2006.10.020
http://dx.doi.org/10.1109/TAC.2008.919857
http://dx.doi.org/10.1103/PhysRevE.58.905
http://dx.doi.org/10.1109/72.761708
http://dx.doi.org/10.1103/PhysRevLett.74.1570
http://dx.doi.org/10.1103/PhysRevE.57.2150
http://dx.doi.org/10.1007/978-3-642-69689-3
http://dx.doi.org/10.1109/TAC.2007.898077
http://dx.doi.org/10.1103/PhysRevLett.68.1073
http://dx.doi.org/10.1016/S0167-6911(00)00087-6
http://dx.doi.org/10.1007/978-1-4612-0619-4
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.1007/978-1-4612-1828-9
http://dx.doi.org/10.1007/BF00961879
http://dx.doi.org/10.1103/PhysRevLett.76.1755
http://arxiv.org/abs/condmat/0207506
http://dx.doi.org/10.1103/PhysRevLett.103.044101
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1103/PhysRevLett.82.648

	1. Introduction
	2. Coupled oscillators
	2.1. Pulse-coupled oscillators
	2.2. Phase-coupled oscillators
	2.3. Weak coupling approximation

	3. Effect of topology and coupling
	3.1. Preliminaries
	3.2. Negative cut instability condition
	3.3. Complete graph topology with a class of coupling functions

	4. Effect of delay
	4.1. Kuramoto oscillators
	4.2. Effect of heterogeneity

	5. Conclusion
	Acknowledgments
	References

