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Abstract— Sparse recovery can recover sparse signals from a
set of underdetermined linear measurements. Motivated by the
need to monitor the key characteristics of large-scale networks
from a limited number of measurements, this paper addresses
the problem of recovering sparse signals in the presence of net-
work topological constraints. Unlike conventional sparse recovery
where a measurement can contain any subset of the unknown
variables, we use a graph to characterize the topological con-
straints and allow an additive measurement over nodes (unknown
variables) only if they induce a connected subgraph. We provide
explicit measurement constructions for several special graphs,
and the number of measurements by our construction is less
than that needed by existing random constructions. Moreover,
our construction for a line network is provably optimal in the
sense that it requires the minimum number of measurements.
A measurement construction algorithm for general graphs is also
proposed and evaluated. For any given graph G with n nodes,
we derive bounds of the minimum number of measurements
needed to recover any k-sparse vector over G (MG

k,n). Using the
Erdős–Rényi random graph as an example, we characterize the
dependence of MG

k,n on the graph structure. This paper suggests

that MG
k,n may serve as a graph connectivity metric.

Index Terms— Sparse recovery, compressed sensing,
topological graph constraints, measurement construction.

I. INTRODUCTION

IN THE monitoring of engineering networks, one often
needs to extract network state parameters from indirect

observations. Since measuring each component (e.g., router)
in the communication network directly can be operationally
costly, if feasible at all, the goal of network tomography [10],
[11], [15], [19], [27], [31], [32], [38], [46] is to infer system
internal characteristics such as link bandwidth utilizations and
link queueing delays from indirect aggregate measurements.
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In many cases, it is desirable to reduce the number of
measurements without sacrificing the monitoring performance.
For example, when different paths experience the same delay
on the same link, network kriging [17] can recover delays on
all n links in the network from only n linearly independent
paths and thus, identify the delays on possibly exponential
number of paths. Moreover, the number of path delay measure-
ments needed to recover n link delays can be further reduced
by exploiting the fact that only a small number of bottleneck
links experience large delays, while the delay is approximately
zero elsewhere. Sparse Recovery theory promises that if the
signal of interest is sparse, i.e., its most entries are zero,
m measurements are sufficient to correctly recover the signal,
even though m is much smaller than the signal dimension.
Since many network parameters are sparse, e.g., link delays,
these network tomography problems can be formulated as
a sparse recovery problem with the goal of minimizing the
number of indirect observations.

Sparse recovery has two different but closely related
problem formulations. One is Compressed Sensing [6], [12],
[13], [23], [24], where the signal is represented by a high-
dimensional real vector, and an aggregate measurement is the
arithmetical sum of the corresponding real entries. The other
is Group Testing [25], [26], where the high-dimensional signal
is binary and a measurement is a logical disjunction (OR) on
the corresponding binary values.

One key question in sparse recovery is to design a small
number of non-adaptive measurements (either real or logical)
such that all the vectors (either real or logical) up to certain
sparsity (the support size of a vector) can be correctly
recovered. Most existing results, however, rely critically on
the assumption that any subset of the values can be aggregated
together [12], [23], which is not realistic in network monitor-
ing problems where only objects that form a path or a cycle
on the graph [1], [32], or induce a connected subgraph can
be aggregated together in the same measurement. Only a few
recent works consider graph topological constraints, either in
group testing [16] setup, especially motivated by link failure
localization in all-optical networks [3], [16], [34], [39], [43],
or in compressed sensing setup, with applications in estimation
of network parameters [20], [35], [44].

We design measurements for recovering sparse signals in
the presence of graph topological constraints, and characterize
the minimum number of measurements required to recover
sparse signals when the possible measurements should satisfy
graph constraints. Though motivated by network applications,
graph constraints abstractly model scenarios when certain
elements cannot be measured together in a complex system.
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These constraints can result from various reasons, not
necessarily lack of connectivity. Therefore, our results can be
potentially useful to other applications besides network tomog-
raphy. Here are the main contributions of this paper.
(1) We provide explicit measurement constructions for vari-

ous graphs. Our construction for line networks is optimal
in the sense that it requires the minimum number of
measurements. For other special graphs, the number
of measurements by our construction is less than the
existing estimates (see [16], [44]) of the measurement
requirement. (Section III)

(2) For general graphs, we propose a measurement design
guideline based on r-partition, and further propose a
simple measurement design algorithm. (Section IV)

(3) Using Erdős-Rényi random graphs as an example,
we characterize the dependence of the number of
measurements for sparse recovery on the graph structure.
(Section V)

Moreover, we also propose measurement construction
methods under additional practical constraints such that the
length of a measurement is bounded, or each measurement
should pass one of a fixed set of nodes. The issue of
measurement error is also addressed. (Sections VI, VII)

II. MODEL AND PROBLEM FORMULATION

We use a graph G = (V , E) to represent the topological
constraints, where V denotes the set of nodes with cardinality
|V | = n, and E denotes the set of edges. Each node i is
associated with a real number xi , and we say vector x =
(xi , i = 1, . . . , n) is associated with G. x is the unknown
signal to recover. We say x is a k-sparse vector if ‖x‖0 = k,1

i.e., the number of non-zero entries of x is k.
Let S ⊆ V denote a subset of nodes in G. Let ES denote

the subset of edges with both ends in S, then GS = (S, ES)
is the induced subgraph of G. We have the following two
assumptions on graph topological constraints:

(A1): A set S of nodes can be measured together in one
measurement if and only if GS is connected.

(A2): The measurement is an additive sum of values at the
corresponding nodes.

Given a unknown vector x associated with G, we take m
measurements (m � n) that satisfy (A1) and (A2). Let vector
y ∈ Rm denote m measurements. Let A denote the m×n mea-
surement matrix with Aij = 1 (i = 1, . . . , m, j = 1, . . . , n)
if and only if node j is included in the i th measurement and
Aij = 0 otherwise. We can write it in the compact form that
y = Ax. With the requirements (A1) and (A2), A must be
a 0-1 matrix, and for each row of A, the set of nodes that
correspond to ‘1’ must form a connected induced subgraph
of G. For the graph in Fig. 1, we can measure the sum of
nodes in S1 and S2 by two separate measurements, and the
measurement matrix is

A =
[

1 1 1 0 1 1 0 0
0 0 1 1 0 0 1 1

]
.

1The �p-norm (p ≥ 1) of x is ‖x‖p = (
∑

i |xi |p)1/p , ‖x‖∞ = maxi |xi |,
and ‖x‖0 = |{i : xi �= 0}|.

Fig. 1. Graph example.

(A1) and (A2) represent an abstraction of topological
constraints. One motivation is the monitoring of the link
characteristics in a communication network. (A2) follows
from the additive property of many network characteristics,2

e.g., delays and packet loss rates [32]. If we use graph Ĝ
to represent the communication network where nodes
in Ĝ represent routers and edges represent transmission links,
then the graph model G considered in this paper is the line
graph [33] (also known as interchange graph or edge graph)

L(Ĝ) of graph Ĝ. According to the definition of a line
graph, every node in G = L(Ĝ) corresponds to a link in
network Ĝ, and the node value corresponds to the link delay.
Two nodes in G are connected with an edge if and only if the
corresponding links in network Ĝ are connected to the same
router. See Fig. 2 (a) (b) as an example of a network Ĝ and
its line graph G considered in this paper.

A connected subgraph GS in G corresponds to a set of
connected links in the communication network Ĝ. From the
Eulerian property there exists a cycle that traverses each link
in the connected set of links exactly twice.3 One router in this
cycle sends a packet along the cycle and measures the total
transmission delay, which is twice the sum of link delays on
this set of links. For example, Fig. 2 shows the correspondence
between assumptions (A1) (A2) in the line graph model G and
the monitoring of the original network Ĝ. Since large delays
only occur at a small number of bottleneck links, the link
delays in a network can be represented by a sparse vector x
associated with G.

We say a measurement matrix A can identify all k-sparse
vectors if and only if Ax1 �= Ax2 for every two different
vectors x1 and x2 that are at most k-sparse. This definition
indicates that every k-sparse vector x is the unique solution to
the following �0-minimization problem

min
z

‖z‖0 s.t. Az = Ax. (1)

Note (1) is a combinatorial problem in general.
Then, given topological constraints represented by G,

we want to design non-adaptive measurements satisfying
(A1) and (A2) such that one can identify all k-sparse vector x,
and the total number of measurements is minimized. Given a
graph G with n nodes, let MG

k,n denote the minimum number
of measurements satisfying (A1) and (A2) to identify all

2Compressed sensing can also be applied to cases where (A2) does not
hold, e.g., the measurements can be nonlinear as in [7] and [40].

3The argument is as follows. Suppose we replace each link with two copies
of itself. The resulting multigraph is Eulerian since it is connected and each
node has even degree. Then there exists an Eulerian walk which visits every
link in the multigraph exactly once. That corresponds to visiting each link of
the original communication network twice.



1030 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

Fig. 2. (a) Network Ĝ with five links. (b) Its corresponding line graph L(Ĝ) that we consider in this paper. Since the links 1, 2, 3, and 4 are connected
in Ĝ, the induced subgraph of nodes 1, 2, 3, and 4 in L(Ĝ) is connected. (c) There exists a cycle passing each of links 1, 2, 3, and 4 in network Ĝ exactly
twice.

k-sparse vectors associated with G. The questions we would
like to address in the paper are:

• Given G, what is the corresponding MG
k,n? What is the

dependence of MG
k,n on G?

• How can we explicitly design measurements such that the
total number of measurements is close to MG

k,n?
Though motivated by network applications, we use graph G

to characterize the topological constraints and study a general
problem of recovering sparse signals from measurements
satisfying graph constraints. For the majority of this paper, we
assume a measurement is feasible as long as (A1) and (A2)
are satisfied, and we attempt to minimize the total number of
measurements for identifying sparse signals. Some additional
constraints on the measurements such as bounded measure-
ment length will be discussed in Section VI.

If G is a complete graph, then any subset of nodes forms
a connected subgraph, and every 0-1 matrix is a feasible
measurement matrix. Then the problem reduces to the conven-
tional compressed sensing where one wants to identify sparse
signals from linear measurements. Existing results [5], [6],
[13], [37], [45] show that with overwhelming probability a
random 0-1 A matrix with O(k log(n/k)) rows4 can identify
all k-sparse vectors x associated with a complete graph, and
x is the unique solution to the �1-minimization problem

min
z

‖z‖1 s.t. Az = Ax. (2)

(2) can be recast as a linear program, and thus it is computa-
tionally more efficient to solve (2) than (1). Thus, we have

MC
k,n = O(k log(n/k)). (3)

Note that O(k log(n/k)) � n for k � n, thus, the number of
measurements can be significantly reduced for sparse signals.
Explicit constructions of measurement matrices for complete
graphs also exist, see [2], [6], [21], [22], [45]. We use f (k, n)
to denote the number of measurements to recover k-sparse
vectors associated with a complete graph of n nodes by a par-
ticular measurement construction method. f (k, n) varies for
different construction methods, and clearly f (k, n) ≥ MC

k,n .
Table I summarizes the key notations.

For a general graph G that is not complete, existing results
do not hold any more. Can we still achieve a significant
reduction in the number of measurements? This is the focus
of this paper. We remark here that in group testing with graph
constraints, the requirements for the measurement matrix A
are the same, while group testing differs from compressed

4We use the notations g(n) ∈ O(h(n)), g(n) ∈ �(h(n)), or g(n) = �(h(n))
if as n goes to infinity, g(n) ≤ ch(n), g(n) ≥ ch(n) or c1h(n) ≤ g(n) ≤
c2h(n) eventually holds for some positive constants c, c1 and c2 respectively.

TABLE I

SUMMARY OF KEY NOTATIONS

Fig. 3. (a) Line. (b) Ring.

sensing only in that (1) x is a logical vector, and (2) the
operations used in each group testing measurement are the
logical “AND” and “OR”. Here we consider compressed sens-
ing if not otherwise specified, and the main results are stated
in theorems. We only discuss group testing for comparison
(e.g., Proposition 2). Note that for recovering 1-sparse vectors,
the numbers of measurements required by compressed sensing
and group testing are the same.

III. SPARSE RECOVERY OVER SPECIAL GRAPHS

In this section, we consider four kinds of special graphs:
one-dimensional line/ring, ring with each node connecting to
its four closest neighbors, two-dimensional grid and a tree. The
measurement construction method for a line/ring is different
from those for the other graphs, and our construction is optimal
(or near optimal) for a line (or ring) in terms of reducing the
number of required measurements. For other special graphs,
we construct measurements based on the “hub” idea and will
later extend it to general graphs in Section IV.

A. Line and Ring

First consider a line/ring as shown in Fig. 3. Note that a
line/ring is the line graph of a line/ring network. When later
comparing the results here with those in Section III-B, one
can see that the number of measurements required for sparse
recovery can be significantly different in two graphs that only
differ from each other with a small number of edges.

In a line/ring, only consecutive nodes can be measured
together from (A1). Recovering 1-sparse vectors associated
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with a line (or ring) with n nodes is considered
in [34] and [39], which shows that 
 n+1

2 � (or 
 n
2 �) measure-

ments are both necessary and sufficient in this case. Here, we
consider recovering k-sparse vectors for k ≥ 2.

Our construction works as follows. Given k and n, let
t = � n+1

k+1 . We construct n + 1 − � n+1
k+1  measurements with

the i th measurement passing all the nodes from i to i + t − 1.
Let A(n+1−t)×n be the measurement matrix, then its i th row
has ‘1’s from entry i to entry i + t −1 and ‘0’s elsewhere. For
example, when k = 3 and n = 11, we have t = 3, and

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

Let M L
k,n and M R

k,n denote the minimum number of mea-
surements required to recover k-sparse vectors in a line/ring
respectively. We have the following results regarding the
bounds of M L

k,n and M R
k,n .

Theorem 1 (Upper Bound): Our constructed n +1−� n+1
k+1 

measurements can identify all k-sparse vectors associated
with a line/ring with n nodes, and the sparse signals can be
recovered from �1-minimization (2).

Theorem 2 (Lower Bound): The required number of mea-
surements to recover k-sparse vectors associated with a line
(or ring) with n nodes has the following lower bounds:

M L
k,n ≥ n + 1 − �n + 1

k + 1
, (5)

and

M R
k,n ≥ n − � n

k + 1
. (6)

Combining Theorem 1 and 2, one can conclude that

M L
k,n = n + 1 − �n + 1

k + 1
,

and

n − � n

k + 1
 ≤ M R

k,n ≤ n + 1 − �n + 1

k + 1
.

Therefore, our construction is optimal for a line in the sense
that the number of measurements n + 1 − � n+1

k+1  by our con-
struction is the minimum number of measurements needed to
recover k-sparse vectors among all the possible measurement
constructions. In a ring network, the number of measurements
by our construction differs from the minimum requirement of
measurements by at most one.

In our early work ([41, Th. 1]), we proved that our
construction of n + 1 − � n+1

k+1  measurements can identify
k-sparse signals, and the signal can be recovered via solving
�0-minimization (1). (1) is in general computationally
inefficient to solve. Here we further demonstrate through
Theorem 1 that with these n + 1 − � n+1

k+1  measurements,

one can recover the signal by solving a computationally
efficient �1-minimization (2).

Proof (of Theorem 1): Let A be the measurement matrix.
When t = 1, A is the identity matrix, and the statement holds
trivially. So we only consider the case t ≥ 2. It is well known
in compressed sensing (see [28]) that a k-sparse vector x
can be recovered from �1-minimization, i.e., it is the unique
solution to (2), if and only if for every vector w �= 0 such that
Aw = 0, and for every set T ⊆ {1, . . . , n} with |T | ≤ k, it
holds that

‖wT ‖1 < ‖w‖1/2, (7)

where wT is a subvector of w with entry indices in T . Thus,
we only need to prove that (7) holds for our constructed A.

From the construction of A, one can check that for every
w �= 0 such that Aw = 0, and for every j ∈ {1, . . . , n},

w j = w j−� j
t t (8)

holds. For example,

w1 = wt+1 = w2t+1 = · · · = w(k−1)t+1.

Let w∗ := arg maxt
j=1 |w j |. From (8), it also holds that

w∗ = arg
n

max
j=1

|w j |. (9)

From the first row of A, we have
t∑

i=1

wi = 0, (10)

From the definition of w∗, (10) implies

w∗ ≤ 1

2

t∑
j=1

|w j |. (11)

Since n ≥ kt + t − 1 from the definition of t , we have
n∑

j=kt+1

|w j | ≥
kt+t−1∑
j=kt+1

|w j | =
t−1∑
j=1

|w j | > 0, (12)

where the equality follows from (8). The last inequality holds
since w j �= 0 for at least one j in 1, . . . , t−1. Suppose w j = 0
for all j = 1, . . . , t − 1, then wt = 0 from (10), which then
leads to w = 0 through (8), contradicting the fact that w �= 0.

Now consider any T with |T | ≤ k, combining (8), (9), (11),
and (12), we have

‖wT ‖1 ≤ kw∗ ≤ k

2

t∑
j=1

|w j | = 1

2

kt∑
j=1

|w j | < ‖w‖1/2.

Thus, x can be correctly recovered via �1-minimization (2). �
Proof (of Theorem 2): First, notice that if a measurement

matrix Am×n can be used to recover all k-sparse signals, then
Ax1 �= Ax2 should hold for every two different k-sparse
signals x1 and x2. Otherwise, no method would be able to
differentiate x1 and x2 from the observations y = Ax1 = Ax2.
This is equivalent to the requirement that every 2k columns
of A must be linearly independent. We will prove that m
should be at least n + 1 −� n+1

k+1 for a line or ring network for
this requirement to be satisfied.
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Let Ām×n denote a measurement matrix with which one
can recover k-sparse vectors associated with a line of n nodes.
Let αi denote the i th column of Ā. Define β1 = α1, β i =
αi − αi−1 for all 2 ≤ i ≤ n, and βn+1 = −αn . Define matrix
Pm×(n+1) = (β i , 1 ≤ i ≤ n + 1). Since Ā is a measurement
matrix for a line network, each row of P contains one ‘1’ entry
and one ‘−1’ entry, and all the other entries must be ‘0’s.

Given P , we construct a graph Geq with n + 1 nodes as
follows. For every row i of P , there is an edge ( j, k) in Geq ,
where Pij = 1 and Pik = −1. Then Geq contains m edges,
and P can be viewed as the transpose of an oriented incidence
matrix of Geq . Let S denote the set of indices of nodes in a
component of Geq , then one can check that∑

i∈S

β i = 0. (13)

Since every 2k columns of Ā are linearly independent, every
k columns of P are linearly independent, which then implies
that the sum of any k columns of P is not a zero vector.
With (13), we know that any component of Geq should have
at least k +1 nodes. Since a component with r nodes contains
at least r − 1 edges, and Geq has at most � n+1

k+1  components,
then Geq contains at least n+1−� n+1

k+1 edges. The (5) follows.

We next consider the ring. Let Ã denote the measurement
matrix with which one can recover k-sparse vectors on a ring
with n nodes. Let α̃i denote the i th column of Ã. Define β̃1 =
α̃1 − α̃n , and β̃ i = α̃i − α̃i−1 for all 2 ≤ i ≤ n. Define matrix
P̃m×n = (β̃ i , 1 ≤ i ≤ n). Similarly, we construct a graph G̃eq

with n nodes based on P̃ , and each component of G̃eq should
have at least k + 1 nodes. Thus, G̃eq contains at most � n

k+1
components and therefore at least n − � n

k+1  edges. Then (6)
follows. �

We can save about � n+1
k+1  − 1 measurements but still be

able to recover k-sparse vectors in a line/ring via compressed
sensing. But for group testing on a line/ring, n measurements
are necessary to recover more than one non-zero element.
The arguments use the ideas in [34] and [39], and we skip
the details. The key point is that every node should be the
endpoint at least twice, where the endpoints are the nodes at
the beginning and the end of a measurement. If node u is
an endpoint for at most once, then it means that either it is
always measured together with one of its neighbors, say v, or
it is never measured at all. Then when v is ‘1’, we cannot
determine the value of u, either ‘1’ or ‘0’ in group testing.
Therefore, in order to recover more than one non-zero element,
we need at least 2n endpoints, and thus n measurements.

B. Ring With Nodes Connecting to Four Closest Neighbors

Consider a graph with each node directly connecting to its
four closest neighbors as in Fig. 4(a), denoted by G4. G4 has
2n edges, while a ring network contains n edges. G4 is also
the starting point for constructing small-world networks in
the Watts-Strogatz model [42]. We will show that the number
of measurements required by compressed sensing to recover
k-sparse vectors associated with G4 is O(k log(n/k)), which is
a significant reduction from the required number �(n) in a ring
network. We next describe our main idea in the measurement

Fig. 4. Sparse recovery on graph G4. (a) Measure nodes 2, 8 and 10 via
hub To, which is the set of all odd nodes. (b) Delete h long links.

Fig. 5. Hub S for T .

construction methods. We refer to it as “the use of a hub” in
this paper.

1) The Use of a Hub:
Definition 1: Given G = (V , E) and two disjoint5 sets

S, T ⊆ V , we say S is a hub6 for T if GS is connected,
and ∀u ∈ T , ∃s ∈ S s.t. (u, s) ∈ E.

If S is hub for T , We first take one measurement of the sum
of nodes in S, denoted by s. Then any subset W of T , e.g.,
the pink nodes in Fig. 5, S ∪ W induces a connected subgraph
from the hub definition and thus can be measured by one
measurement. To measure the sum of nodes in W , we first
measure nodes in S ∪ W and then subtract s from the sum.
Therefore we can apply the measurement constructions for
complete graphs on T with this simple modification, and that
requires only one additional measurement for the hub S. Thus,

Theorem 3: If there exists a hub S for set T , MC
k,|T | + 1

measurements are enough to recover k-sparse vectors associ-
ated with T .

The significance of Theorem 3 is that GT is not necessarily
a complete subgraph, i.e., a clique, and it can even be
disconnected. As long as there exists a hub S, the measurement
construction for a complete graph with the same number of
nodes can be applied to T with simple modification. Our later
results rely heavily on Theorem 3.

In G4, if nodes are numbered consecutively around the ring,
then the set of all the odd nodes, denoted by To, form a hub for
the set of all the even nodes, denoted by Te. Given a k-sparse
vector x, let xo and xe denote the subvectors of x with odd and

5We assume without loss of generality that S and T are disjoint. When
S ∩ T �= ∅, we consider the set T ′ = T \S, then S and T ′ are disjoint.

6The definition of a hub is closely related to but different from the definition
of a connected dominating set in graph theory. S is a connected dominating
set for a graph G = (V, E), if and only if G S is connected, and ∀u ∈ V \S,
∃s ∈ S s.t. (u, s) ∈ E . The distinction is that we only require T to be a subset
of V\S, while for S to be a connected dominating set, T must equal to V \S.
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even indices. Then xo and xe are both at most k-sparse. From
Theorem 3, MC

k,�n/2 + 1 measurements are enough to recover
xe ∈ R�n/2. Similarly, we can use Te as a hub to recover the
subvector xo ∈ R
n/2� with MC

k,
n/2� + 1 measurements, and
thus x is recovered.

Corollary 1: All k-sparse vectors associated with G4 can
be recovered with MC

k,�n/2 + MC
k,
n/2� + 2 (which is

O(2k log(n/(2k)))) measurements.
From a ring to G4, although the number of edges only

increases by n, the number of measurements required to
recover k-sparse vectors significantly reduces from �(n) to
O(2k log(n/(2k))). This value is in the same order as MC

k,n ,
while the number of edges in G4 is only 2n, compared with
n(n − 1)/2 edges in a complete graph.

2) Random Constructions: Besides the explicit measure-
ment construction based on the hub idea, we can also recover
k-sparse vectors associated with G4 from O(log n) random
measurements. We need to point out that these random mea-
surements do not depend on the measurement constructions
for a complete graph.

Consider an n-step Markov chain {Xk, 1 ≤ k ≤ n} with
X1 = 1. For any k ≤ n − 1, if Xk = 0, then Xk+1 = 1;
if Xk = 1, then Xk+1 can be 0 or 1 with equal probability.
Clearly any realization of this Markov chain does not contain
two or more consecutive zeros, and thus is a feasible row of
the measurement matrix. We have the following result, please
refer to Appendix-A for its proof.

Theorem 4: With probability at least 1 − 1/((2k)!n), all
k-sparse vectors associated with G4 can be recovered with
O(g(k) log n) measurements obtained from the above Markov
chain, where

g(k) = (2k + 1)24k2+2k−1

(2k − 1)! .

Adding n edges in the form (i, i + 2(mod n)) to the
ring greatly reduces the number of measurements needed
from �(n) to O(log n). Then how many edges in the form
(i, i + 2(mod n)) shall we add to the ring such that the min-
imum number of measurements required to recover k-sparse
vectors is exactly �(log n)? The answer is n−�(log n). To see
this, let G4

h denote the graph obtained by deleting h edges in
the form (i, i + 2(mod n)) from G4. For example in Fig. 4(b),
we delete edges (3, 5), (8, 10) and (9, 11) in red dashed lines
from G4. Given h, our following results do not depend on the
specific choice of edges to remove. We have

Theorem 5: The minimum number of measurements
required to recover k-sparse vectors associated with
G4

h is lower bounded by 
h/2�, and upper bounded by
2MC

k,
 n
2 � + h + 2.

Proof: Let D denote the set of nodes such that for every
i ∈ D, edge (i − 1, i + 1) is removed from G4. The proof of
the lower bound follows [39, Proof of Th. 2]. The key idea
is that recovering one non-zero element in D is equivalent to
recovering one non-zero element in a ring with h nodes, and
thus 
h/2� measurements are necessary.

For the upper bound, we first measure nodes in D sepa-
rately with h measurements. Let S contain the even nodes
in D and all the odd nodes. S can be used as a hub

Fig. 6. (a) A communication network with n = 12 links, (b) the line graph
of the network in (a). Measure the sum of any subset of odd nodes (e.g., 1, 3,
7, and 9) using nodes 2, 6, and 10 as a hub.

to recover the k-sparse subvectors associated with the even
nodes that are not in D, and the number of measure-

ments used is at most MC
k,� n

2  + 1. We similarly recover

k-sparse subvectors associated with odd nodes that are not
in D using the set of the odd nodes in D and all the even nodes
as a hub. The number of measurements is at most MC

k,
 n
2 � + 1.

Sum them up and the upper bound follows. �
Together with (3), Theorem 5 implies that if �(log n) edges

in the form (i, i + 2(mod n)) are deleted from G4, then
�(log n) measurements are necessary and sufficient to recover
associated k-sparse vectors for constant k.

Since the number of measurements required by compressed
sensing is greatly reduced when we add n edges to a ring, one
may wonder whether the number of measurements needed by
group testing can be greatly reduced or not. Our next result
shows that this is not the case for group testing, please refer
Appendix-B for its proof.

Proposition 1: �n/4 measurements are necessary to locate
two non-zero elements associated with G4 by group testing.

By Corollary 1 and Proposition 1, we observe that in G4,
with compressed sensing the number of measurements needed
to recover k-sparse vectors is O(2k log(n/(2k))), while with
group testing, �(n) measurements are required if k ≥ 2.

C. Line Graph of a Ring Network With Each Router
Connecting to Four Routers

Here we compare our construction methods with those
in [16] and [44] on recovering link quantities in a network
with each router connecting to four closest routers in the
ring. Fig. 6(a)7 shows such a network with n links with
n = 12. As discussed in Section II, we analyze the line
graph of the communication network in Fig. 6(a). In its line
graph in Fig. 6(b), node i (representing the delay on link i
in Fig. 6(a)) is connected to nodes i − 3, i − 2, i − 1, i + 1,
i + 2, and i + 3 (all mod n) for all odd i ; and node i is
connected to nodes i − 4, i − 3, i − 1, i + 1, i + 3, and i + 4
(all mod n) for all even i .

With the hub idea, we can recover k-sparse link delays in
this network from O(2k log(n/(2k))) measurements. Specif-
ically, we use the set of all the odd nodes as a hub to
recover the values associated with the even nodes, and it
takes O(k log(n/(2k))) measurements. We then use the set

7Fig. 6(a) is a communication network with nodes representing routers
and edges representing links, while Fig. 4(a) is a graph model capturing
topological constraints with nodes representing the quantities to recover.
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Fig. 7. Two-dimensional grid.

of nodes {4 j + 2, j = 0, . . . , 
 n−2
4 �} as a hub to recover the

values associated with the odd nodes, and it takes another
O(k log(n/(2k))) measurements. See Fig. 6(b) as an example.

Our construction of O(2k log(n/(2k))) measurements to
recover k-sparse link delays in the network in Fig. 6(a)
greatly improves over the existing results in [16] and [44],
which are based on the mixing time of a random walk. The
mixing time T (n) can be roughly interpreted as the minimum
length of a random walk on a graph such that its distribution
is close to its stationary distribution. Xu et al. [44]
proved that O(kT 2(n) log n) measurements can identify
k-sparse vectors with overwhelming probability by
compressed sensing. Chen et al. [16] showed that
O(k2T 2(n) log(n/k)) measurements are enough to identify
k non-zero elements in the group testing setup. Since
T (n) is at least n/8 for the network in Fig. 6(a), the
methods in [16] and [44] provide no saving in the number
of measurements for this network, while our construction
reduces this number to O(2k log(n/(2k))).

D. Two-Dimensional Grid

Next we consider the two-dimensional grid, denoted by G2d .
G2d has

√
n rows and

√
n columns. We assume

√
n to be even

here, and also skip ‘
·�’ and ‘�·’ for notational simplicity.
The idea of measurement construction is still the use of a

hub. First, Let S1 contain the nodes in the first row and all
the nodes in the odd columns, i.e., the black nodes in Fig. 7.
Then S1 can be used as a hub to measure k-sparse subvectors
associated with nodes in V \S1. The number of measurements
is MC

k,(n/2−√
n/2)

+ 1. Then let S2 contain the nodes in the
first row and all the nodes in the even columns, and use S2
as a hub to recover up to k-sparse subvectors associated with
nodes in V \S2. Then number of measurements required is also
MC

k,(n/2−√
n/2)

+ 1. Finally, use nodes in the second row as a
hub to recover sparse subvectors associated with nodes in the
first row. Since nodes in the second row are already identified
in the above two steps, then we do not need to measure the
hub separately in this step. The number of measurements here
is MC

k,
√

n
. Therefore,

Proposition 2: With 2MC
k,n/2−√

n/2
+ MC

k,
√

n
+ 2 measure-

ments one can recover k-sparse vectors associated with G2d .

E. Tree

Next we consider a tree topology as in Fig. 8. For a given
tree, the root is treated as the only node in layer 0. The nodes
that are t steps away from the root are in layer t . We say the
tree has depth h if the farthest node is h steps away from the

Fig. 8. Tree topology.

root. Let ni denote the number of nodes on layer i , and n0 = 1.
We construct measurements to recover vectors associated with
a tree by the following tree approach.

We recover the nodes layer by layer starting from the root,
and recovering nodes in layer i requires that all the nodes
above layer i should already be recovered. First measure the
root separately. When recovering the subvector associated with
nodes in layer i (2 ≤ i ≤ h), we can measure the sum of
any subset of nodes in layer i using some nodes in the upper
layers as a hub and then delete the value of the hub from
the obtained sum. One simple way to find a hub is to trace
back from nodes to be measured on the tree simultaneously
until they reach one same node. For example in Fig. 8, to
measure the sum of nodes 5 and 7, we trace back to the root
and measure the sum of nodes 1, 2, 3, 5, and 7 and then
subtract the values of nodes 1, 2, and 3, which are already
identified when we recover nodes in the upper layers. With
this approach, we have,

Proposition 3:
∑h

i=0 MC
k,ni

measurements are enough to
recover k-sparse vectors associated with a tree with depth h,
where ni is the number of nodes in layer i .

IV. SPARSE RECOVERY OVER GENERAL GRAPHS

In this section we consider recovering k-sparse vectors
associated with general graphs. The graph is assumed to be
connected. If not, we design measurements to recover k-sparse
subvectors associated with each component separately.

In Section IV-A we propose a general design guideline
based on “r -partition”. The key idea is to divide the nodes
into a small number of groups such that each group can be
measured with the help of a hub. Since finding the minimum
number of such groups turns out to be NP-hard in general,
in Section IV-B we propose a simple algorithm to design
measurements on any given graph.

A. Measurement Construction Based on r-Partition

Definition 2 (r-Partition): Given G = (V , E), disjoint sub-
sets Ni (i = 1, . . . , r) of V form an r -partition of G if and
only if these two conditions both hold: (1) ∪r

i=1 Ni = V , and
(2) ∀i , V \Ni is a hub for Ni .

Clearly, To and Te form a 2-partition of graph G4. With
Definition 2 and Theorem 3, we have

Theorem 6: If G has an r-partition Ni (i = 1, . . . , r),
then the number of measurements needed to recover k-sparse
vectors associated with G is at most

∑r
i=1 MC

k,|Ni | + r , which
is O(rk log(n/k)).

Another example of the existence of an r -partition is
the Erdős-Rényi random graph G(n, p) with p > log n/n.
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Subroutine 1 Leaves(G, u)
Initial: graph G, root u

1 Find a spanning tree T of G rooted at u by breadth-first
search, and let S denote the set of leaf nodes of T .

2 return S

The number of our constructed measurements on G(n, p) is
less than the existing estimates in [16] and [44]. Please refer
to Section V for the detailed discussion.

Clearly, if an r -partition exists, the number of measurements
also depends on r . In general one wants to reduce r so as
to reduce the number of measurements. Given graph G and
integer r , the question that whether or not G has an r -partition
is called r-partition problem. In fact,

Theorem 7: ∀r ≥ 3, r -partition problem is NP-complete.
Please refer to Appendix-C for its proof. We remark that we

cannot prove the hardness of the 2-partition problem though
we conjecture it is also a hard problem.

Although finding an r -partition with the smallest r in
general is NP-hard, it still provides a guideline that one can
reduce the number of measurements by constructing a small
number of hubs such that all the nodes are connected to at
least one hub. Our measurement constructions for some special
graphs in Section III are also based on this guideline. We next
provide efficient measurement design methods for a general
graph G based on this guideline.

B. Measurement Construction Algorithm for General Graphs

One simple way is to find the spanning tree of G and
use the tree approach in Section III-E. The depth of the
spanning tree is at least R, where R = minu∈V maxv∈V duv

is the radius of G with duv as the length of the shortest
path between u and v. This approach only uses edges in
the spanning tree, and the number of measurements needed
is large when the radius R is large. For example, the radius
of G4 is n/4, then the tree approach uses at least n/4 mea-
surements, while O(2k log(n/2k)) measurements are already
enough if we take advantage of the additional edges not in the
spanning tree.

Here we propose a simple algorithm to design the measure-
ments for general graphs. The algorithm combines the ideas
of the tree approach and the r -partition. We still divide nodes
into a small number of groups such that each group can be
identified via some hub. Here nodes in the same group are the
leaf nodes of a spanning tree of a gradually reduced graph.
A leaf node has no children on the tree.

Let G∗ = (V ∗, E∗) denote the original graph. The algorithm
is built on the following two subroutines. Leaves(G, u) returns
the set of leaf nodes of a spanning tree of G rooted at u.
Reduce(G, u, K ) deletes u from G and connects every pair of
neighbors of u. Specifically, for every two neighbors v and w
of u, we add an edge (v,w), if not already exists, and let
K(v,w) = K(v,u) ∪ K(u,w) ∪{u}. K(s,t) denotes the set of nodes
that connects s and t in the original graph G∗. We record K
so as to translate the measurements on a reduced graph G to
feasible measurements on G∗.

Subroutine 2 Reduce(G, u, K )
Initial: G = (V , E), He for each e ∈ E , and node u

1 V = V \u.
2 for each two different neighbors v and w of u do
3 if (v,w) /∈ E then
4 E = E ∪ (v,w), K(v,w) = K(v,u) ∪ K(u,w) ∪ {u}.
5 end if
6 end for
7 return G, K

Algorithm 1 Measurement Construction for Graph G∗
Initial: G∗ = (V ∗, E∗).

1 G = G∗, Ke = ∅ for each e ∈ E
2 while |V | > 1 do
3 Find the node u such that maxv∈V duv = RG , where RG

is the radius of G. S =Leaves(G, u).
4 Design f (k, |S|) + 1 measurements to recover k-sparse

vectors associated with S using nodes in V \S as a hub.
5 for each v in S do
6 G = Reduce(G, v, K )
7 end for
8 end while
9 Measure the last node in V directly.

10 Output: All the measurements.

Given graph G∗, let u denote the node such that
maxv∈V ∗ duv = R, where R is the radius of G∗. Pick u as
the root and obtain a spanning tree T of G∗ by breadth-first
search. Let S denote the set of leaf nodes in T . With V ∗\S as
a hub, we can design f (k, |S|) + 1 measurements to recover
up to k-sparse vectors associated with S. We then reduce the
network by deleting every node v in S and connecting every
pair of neighbors of v. For the reduced network G, we repeat
the above process until all the nodes are deleted. Note that
when designing the measurements in a reduced graph G, if a
measurement passes edge (v,w), then it should also include
nodes in K(v,w) so as to be feasible in the original graph G∗.

In each step tree T is rooted at node u where maxv∈V duv

equals the radius of the current graph G. Since all the leaf
nodes of T are deleted in the graph reduction procedure, the
radius of the new obtained graph should be reduced by at least
one. Then we have at most R iterations in Algorithm 1 until
only one node is left. Clearly we have,

Theorem 8: The number of measurements designed by
Algorithm 1 is at most R f (k, n) + R + 1, where R is the
radius of the graph.

We remark that the number of measurements by the span-
ning tree approach is also no greater than R f (k, n) + R + 1.
However, since Algorithm 1 also considers edges that are not
in the spanning tree, we expect that for general graphs, it uses
fewer measurements than the spanning tree approach. This is
verified in Experiment 1 in Section VIII.

Algorithm 1 has at most R iterations. In each iteration, the
time complexity of constructing measurements (step 4) for
selected nodes depends on the specific choice of measurement
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construction methods. For instance, 0-1 measurement
matrices corresponding to expander graphs [6] for recovering
n-dimensional sparse signals can be constructed in time
poly(n) [14]. The time complexity of remaining steps in each
iteration of Algorithm 1 is O(|V |2 log |V | + |V ||E |), where
V and E denote the set of nodes and the set of edges respec-
tively in the reduced graph G at the beginning of each iteration.
The bound O(|V |2 log |V | + |V ||E |) comes from the compu-
tation of the radius of a graph, where we employ Johnson’s
algorithm [36] with time complexity O(|V |2 log |V |+ |V ||E |)
to compute all pairs of shortest paths.

V. SPARSE RECOVER OVER RANDOM GRAPHS

Here we consider measurement constructions over the
Erdős-Rényi random graph G(n, p), which has n nodes and
every two nodes are connected by a edge independently with
probability p. The behavior of G(n, p) changes significantly
when p varies. We study the dependence of number of
measurements needed for sparse recovery on p.

A. np = β log n for Some Constant β > 1

Now G(n, p) is connected almost surely [29]. Moreover,
we have the following lemma regarding the existence of an
r -partition.

Lemma 1: When p = β log n/n for some constant β > 1,
with probability at least 1 − O(n−α) for some α > 0, every
set S of nodes with size |S| = n/(β −ε) for any ε ∈ (0, β −1)
forms a hub for the complementary set T = V \S, which
implies that G(n, p) has a 
 β−ε

β−ε−1�-partition.
Proof: Note that the subgraph GS is also Erdős-Rényi

random graph in G(n/(β − ε), p). Since p = β log n/n >
log(n/(β − ε))/(n/(β − ε)), GS is connected almost surely.

Let Pf denote the probability that there exists some u ∈ T
such that (u, v) /∈ E for every v ∈ S. Then

P f =
∑
u∈T

(1 − p)|S| = (1 − 1

β − ε
)n(1 − β log n/n)n/(β−ε)

= (1 − 1/(β − ε))n(1 − β log n/n)
n

β log n · β log n
β−ε

≤ (1 − 1

β − ε
)ne− β log n

β−ε ≤ (1 − 1

β − ε
)n−ε/(β−ε).

Thus, S is a hub for T with probability at least 1 − O(n−α)
for α = ε/(β − ε) > 0. Since the size of T is (1 − 1/
(β − ε))n, G(n, p) has at most 
 β−ε

β−ε−1� such disjoint sets.
Then by a simple union bound, one can conclude that
G(n, p) has a 
 β−ε

β−ε−1�-partition with probability at least
1 − O(n−α). �

For example, when β > 2, Lemma 1 implies that any two
disjoint sets N1 and N2 with |N1| = |N2| = n/2 form a
2-partition of G(n, p) with probability 1 − O(n−α). From
Theorem 6 and Lemma 1, and let ε → 0, we have

Proposition 4: When p = β log n/n for some constant
β > 1, all k-sparse vectors associated with G(n, p) can
be identified with O(
 β

β−1�k log(n/k)) measurements with
probability at least 1 − O(n−α) for some α > 0.

[16] considers group testing over Erdős-Rényi random
graphs and shows that O(k2 log3 n) measurements are enough

to identify up to k non-zero entries if it further holds that
p = �(k log2 n/n). Here with compressed sensing setup and
r -partition results, we can recover k-sparse vectors in Rn with
O(k log(n/k)) measurements when p > log n/n. This result
also improves over the previous result in [44], which requires
O(k log3 n) measurements for compressed sensing on G(n, p).

B. np − log n → +∞, and np−logn
logn → 0

Roughly speaking, p is just large enough to guarantee
that G(n, p) is connected almost surely [29]. The diameter
D = maxu,v duv of a connected graph is the greatest distance
between any pair of nodes, and here it is concentrated around

log n
log log n almost surely [8]. We design measurements on G(n, p)
with Algorithm 1. With Theorem 8 and the fact that the
radius R is no greater than the diameter D by definition, we
have

Proposition 5: When np − log n → +∞, and np−log n
log n →0,

O(k log n log(n/k)/ log log n) measurements can identify
k-sparse vectors associated with G(n, p) almost surely.

C. 1< c = np< log n

Now G(n, p) is disconnected and has a unique giant com-
ponent containing (α + o(1))n nodes almost surely with α
satisfying e−cα = 1 − α, or equivalently,

α = 1 − 1

c

∞∑
k=1

kk−1

k! (ce−c)k,

and all the other nodes belong to small components.
The expectation of the total number of components in G(n, p)
is (1 −α − c(1 −α)2/2 + o(1))n [29]. Since it is necessary to
take at least one measurement for each component, (1 − α −
c(1 −α)2/2 + o(1))n is an expected lower bound of measure-
ments required to identify sparse vectors.

The diameter D of a disconnected graph is defined to be
the largest distance between any pair of nodes that belong
to the same component. Since D is now �(log n/ log(np))
almost surely [18], then for the radius R of the giant com-
ponent, R ≤ D = O(log n/ log(np)), where the second
equality holds almost surely. We use Algorithm 1 to design
measurements on the giant component, and then measure every
node in the small components directly. Thus, k-sparse vectors
associated with G(n, p) can be identified almost surely with
O(k log n log(n/k)/ log(np))+(1−α+o(1))n measurements.

Note that here almost surely the size of every small compo-
nent is at most log n+2

√
log n

np−1−log(np) ([18, Lemma 5]). If k = �(log n),

almost surely (1 − α + o(1))n measurements are necessary
to identify subvectors associated with small components, and
thus necessary for identifying k-sparse vectors associated with
G(n, p). Combining the arguments, we have

Proposition 6: When 1 < c = np < log n with constant c,
we can identify k-sparse vectors associated with G(n, p)
almost surely with O(k log n log(n/k)/ log(np)) + (1 − α +
o(1))n measurements. (1 − α − c(1 − α)2/2 + o(1))n is an
expected lower bound of the number of measurements needed.
Moreover, if k = �(log n), almost surely (1 − α + o(1))
n measurements are necessary to identify k-sparse vectors.
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D. np < 1

Since the expectation of the total number of components
in G(n, p) with np < 1 is n − pn2/2 + O(1) [29], then
n − pn2/2 + O(1) is an expected lower bound of the number
of measurements required. Since almost surely all components
are of size O(log n), then we need to take n measurements
when k = �(log n). Therefore,

Proposition 7: When np < 1, we need at least n− pn2/2+
O(1) measurements to identify k-sparse vectors associated
with G(n, p) in expectation. Moreover, when k = �(log n),
n measurements are necessary almost surely.

VI. ADDING ADDITIONAL GRAPH CONSTRAINTS

We addressed (A1) and (A2) for topological constraints
in previous sections. Here we consider additional graph
constraints brought by practical implementations. We first
consider measurement construction with length constraints,
since measurements with short length are preferred in practice.
We then discuss the scenario that each measurement should
pass at least one node in a fixed subset of nodes, since in
network applications, one may want to reduce the number of
routers that initiate the measurements.

A. Measurements With Short Length

We have not imposed any constraint on the maximum
number of nodes in one measurement. In practice, one may
want to take short measurements so as to reduce the commu-
nication cost and the measurement noise. We consider sparse
recovery with additional constraint on measurement length on
two special graphs.

1) Line and Ring: The construction in Section III-A is
optimal for a line in terms of reducing the number of measure-
ments needed. The length of each constructed measurement is
� n+1

k+1 , which is proportional to n when k is a constant. Here
we provide a different construction such that the total number
of measurements needed to recover associated k-sparse vectors
is k
 n

k+1� + 1, and each measurement measures at most k + 2
nodes. We also remark that the number of measurements by
this construction is within the minimum plus max(k − 1, 1)
for a line, and within the minimum plus k for a ring.

We construct the measurements as follows. Given k, let Bk

be a k + 1 by k + 1 square matrix with entries of ‘1’ on the
main diagonal and the first row, i.e., Bk

ii = 1 and Bk
1i = 1

for all i . If k is even, let Bk
i(i−1) = 1 for all 2 ≤ i ≤ k + 1;

if k is odd, let Bk
i(i−1) = 1 for all 2 ≤ i ≤ k. Bk

i j = 0

elsewhere. Let t = 
 n
k+1�, we construct a (kt + 1) by (k + 1)t

matrix A based on Bk . Given set S ⊆ {1, . . . , kt + 1} and set
T ⊆ {1, . . . , (k + 1)t}, AST is the submatrix of A with row
indices in S and column indices in T . For all i = 1, . . . , t , let
Si = {(i − 1)k + 1, . . . , ik + 1}, and let Ti = {(k + 1)(i − 1)+
1, . . . , (k + 1)i}. Define ASi Ti = Bk for all i . All the other
entries of A are zeros. We keep the first n columns of A as a
measurement matrix for the line/ring with n nodes. Note that
the last one or several rows of the reduced matrix can be all
zeros. We just delete these rows, and let the resulting matrix

be the measurement matrix. For example, when k = 2 and
n = 9, we have t = 3, and

B2 =
[

1 1 1
1 1 0
0 1 1

]
,

and

A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

. (14)

When k = 3, and n = 8, we have t = 2 and

B3 =
⎡
⎢⎣

1 1 1 1
1 1 0 0
0 1 1 0
0 0 0 1

⎤
⎥⎦, A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

Each measurement measures at most k + 2 nodes when k is
even and at most k + 1 nodes when k is odd. We have,

Theorem 9: The above construction can recover k-sparse
vectors associated with a line/ring with at most k
 n

k+1� + 1
measurements, which is within the minimum number of
measurements needed plus k. Each constructed measurement
measures at most k + 2 nodes.

Proof: We only need to prove that all k-sparse vectors in
R(k+1)t can be identified with A, which happens if and only
if for every vector z �= 0 such that Az = 0, z has at least
2k + 1 non-zero elements [12].

If t = 1, A a k + 1 by k + 1 full rank matrix, and the claim
holds trivially. We next consider t ≥ 2. We prove the case
when k is even and skip the similar proof for odd k.

For each integer t ′ in [2, t], define a submatrix At ′ formed
by the first kt ′ + 1 rows and the first (k + 1)t ′ columns of A.
For example, for A in (14), we define

A2 =

⎡
⎢⎢⎣

1 1 1 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1
0 0 0 1 1 0
0 0 0 0 1 1

⎤
⎥⎥⎦, and A3 = A.

We will prove by induction on t ′ that (*) every non-zero
vector z ∈ R(k+1)t ′ such that At ′z = 0 holds has at least
2k + 1 non-zero elements for every t ′ in [2, t].

First consider A2, which is a (2k +1)×(2k +2) matrix. Let
aT

i (i = 1, . . . , 2k + 1) denote the i th row of A2. Let z be any
vector such that Az = 0 holds. Then from the construction
of A2 and the property that Az = 0, we have

aT
i z = zi + zi+1 = 0, ∀i = k + 2, . . . , 2k + 1. (15)

The equations in (15) indicate that zk+2, . . . , z2k+2, the last
k + 1 entries of z, are either all zeros or all non-zeros.
If zk+2, . . . , z2k+2 are all zeros, let z′ denote the subvector
containing the first k +1 entries of z. Since the submatrix that
contains the first k +1 rows and the first k +1 columns of A is
exactly Bk according to the construction of A2, then we have
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Bkz′ = 0. Since Bk is full rank, then z′ = 0, which implies
that z = 0.

Now consider the case that zk+2, . . . , z2k+2 are all non-zero.
Note that from (15), we have

zi + zi+1 = 0, ∀i = k + 3, k + 5, . . . , 2k + 1. (16)

Summing up the equations in (16) leads to

2k+2∑
i=k+3

zi = 0. (17)

From the k + 1th row of A and Az = 0, we have

aT
k+1z =

2k+2∑
i=k

zi = 0. (18)

Combining (17) and (18), we know that

zk + zk+1 + zk+2 = 0. (19)

Since zk+2 is non-zero, then zk + zk+1 is also non-zero
from (19). From the first row of A and Az = 0, we have

k+1∑
i=1

zi = 0. (20)

Combining (20) with the fact that zk + zk+1 is non-zero, we
know that at least one of the first k −1 entries of z is non-zero.
From rows two to k − 1 of A and Az = 0, we have

zi−1 + zi = 0, ∀i = 2, 3, . . . , k − 1. (21)

Since one of the first k−1 entries of z is non-zero, one can see
from equations (21) that all the first k −1 entries are non-zero.
Therefore, all the first k − 1 entries and the last k + 1 entries
of z are non-zero, and at least one of zk and zk+1 is nonzero.
Thus, z has at least 2k + 1 non-zero entries. Thus, (*) holds
for A2.

Now suppose (*) holds for some t ′ in [2, t − 1]. We next
need to prove that it holds for matrix At ′+1. With the same
arguments as those for A2, one can show that for every z �= 0
such that At ′+1z = 0, its last k + 1 entries are either all zeros
or all non-zero. If the last k + 1 entries of z are all zeros, let
z′ denote the subvector containing the first (k + 1)t ′ entries
of z. By induction hypothesis, z′ has at least 2k + 1 non-zero
entries, thus so does z. Then the claim holds for At ′+1.

If the last k + 1 entries of z are all non-zero, then from the
equation that

aT
kt ′+1z =

(k+1)(t ′+1)∑
(k+1)t ′−1

zi = 0,

we know that z(k+1)t ′−1 + z(k+1)t ′ is non-zero. We next claim
that there exists an integer j in [0, t ′ − 1] such that the sum
of all k − 1 entries from z j (k+1)+1 to z j (k+1)+k−1 is non-zero.
Suppose not, then from

aT
1 z =

k+1∑
i=1

zi = 0, (22)

and the hypothesis that the sum of entries from z1 to zk−1 is
zero, one can obtain that

zk + zk+1 = 0. (23)

Then, for all r = 1, . . . , t ′ − 1, consider the equations

0 = aT
rk+1z =

(r+1)(k+1)∑
i=r(k+1)−1

zi (24)

= (zr(k+1)−1 + zr(k+1)) + (z(r+1)(k+1)−1 + z(r+1)(k+1)),

(25)

where the last equality follows from the hypothesis that
the sum of entries from zr(k+1)+1 to zr(k+1)+k−1 is zero.
Combining (23) and the equations (24), one can obtain that
z(k+1)t ′−1 + z(k+1)t ′ = 0, which contradicts the fact that
z(k+1)t ′−1 + z(k+1)t ′ is non-zero. Therefore, there exists j in
[0, t ′ −1] such that the sum of all k −1 entries from z j (k+1)+1
to z j (k+1)+k−1 is non-zero. Then, from the equations

aT
i z = zi+ j−1 + zi+ j = 0, ∀i = jk + 2, . . . , jk + k − 1,

(26)

we know that if the sum of k − 1 terms from z j (k+1)+1 to
z j (k+1)+k−1 is non-zero, then each of these entries is non-
zero. Since we obtained earlier that at least one of z(k+1)t ′−1
and z(k+1)t ′ is non-zero, and the last k + 1 entries of z are
all non-zero, we conclude that in this case z also has at least
2k + 1 non-zero entries.

By induction over t ′, every z �= 0 such that Az = 0 has at
least 2k + 1 non-zero entries, then the result follows. �

This construction measures at most k + 2 nodes in each
measurement. If measurements with constant length are pre-
ferred, we provide another construction method such that every
measurement only measures at most three nodes. This method
requires (2k − 1)
 n

2k � + 1 measurements to recover k-sparse
vectors associated with a line/ring.

Given k, let Dk be a 2k by 2k square matrix having
entries of ‘1’ on the main diagonal and the subdiagonal and
‘0’ elsewhere, i.e. Dk

ii = 1 for all i and Dk
i(i−1) = 1 for

all i ≥ 2, and Dk
i j = 0 elsewhere. Let t = 
 n

2k �, we
construct a (2kt − t + 1) by 2kt matrix A based on Dk .
Let Si = {(i − 1)(2k − 1) + 1, . . . , i(2k − 1) + 1}, and let
Ti = {2k(i − 1) + 1, . . . , 2ki}. Define ASi Ti = Dk for all
i = 1, . . . , t , and Aij = 0 elsewhere. We keep the first n
columns of A as the measurement matrix. For example, when
k = 2 and n = 8, we have

D2 =
⎡
⎢⎣

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎥⎦,

and

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

. (27)
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Theorem 10: The above constructed (2k − 1)
 n
2k � + 1

measurements can identify k-sparse vectors associated with
a line/ring of n nodes, and each measurement measures at
most three nodes.

Proof: When t = 1, A is a full rank square matrix.
We focus on the case that t ≥ 2. For each integer t ′ in [2, t],
define a submatrix At ′ formed by the first 2kt ′ − t ′ + 1 rows
and the first 2kt ′ columns of A. We will prove by induction
on t ′ that every z �= 0 such that At ′z = 0 holds has at least
2k + 1 non-zero elements for every t ′ in [2, t].

First consider A2. For A in (27), A2 = A. From the first
2k − 1 rows of A2, one can check that for every z such that
A2z = 0, its first 2k − 1 entries are zeros. From the 2kth row
of A2, we know that z2k and z2k+1 are either both zeros or
both non-zero. In the former case, the remaining 2k −1 entries
of z must be zeros, thus, z = 0. In the latter case, one can
check that the remaining 2k − 1 entries are all non-zero, and
therefore z has 2k + 1 non-zero entries.

Now suppose the claim holds for some t ′ in [2, t − 1].
Consider vector z �= 0 such that At ′+1z = 0. If z2kt ′+1 = 0, it
is easy to see that the last 2k entries of z are all zeros. Then
by induction hypothesis, at least 2k +1 entries of the first 2kt ′
elements of z are non-zero. If z2kt ′+1 �= 0, one can check that
the last 2k −1 entries of z are all non-zero, and at least one of
z2kt ′−1 and z2kt ′ is non-zero. Thus, z also has at least 2k + 1
non-zero entries in this case.

By induction over t ′, every z �= 0 such that
Az = 0 has at least 2k + 1 non-zero entries, then the theorem
follows. �

The number of measurements by this construction is
greater than those of the previous methods. But the advan-
tage of this construction is that the number of nodes in
each measurement is at most three despite of the values
of n and k.

2) Ring With Each Node Connecting to Four Neighbors: We
next consider G4 in Fig. 4(a). We further impose the constraint
that the number of nodes in each measurement cannot exceed d
for some predetermined integer d . We neglect �· and 
·� for
notational simplicity.

All the even nodes are divided into n/d groups. Each group
contains d/2 consecutive even nodes and is used as a hub to
measure d/2 odd nodes that have direct edges with nodes in
the hub. Then we can identify the values related to all the odd
nodes with nMC

k,d/2/d + n/d measurements, and the number
of nodes in each measurement does not exceed d . We then
measure the even nodes with groups of odd nodes as hubs.
In total, the number of measurements is 2nMC

k,d/2/d + 2n/d ,
which equals O(2n(k log(d/2)+ 1)/d). When d equals n, the
result coincides with Corollary 1. Since n/d measurements are
needed to measure each node at least once, we have

Theorem 11: The number of measurements needed to
recover k-sparse vectors associated with G4 with each mea-
surement containing at most d nodes is no less than n/d and
no more than O(2n(k log(d/2) + 1)/d).

Therefore, the ratio of the number of measurements
by our construction to the minimum number needed with
length constraint is within Ck log(d/2) for some positive
constant C .

Fig. 9. When H ∩ Y = ∅, use hub H ′ = H ∪ P ′ to measure nodes D\i .

B. Measurements Passing at Least One Node in a Fixed Subset

Recall that in network delay monitoring, a router sends a
probing packet to measure the sum of delays on links that
the packet transverses. Then every measurement initiated by
this router measures the delay on at least one link that is
connected to the router. In order to reduce the monitoring cost,
one may only employ several routers to initiate measurements,
thus, each measurement would include at least one link that is
connected to these routers. In the graph model G = (V , E) we
consider in this paper, it is equivalent to the requirement that
every measurement should contain at least one node in a fixed
subset of nodes Y ⊂ V . We will show that this requirement
can be achieved with small modifications to Algorithm 1.

After step 3 in Algorithm 1, let H denote the currently
chosen hub, and let D denote the set of nodes that one needs
to design measurements via hub H . If H ∩ Y is not empty,
since every measurement constructed to measure nodes in D
should contain all the nodes in the H, then it contains at least
one node in Y naturally. If H ∩ Y is empty, we will find a
new hub that contains at least one node in Y. We consider
two scenarios. If D ∩ Y is not empty, say node i belongs to
both set D and set Y, then we let Ĥ := H ∪ {i} be the new
hub, and design measurements for nodes in D̂ := D\i using
hub Ĥ. Then every measurement containing hub Ĥ contains
node i and therefore, at least one node in Y . We use one
additional measurement to measure i directly. When D ∩ Y
is also empty, we pick any node j in D and any node f in
Y and compute the shortest path from j to f on G. Let P
denote the resulting shortest path, which contains a sequence
of nodes that connect j to f . Let node i be the last node on
path P that belongs to D, and let P ′ denote the segment of
P that connects i to f . Let H ′ := H ∪ P ′ be the hub, and
let D′ := D\i be the set of nodes that can be measured via
H ′, see Fig. 9. Then every measurement containing hub H ′
contains f . We use two additional measurements to measure
node i , where one measurement records path P ′, and the other
one measures P ′\i . With this simple modification, we can
measure nodes in D with each measurement containing one
node in Y , and the total number of measurements is increased
by at most two.

We summarize the above modification in subroutine Agent.
For measurement design on general graphs, we first replace
step 4 in Algorithm 1 in Section IV-B with subroutine
Agent(V\S, S, Y , G). Then in each iteration the number of
measurements is increased by at most two. We then replace
step 9 with measuring the paths P∗ and P∗\nlast, where
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Subroutine 3 Agent(H , D, Y , G)
Initial: hub H , set D of nodes to measure, set Y of fixed

nodes, G
1 if H ∩ Y �= ∅ then
2 Design f (k, |D|) + 1 measurements to recover k-sparse

vectors associated with D using H as a hub.
3 else
4 if D ∩ Y �= ∅ then
5 Pick some node i in D ∩ Y . D̂ := D\i , Ĥ := H ∪ {i}.

Design f (k, |D̂|)+1 measurements to recover k-sparse
vectors associated with D̂ using Ĥ as a hub.

6 Measure i directly.
7 else
8 Pick any node j in D and any node f in Y . Find the

shortest path P from j to f . Find the last node i on
path P that is in D. Let P ′ denote the segment of P
that starts from i and ends at f .

9 D′ := D\i , H ′ := H ∪ P ′, design f (k, |D′|) + 1
measurements to recover D′ with H ′ as a hub.

10 Measure P ′ and P ′\i to recover node i .
11 end if
12 end if

nlast is the last node in G, and P∗ connects nlast to any
node j in Y on the original graph. Therefore, the total number
of measurements needed by the modified algorithm is upper
bounded by R f (k, n) + 3R + 2, and each measurement in the
modified version contains at least one node in Y . The modified
algorithm also has at most R iterations. In each iteration, the
additional computation compared with that of Algorithm 1
takes time O(|E | + |V | log |V |), which results from the com-
putation of the shortest path in step 8 of subroutine Agent.

VII. SENSITIVITY TO HUB MEASUREMENT ERRORS

When constructing measurements based on the use of a
hub, in order to measure nodes in S using hub H , we first
measure the sum of nodes in H and then delete it from other
measurements to obtain the sum of some subset of nodes in
S. This arises the issue that if the sum of H is not measured
correctly, this single error would be introduced into all the
measurements. Here we prove that successful recovery is still
achievable when a hub measurement is erroneous.

Mathematically, let xS denote the sparse vector associated
with S, and let xH denote the vector associated with H .
Let Am×|S| be a measurement matrix that can identify k-
sparse vectors associated with a complete graph of |S| nodes.
We arrange the vector x such that x = [xT

S xT
H ]T , then

F =
[

A W m×|H |
0T|S| 1T|H |

]

is the measurement matrix for detecting k non-zeros in S using
hub H , where W is a matrix with all ‘1’s, 0 is a column vector
of all ‘0’s, and 1 is a column vector of all ‘1’s. Let vector z
denote the first m measurements, and let z0 denote the last
measurement of the hub H . Then[

z
z0

]
=

[
AxS + 1T xH 1m

1T xH

]
,

or equivalently

z − z01m = AxS. (28)

If there is some error e0 in the last measurement, i.e., instead
of z0, the actual measurement we obtain is

ẑ0 = 1T xH + e0,

then e0 affects the recovery accuracy of xS through (28).
To eliminate the impact of e0, we model it as an entry of an

augmented sparse signal to recover. Let x′ = [xT e0]T , and
A′ = [A − 1m], we have

A′x′ = z − ẑ01m . (29)

Then, recovering xS in the presence of hub error e0 is
equivalent to recovering k + 1-sparse vector x′ from (29).

We consider one special construction of matrix Am×|S| for
a complete graph. A has ‘1’ on every entry in the last row, and
takes value ‘1’ and ‘0’ with equal probability independently
for every other entry. A′ = [A −1m], let Â be the submatrix
of the first m − 1 rows of A′. Let y = z − ẑ01m , and let ŷ
denote the first m − 1 entries of y. We have,

(2 Â − W (m−1)×|S|)x′ = 2ŷ − ym .

We recover x′ by solving the �1-minimization problem,

min ‖x‖1, s.t. (2 Â − W (m−1)×|S|)x = 2ŷ − ym . (30)

Theorem 12: With the above construction of A, when m ≥
C(k + 1) log |S| for some constant C > 0 and |S| is large
enough, with probability at least 1 − O(|S|−α) for some
constant α > 0, x′ is the unique solution to (30) for all
k + 1-sparse vectors x′ in R|S|+1.

Theorem 12 indicates that even though the hub measurement
is erroneous, one can still identify k-sparse vectors associated
with S with O((k + 1) log |S|) measurements.

The proof of Theorem 12 relies heavily on Lemma 2.
Lemma 2: If matrix �p×n takes value −1/

√
p on every

entry in the last column and takes value ±1/
√

p with equal
probability independently on every other entry, then for any
δ > 0, there exists some constant C such that when p ≥
C(k +1) log n and n is large enough, with probability at least
1 − O(n−α) for some constant α > 0 it holds that for every
U ⊆ {1, . . . , n} with |U | ≤ 2k + 2 and for every x ∈ R2k+2,

(1 − δ)‖x‖2
2 ≤ ‖�U x‖2

2 ≤ (1 + δ)‖x‖2
2, (31)

where �U is the submatrix of � with column indices in U.
Proof: Consider matrix �′p×n with each entry taking

value ±1/
√

p with equal probability independently. For every
realization of matrix �′, construct a matrix �̂ as follows. For
every i ∈ {1, . . . , p} such that �′

in = 1/
√

p, let �̂i j = −�′
i j

for all j = 1, . . . , n. Let �̂i j = �′
i j for every other entry.

One can check that �̂ and � follow the same probability
distribution. Besides, according to the construction of �̂, for
any subset U ⊆ {1, . . . , n},

�′
U

T
�′

U = �̂T
U �̂U . (32)

The Restricted Isometry Property [12] indicates that the
statement in Lemma 2 holds for �′. From (32), and the fact
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Fig. 10. Random graph with n = 1000.

that ‖�′
U x‖2

2 = xT �′
U

T �′
U x, the statement also holds for �̂.

Since �̂ and � follow the same probability distribution, the
lemma follows. �

Proof (of Theorem 12): From Lemma 2, we fix some δ <
0.4531 [30], then when m ≥ C(k + 1) log |S| for some C > 0
and |S| is large enough, matrix (2 Â − W (m−1)×|S|)/

√
m − 1

satisfies (31) with probability at least 1−O(|S|−α). Then from
[13] and [30], one can recover all k+1-sparse vectors correctly
from (30). �

VIII. SIMULATION

Experiment 1 (Effectiveness of Algorithm 1): The exact
number of required measurements to recover 1-sparse
n-dimensional signals associated with a complete graph satis-
fies MC

1,n = 
log(n +1)�, and the corresponding measurement
matrix can be constructed by taking the binary expansion
of integer i as column i [25]. Moreover, the number of
measurements required to recover k-sparse vectors is within
certain constant times kMC

1,n from (3). Therefore, the number
of measurements required for recovering 1-sparse signals on a
graph G is a simple indicator of the measurement requirement
for general k-sparse signals.

Given a graph G, we apply Algorithm 1 to divide the
nodes into groups such that each group (except the last one)
can be measured via some hub. The last group contains one
node and can be measured directly. The total number of
constructed measurements for recovering 1-sparse signals is∑q−1

i 
log(ni + 1)� + q , where ni is the number of nodes in
group i , and q is the total number of groups.

We start with a uniformly generated random tree with
n = 1000 nodes and gradually increase the number of edges
in the graph until it becomes a complete graph of n nodes.
Fig. 10 shows the number of constructed measurements for
graphs versus the number of edges in the graph. All the results
are averaged over one hundred realizations. When the graph
evolves from a tree to a complete graph, its radius R decreases
from 13 to 1, and the number of measurements constructed
for recovering 1-sparse vectors associated with the graph
decreases from 62 to 10. Note that when the average node
degree in the graph is only four, the number of measurements
is already within 3MC

1,n , where MC
1,n (equals 10 if n equals

1000) is the required number of measurements in a complete
graph. We also plot the upper bound R
log n�+R+1 provided
by Theorem 8. One can see that the number of measurements
actually constructed is much less than the upper bound.

Fig. 11. BA model with increasing n.

We also consider the scale-free network with Barabási-
Albert (BA) model [4] where the graph initially has m0
connected nodes, and new nodes are added to the graph
gradually. Each new node connects to m existing nodes with
a probability that is proportional to the degree of the existing
nodes. We start with a random tree of 10 nodes and increase
the total number of nodes to 1024. Every result in Fig. 11 is
averaged over one hundred realizations. Since the diameter of
BA model is O(log n/ log log n)) [9], then by Theorem 8, the
number of our constructed measurements is upper bounded by
O(log2 n/ log log n)).

Experiment 2 (Recovery Performance With Hub Error):
We generate a graph with n = 500 nodes from BA model.
Algorithm 1 divides nodes into four groups with 375, 122,
2 and 1 node respectively. We construct the measurements
as follows. For each of the first two groups with size ni

(i = 1, 2), we generate 
ni/2� random measurements, each of
which measures a random subset of the group together with
its hub. Every node of the group is included in the random
subset independently with probability 0.5. We also measure
the two hubs directly. Each of the three nodes in the next
two groups is measured directly by one measurement. The
generated matrix A is 254 by 500. We generate a sparse vector
x0 with i.i.d. zero-mean Gaussian entries on a randomly chosen
support and normalize ‖x0‖2 to 1.

To recover x0 from y = Ax0, one can run the widely
used �1-minimization [13] to recover the subvectors associated
with each of the first two groups, and the last three entries
of x0 can be obtained from measurements directly. However,
as discussed in Section VII, an error in a hub measure-
ment degrades the recovery accuracy of subvectors associated
with that group. To address this issue, we use a modified
�1-minimization in which the errors in the two hubs are treated
as entries of an augmented vector to recover. Specifically,
denote the augmented vector by z = [xT

0 , e1, e2]T and the
augmented matrix by Ã = [A β γ ], where e1 (or e2) denotes
the error in the measurement of the first (second) hub, and the
column vector β (or γ ) has ‘1’ in the entry corresponding to
the measurement of the first (or second) hub and ‘0’ elsewhere.
We then recover z (and thus x0) from y = Ãz by running
�1-minimization on each group separately.

Fig. 12 compares the recovery performance of our modified
�1-minimization and the conventional �1-minimization, where
the hub errors e1 and e2 are drawn from standard Gaussian
distribution with zero mean and unit variance. For every
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Fig. 12. Recovery performance with hub errors.

support size k, we randomly generate two hundred k-sparse
vectors x0, and let xr denote the recovered vector. Even with
the hub errors, the average ‖xr − x0‖2/‖x0‖2 is within 10−6

when x0 is at most 35-sparse by our method, while by standard
�1-minimization, ‖xr − x0‖2/‖x0‖2 is at least 0.35. We also
consider the case that besides errors in hub measurements, the
other measurements all have i.i.d. Gaussian noise with zero
mean and variance 0.042. The average ‖xr − x0‖2/‖x0‖2 here
is smaller by our method than that by �1-minimization.

IX. CONCLUSION

This paper addresses the sparse recovery problem with
graph constraints. We provide explicit measurement construc-
tions for special graphs, and propose measurement design
algorithms for general graphs. Our construction for a line
network is optimal since the number of measurements needed
is minimized. Our constructions on other graphs also improve
over the existing results. We characterize the relationship
between the number of measurements for sparse recovery
and the graph topology and develop bounds of the minimum
number of measurements needed for sparse recovery on a
given graph.

We remark that this paper is the first step towards network
measurement constructions for sparse recovery in a com-
pressed sensing framework with topological constraints, and
several practical concerns have not been much addressed yet.
We only include the length constraints on the measurements
into the measurement construction for some special graphs
(Section VI-A). Since measurements with short lengths are
preferred in network applications, it is interesting to develop
measurement construction methods for general graphs when
the measurement length is bounded. We have not analyzed
the effect of the measurement noise on recovery performance.
Also, we assume full knowledge of the fixed network topology,
and measurement construction when the topology is time-
varying or partially known is an open question.

APPENDIX A

PROOF OF THEOREM 4

Let Am×n denote the matrix with m realizations of the
n-step Markov chain. To prove the statement, from [12], we
only need to show that the probability that every 2k columns
of A are linearly independent goes to 1 as n goes to infinity.

Let AI be a submatrix of A with columns in I , where I is
an index set with |I | = 2k. Let AS j I (1 ≤ j ≤ � m

2k ) be a
submatrix of AI formed by row 2k( j−1)+1 to row 2k j of AI .
Given I , the probability that rank(AS j I )< 2k is the same for
every given j , and let it denoted by π I

d . Let P I
d denote the

probability that rank(AI )< 2k, then

P I
d ≤ (π I

d )�
m
2k . (33)

To characterize π I
d , consider matrix B2k×2k with Bii = 0

for i = 2, 3, . . . , 2k and Bij = 1 for all the other elements.
Since rank(B) = 2k, then

π I
d ≤ 1 − P(AS j I is a row permutation of B). (34)

One can check that in this Markov chain, for every 1 ≤ i <
k ≤ n, P(Xk = 1 | Xi = 1) ≥ 1/2, P(Xk = 0 | Xi = 1) ≥
1/4, P(Xk = 1 | Xi = 0) ≥ 1/2, and P(Xk = 1) ≥ 1/2.
Since B has (2k)! different row permutations,

P(AS j I is a row permutation of B) ≥ (2k)!/24k2+2k−1. (35)

Combining (33), (34) and (35), we have

P(every 2k columns of A are linearly independent)

= 1 − P(rank(AI ) < 2k for some I with |I | = 2k)

≥ 1 −
(

n

2k

)
P I

d ≥ 1 −
(

n

2k

)
e−(2k)!( 1

2 )4k2+2k−1� m
2k ,

where the first inequality follows from the union bound. Then
if m = g(k) log n = (2k + 1)24k2+2k−1 log n/(2k − 1)!, the
probability that every 2k columns of A are linearly indepen-
dent is at least 1 − 1/((2k)!n).

APPENDIX B

PROOF OF PROPOSITION 1

We view nodes 2i − 1 and 2i as a group for every i
(1 ≤ i ≤ � n

2 ), denoted by Bi . Consider the special case
that for some t , both nodes in Bt are ‘1’s, and all other nodes
are ‘0’s. Then every measurement that passes either node or
both nodes in Bt is always ‘1’. Consider a reduced graph
with Bi , ∀i as nodes, and edge (Bi , B j ) (i �= j ) exists only
if in G4 there is a path from a node in Bi to a node in B j

without going though any other node not in Bi or B j . Bi is ‘1’
if both node 2i − 1 and node 2i in G4 are ‘1’s and is ‘0’
otherwise. The reduced network is a ring with � n

2  nodes,
and thus �n/4 measurements are required to locate one non-
zero element in the reduced network. Then only to locate two
consecutive non-zero elements associated with G4, we need at
least �n/4 measurements, and the claim follows.

APPENDIX C

PROOF OF THEOREM 7

Since checking whether or not r given sets form an
r -partition takes polynomial time, r -partition problem is NP.

We next show that the NP-complete r -coloring (r ≥ 3)
problem is polynomial time reducible to r -partition problem.

Let G = (V , E) and an integer r be an instance of
r -coloring. For every (u, v) ∈ E , add a node w and two
edges (w, u) and (w, v). Let W denote the set of nodes added.
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Add a edge between every pair of nodes in V not already
joined by a edge. Let H denote the augmented graph and let
V ′ = V ∪ W . We claim that if there exists an r -partition of
H , then we can obtain an r -coloring of G, and vice versa.

Let Si (i = 1, . . . , r ) be an r -partition of H . Suppose there
exists edge (u, v) ∈ E s.t. u and v both belong to Si for some i .
Let w denote the node in W that only directly connects to u
and v. If w ∈ Si , then w has both neighbors in the same set
with w, contradicting the definition of r -partition. If w /∈ Si ,
then HV ′\Si is disconnected since w does not connect to any
node in V ′\Si . It also contradicts the definition of r -partition.
Thus, for every (u, v) ∈ E , node u and v belong to two sets
Si and Sj with i �= j . Then we obtain an r -coloring of G.

Let Ci ⊂ V (i = 1, . . . , r ) denote an r -coloring of G.
We claim that Ni = Ci (i = 1, . . . , r − 1), and Nr = Cr ∪ W
form an r -partition of H . First note for every u ∈ V , at least
one of its neighbors is not in the same set as u. For every
w ∈ W , w is directly connected to u and v for some (u, v) ∈
E , and u and v are in different sets Ci and C j for some
i �= j . Therefore, w has at least one neighbor that is not
in Nr . Second, we will show HV ′\Ni is connected for all i .
HV ′\Nr is a complete subgraph, and thus connected. For every
i < r , let Si := V \Ci , then V ′\Ni = Si ∪ W . HSi is a
complete subgraph, and thus connected. For every w ∈ W ,
since its two neighbors cannot be both in Ci , then at least one
neighbor belongs to Si , thus HV ′\Nr = HSi∪W is connected.
Ni (i = 1, . . . , r ) thus forms an r -partition.
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