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Abstract—In this article we study synchronization of systems of homogeneous phase-coupled oscillators with plastic coupling strengths

and arbitrary underlying topology. The dynamics of the coupling strength between two oscillators is governed by the phase difference

between these oscillators.We show that, under mild assumptions, such systems are gradient systems, and always achieve frequency

synchronization. Furthermore, we provide sufficient stability and instability conditions that are based on results from algebraic graph

theory. For a special case when underlying topology is a tree, we formulate a criterion (necessary and sufficient condition) of stability of

equilibria. For both, tree and arbitrary topologies, we provide sufficient conditions for phase-locking, i.e., convergence to a stable

equilibrium almost surely. We additionally find conditionswhen the system possesses a unique stable equilibrium, and thus, almost global

stability follows. Several examples are used to demonstrate variety of equilibria the system has, their dependence on system’s

parameters, and to illustrate differences in behavior of systemswith constant and plastic coupling strengths.

Index Terms—Phase-coupled oscillators, synchronization, plastic coupling, stability, Kuramoto model

Ç

1 INTRODUCTION

SYNCHRONIZATION of phase-coupled oscillators is an
extensive topic of research that finds applications in a

variety of disciplines [1], [2] including neuroscience [3], [4],
[5], [6], [7], [8], [9], physics [10], [11], mathematics [12], chem-
istry [13] and engineering [14], [15]. The dynamic behavior of
these systems can be quite rich. For example, the intrinsic
symmetry of the network can produce multiple limit cycles
or equilibria with relatively fixed phases (phase-locked) [16],
and the heterogeneity in the natural oscillation frequency
can lead to incoherence [17] or even chaos [18].

One of the most important properties of a system of
phase-coupled oscillators is how coupling (or interaction)
between oscillators is defined. The Kuramoto model [19]—a
canonical model for studying synchronization phenom-
ena—uses a trigonometric sin ðÞ coupling function that
depends on the phase difference of the two interacting oscil-
lators. However, broader classes of coupling functions have
been considered—specially in applications to biological
systems—and have proven to lead to richer varieties of
dynamic behaviors [7], [20], [21], [22], [23].

Besides the coupling function, there are two additional
elements that also affect the systems behavior: the coupling
strength (the gain that multiplies the coupling function)
and the interconnection topology (that describes who affects
whom). There is a vast body of literature devoted to

understanding the effect of these elements, including stud-
ies of networks with complete graph [24], graph of diameter
two [25] or arbitrary topology [12], [17], [26], [27]. In general,
larger (positive) coupling strength and more connected
topologies tend to promote synchronization and lead to
tightly grouped phase-locked solutions [17], [26]. However,
when negative coupling strengths are allowed among oscil-
lators, new stable phase-locked solutions and even non-syn-
chronizing traveling waves can appear [28].

Interestingly, a common feature of all these studies is that
the coupling strength is assumed to be fixed. Having con-
stant coupling strengths generally simplifies the analysis
and allows the theory to provide profound insights on the
behavior of these systems. However, considering varying or
plastic coupling strengths is more suitable for studying
oscillations in neuroscience, since synaptic neural connec-
tions undergo modifications due to learning or forgetting
processes [7], [29], [30]. This has motivated some recent
empirical studies [31], [32], [33], [34] that seek to understand
the effect of dynamic coupling strength. However, with the
exception of a few studies that consider plastic coupling
strength for complete graph topologies and sinusoidal cou-
pling, there has not been a systematic study of the dynam-
ical properties of plastic phase-coupled oscillators.

The goal of this work is to develop a general analytical
framework for studying systems of phase-coupled homoge-
neous oscillators with non-constant coupling and arbitrary
underlying topology. We show by providing a Lyapunov
function, that under mild conditions these systems always
achieve frequency synchronization, and derive two suffi-
cient conditions: one for showing stability, and another one
for showing instability of an equilibrium. Moreover, these
conditions characterize all equilibria when underlying
topology is a tree graph. We further characterize the rela-
tionship between the system parameters and its behavior,
as well as the range of admissible asymptotic coupling
strengths. In particular, we show that for almost all choices
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of these parameters, the system converges to a stable equi-
librium almost surely.

The structure of the article is the following. Section 2 for-
mally describes the model, introduces necessary notation
(Section 2.1), discusses related work and summarizes our
results (Section 2.2). Section 3 provides several examples that
motivate our study. Section 4 contains general theoretical
results: in Section 4.1 a Lyapunov function is introduced and
frequency synchronization of oscillators is shown. Then, in
Section 4.2 we formulate stability and instability sufficient
conditions. We apply these conditions in Section 4.3 to
analyze stability of the in-phase and anti-phase equilibria.
The results presented in Section 4 can be strengthen when
the underlying network topology is a tree graph as shown in
Section 5. In particular, we prove convergence to a stable
equilibrium almost surely in the case of a general coupling
(Section 5.1), and almost global stability in the case of strictly
attractive or repulsive connections (Section 5.2). Section 6
considers the arbitrary topology case. More precisely, we
show convergence to a stable equilibrium almost surely
using additional assumptions on the choice of system’s
parameters. Finally, we apply our stability results to several
examples in Section 7, and conclude in Section 8.

2 PLASTIC PHASE-COUPLED OSCILLATORS

In this section we first formally describe the model, discuss
the meaning of its parameters and define the assumptions
that we will use. We then briefly list related works and
summarize our results.

2.1 Model Description

We study a network of phase-coupled oscillators with plas-
tic coupling strengths whose dynamics are governed by the
following two equations:

_fi ¼ vi þ
X
j2Ni

Kij � fijðfj � fiÞ; i 2 V (1a)

_Kij ¼ sij
�
aij � ðFijðfj � fiÞ þ qijÞ �Kij

�
; ij 2 E; (1b)

where E is the set of edges and V the set of vertices.
Equation (1a) defines behavior of an oscillator, and
Equation (1b) determines dynamics of the coupling strength.

Here fi is a phase of oscillator i defined on a unit circle S1 so
that all n phase variables are defined on a n-dimensional
torus Tn; vi is its intrinsic frequency;Ni is a set of oscillators
connected to oscillator i, i.e., the set of its neighbors; Kij and
fij are a coupling strength and a coupling function, respec-
tively, between connected oscillators i and j.

The positive constants sij in Equation (1b) define the
rate of change of the coupling strengths, and FijðxÞ , �R x
0 fijðtÞ dtþ Cij with a choice of integration constant Cij that

makes
R p

0 FijðtÞ dt ¼ 0. The parameters qij 2 ð�1;þ1Þ and
aij > 0 determine the interval of values that the coupling
strength Kij can take in equilibrium. More precisely,

Kij 2 ½aij � ðFmin
ij þ qijÞ; aij � ðFmax

ij þ qijÞ� where Fmin
ij � 0

and Fmax
ij � 0 are the minimum and maximum values of the

function Fij, respectively. It can be observed that even if the
initial value of the coupling strength Kij does not belong to
this interval, it will eventually converge to it, and if the value

of Kij is from this interval, it will remain there. Two values

of qij are of a special interest: qþij , � Fmin
ij � 0 and q�ij ,

�Fmax
ij � 0. If qij � qþij , then the coupling between oscillators

i and j is positive (Kij � 0), while the coupling is negative

(Kij � 0) when qij � q�ij . In particular, when qij ¼ qþij ¼
�Fmin

ij (resp. qij ¼ q�ij ¼ �Fmax
ij ), then the coupling strength

Kij takes values from the interval ½0; aij � ðFmax
ij � Fmin

ij Þ�
(resp. ½aij � ðFmin

ij � Fmax
ij Þ; 0�).

The topology of system (1) is defined by an undirected
connected graph G ¼ ðV;EÞ. Each vertex i 2 V corresponds
to the oscillator fi, and each edge ij 2 E corresponds to the
coupling strength Kij, so that jV j ¼ n, where n is a number
of oscillators in a system, andNi ¼ fj 2 V jij 2 Eg. Addition-
ally, if oscillators i and j are not connected, then the coupling
strength between them is always equal to zero, i.e.,Kij � 0 if
ij =2 E. We denote by m the number of edges in a graph so
that jEj ¼ m. Therefore, the total number of variables and
equations in system (1) is nþm. It is assumed that coupling
is symmetric, andKij andKji are the same variable.

System (1) is fairly general and includes other models
studied in the literature as special cases. In particular, when
qij ¼ 0 8i; j and fijðfj � fiÞ ¼ sin ðfj � fiÞ 8i; j, then Fijðfj�
fiÞ ¼ cos ðfj � fiÞ and system (1) becomes the Kuramoto

model with varying coupling strengths also known as gen-
eralized Kuramoto model [29]. Model (1) with qij ¼ 0 8i; j
was previously studied in [23]. We do require however that
the functions fij satisfy the following three conditions:

Assumption 1. Functions fij 8ij 2 E satisfy:

(1) Symmetric coupling: fij ¼ fji;
(2) Odd: fijðxÞ ¼ �fijð�xÞ;
(3) C1: fij is continuously differentiable.

Examples of two functions fij satisfying these three con-
ditions are shown in Fig. 1.

In this article we study frequency synchronization of
system (1). We say that system (1) achieves frequency
synchronization if _f1ðtÞ ¼ � � � ¼ _fnðtÞ ¼ _f and _KijðtÞ ¼ 0 8i, j
as t ! 1, where _f is a common synchronization frequency.
In the case of homogeneous oscillators, all intrinsic frequen-
cies of oscillators are equal, i.e., there exists a constant v such
that v1 ¼ � � � ¼ vn ¼ v. It is easy to see that if such homoge-
neous oscillators synchronize, then their synchronization fre-
quency isv. Without loss of generality, we assume thatv ¼ 0,
and in the rest of the article consider the following system:

_fi ¼
X
j2Ni

Kij � fijðfj � fiÞ; i 2 V (2a)

_Kij ¼ sij
�
aij � ðFijðfj � fiÞ þ qijÞ �Kij

�
; ij 2 E: (2b)

Fig. 1. Examples of functions fij satisfying Assumption 1.
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By adding up all the phase Equations (1a), it can be
shown that, due to the symmetric coupling and the proper-
ties of functions fij specified in Assumption 1, the mean fre-

quency of oscillators ð1=nÞ �Pn
k¼1

_fk is always equal to the

average natural frequency ð1=nÞ �Pn
k¼1 vk. In particular, the

mean frequency of system (2) is equal to zero at any
moment of time, and hence, the mean phase of this system
ð1=nÞ �Pn

k¼1 fk remains fixed at its initial value.
Observe that if

�
f	; K	� is an equilibrium of system (2),

then
�
f	 þ d11n;K

	�, where 11n is a n-dimensional vector of

ones and d 2 R, is also an equilibrium and belongs to the
same limit cycle. We will not differentiate between equilib-
ria belonging to the same orbit and thus consider them to be
identical. Therefore, in the rest of the article when we talk

about the stability of an equilibrium
�
f	; K	�, we imply sta-

bility of the following set of equilibria: 1

Ef	 ¼ f�f; K�
:
�
f; K

�¼ �
f	 þ d11n;K

	�; d 2 Rg: (3)

Further, two equilibria ðf̂; K̂Þ and ð�f; �KÞ of the same
system of plastic phase-coupled oscillators are called topo-
logically equivalent, if they are characterized by the same

phase differences, i.e., if ðf̂i � f̂jÞ ¼ ð �fi � �fjÞ 8ij 2 E, or if

all phase differences are opposite in sign, i.e., when

ðf̂i � f̂jÞ ¼ �ð �fi � �fjÞ 8ij 2 E.

2.2 Related Work and Contributions

The plastic phase-coupled oscillator model (1) was initially
introduced in [7] as an extension to the classical Kuramoto
model to capture the behavior of neural networks. Because
the strength of synapses—connections between neurons—
can generally change its value and is believed to play a key
role in learning andmemory formation in the brain, it is natu-
ral to consider plastic coupling strengths between oscillators
in the Kuramoto model. A well-known synaptic plasticity
mechanism called Hebbian rule [35] states that a synapse
between two simultaneously active neurons, i.e., neurons
that spike almost at the same time, becomes stronger. When
neurons are modeled by phase-coupled oscillators, simulta-
neously firing neurons can be represented by oscillators
whose phases are almost equal. This idea is implied in the
model (1) with Fij ¼ cos ðÞ, where a connection between two
oscillators becomes stronger if it is small enough and if the
phases of these oscillators are close to each other.

Previous works have introduced and investigated several
modifications to (1). For example, in [36], [37], [38] time
delays are considered, and the behavior of the system for
different values of delay parameters is experimentally
explored. In [39] the coupling strength Equation of (1)
was replaced by an exponential Spike Timing-Dependent
Plasticity (STDP) rule, in which a coupling strength’s Kij

dependence on a phase difference ðfj � fiÞ is defined via

exponential function instead of function Fij. In [40] a sto-
chastic model of oscillators is studied, where Equations (1)
contain additive Gaussian noise terms. Synchronization of
model (1) with the complete topology, sin ðÞ coupling and

qij ¼ 0 is explored in [41] for both, homogeneous and hetero-
geneous oscillators. While in our previous work [23] results
were obtained for model (1) with qij ¼ 0 8 ij 2 E, arbitrary
choices of parameter qij are considered in this work.

The contributions of our work with respect to the exist-
ing literature are manifold. First, we perform a thorough
theoretical analysis of the system of plastic phase-coupled
oscillators in contrast to the empirical studies [31], [32],
[33]. Second, we consider a fairly general form of the sys-
tem: instead of studying plastic coupling based on a trigo-
nometric sin ðÞ [29], [36], [41], [42], we investigate a
general class of coupling functions. We further explore the
behavior of model (2) for various values of its parameters
and show how they impact the properties of the model
such as synchronization and stability. Finally, several
interesting and important examples are provided that
illustrate specific features of the system and confirm our
theoretical results.

3 MOTIVATING EXAMPLES

In this sectionwe illustrate the differences between the plastic
oscillator model (2) and the constant coupling counter part
using several simple examples. The number of oscillators in
these examples varies from two to four, and, for illustrative
purpose, in this section we assume that fijðfj � fiÞ ¼
sin ðfj � fiÞ for all connected oscillators i and j. We demon-

strate with these examples that stability of equilibria may
change if the coupling strength becomes plastic. Addition-
ally, new equilibria may arise in this case including scenarios
with infinitely many equilibria as shown in Section 3.3. Fur-
thermore, the set of equilibria points and their stability may
depend on the value of the parameter qij. For each example
we consider three types of coupling strengths: constant equal
positive, constant equal negative, and varying coupling
strengths. For the varying or plastic coupling strength we

additionally explore the cases of strictly positive (qij > qþij ¼
1), strictly negative (qij < q�ij ¼ �1) and symmetric hybrid

(qij ¼ 0) connections. All examples presented here will be
used again for illustrative purposes in Section 7, where we
apply our theoretical results to each example to explore its
dynamics and stability of its equilibria.

3.1 Two Oscillators

A system of two connected homogeneous oscillators with
a constant coupling strength K and a trigonometric sin ðÞ
coupling function is described by the following equations:

_fi ¼ K � sin ðfj � fiÞ; (4)

where i ¼ 1, j ¼ 2 or i ¼ 2, j ¼ 1. This system has two topo-
logically distinct equilibria: one is in-phase and stable:
f1 ¼ f2 (Fig. 2a-i), and the other one is anti-phase and unsta-
ble: f2 ¼ f1 þ p (Fig. 2a-ii). When the coupling strengthK is
constant and negative, then the set of equilibria of system
(4) remains unchanged, but the in-phase equilibrium now
becomes unstable (Fig. 2b-i), whereas the anti-phase equilib-
rium becomes stable (Fig. 2b-ii).

System (2) of two oscillators with a plastic coupling
strength and q12 ¼ 0 contains two sets of equilibria that are
characterized by the following conditions:

1. Alternatively, we could consider phase differences ðfi � fjÞ as the
variables of system (2) and study stability of a single equilibrium
instead of a set (3) of equilibria. This approach will be used in Section 6.
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1). sin ðf2 � f1Þ ¼ 0. If f1 ¼ f2, then K ¼ a, and when
f2 ¼ f1 þ p, thenK ¼ �a.

2). K ¼ 0, then cos ðf2 � f1Þ ¼ 0, i.e., f2 ¼ f1 þ p=2. The
Jacobian for the system of two oscillators takes form:

J ¼
�K � cos ðÞ K � cos ðÞ sin ðÞ
K � cos ðÞ �K � cos ðÞ � sin ðÞ
a � s � sin ðÞ �a � s � sin ðÞ �s

2
4

3
5;

where sin ðÞ ¼ sin ðf2 � f1Þ and cos ðÞ ¼ cos ðf2 � f1Þ for
brevity. It can be easily verified that equilibria from condition
1) above are stable (Figs. 2c-i and 2c-ii), whereas the equilibria
from condition 2) (whenK ¼ 0) are unstable (Fig. 2c-iii).

If the coupling strength is plastic and q12 ¼ 2 (positive
coupling), then the set of equilibria and their stability are
the same as in the case of a constant positive K (Fig. 2a).
Similarly, if q12 ¼ �2 (negative coupling), the equilibria and
stability coincide with the ones corresponding to the case of
a constant negative coupling K (Fig. 2b). This property is a
priori not necessarily true given the fact that system (2) has
a larger state space that can in principle change the stability
of an equilibrium.

Therefore, two observations can be made: all equilibria of
system (4) with constant coupling strength are also equilib-
ria of system (2) with plastic coupling strength for each of
three values of q12. The second observation is that when the
coupling strength is non-constant and q12 ¼ 0, a new set of
equilibria emerges. This set, however, contains only unsta-
ble equilibria in the case of two oscillators.

3.2 Three Oscillators

In this section we consider an example of three connected
homogeneous oscillators. We assume that underlying topol-
ogy is a complete graph, which means that each oscillator is
connected to two others. When the coupling function is
sin ðÞ and coupling strength K is constant, the behavior of
the oscillators is defined by the following set of equations:

_f1 ¼ K � sin ðf2 � f1Þ þK � sin ðf3 � f1Þ;
_f2 ¼ K � sin ðf1 � f2Þ þK � sin ðf3 � f2Þ;
_f3 ¼ K � sin ðf1 � f3Þ þK � sin ðf2 � f3Þ:

(5)

WhenK > 0, system (5) has 3 topologically distinct equilib-
ria (Fig. 3): one is in-phase when f1 ¼ f2 ¼ f3 and stable
(Fig. 3a-i), another one is f1 ¼ f2, f3 ¼ f1 þ p and unstable
(Fig. 3a-ii), and the last one is defined as f2 ¼ f1 þ 2p=3,
f3 ¼ f1 � 2p=3 and is also unstable (Fig. 3a-iii).

When K < 0, the set of equilibria of system (5) remains
the same. Stability properties of the equilibria, however,
change, as in the example with two oscillators. In particular,
the first equilibrium becomes unstable (Fig. 3b-i), the second
equilibrium remains unstable (Fig. 3b-ii), and the last one
becomes stable (Fig. 3b-iii).

We now consider the case of plastic coupling strengths
while assuming that a12 ¼ a23 ¼ a13 ¼ a > 0. When qij ¼ 0
8ij 2 E, a detailed description of equilibria was provided in
[23] and is omitted here. The equilibria and their stability
when qij ¼ 0 8ij 2 E are illustrated in Fig. 3c.

When qij ¼ 2 for each edge ij 2 E, equilibria and their
stability coincide with the case of constant positive coupling
strength (Fig. 3a), but when qij ¼ �2 (8ij 2 E), a new equi-
librium emerges (Fig. 3d-iv). At this unstable equilibrium,
ðf2 � f1Þ ¼ ðf1 � f3Þ 
 0:785p, K12 ¼ K13 
 �2:7808a, and
K23 
 �1:7808a.

From the considered examples of two and three oscilla-
tors several observations can be made. First, each equilib-
rium of a system with constant coupling strengths was also
an equilibrium of the corresponding system with varying
coupling strengths. This is not true, however, for all values
of parameters a and q. Second, stability of these common
equilibria can differ for systems with constant and non-
constant coupling. Third, system (2) can possess additional
equilibria, and moreover, the set of equilibria and their
stability may depend on the parameter q.

Fig. 2. Example with two oscillators. Green (filled) circles correspond to
stable equilibria, red (not filled) circles correspond to unstable equilibria.

Fig. 3. Example with three oscillators. Green (filled) circles correspond to
stable equilibria, red (not filled) circles correspond to unstable equilibria.

GUSHCHIN ETAL.: PHASE-COUPLED OSCILLATORSWITH PLASTIC COUPLING: SYNCHRONIZATION AND STABILITY 243



3.3 Four Oscillators

We consider here the case of four oscillators connected by a
complete graph. Instead of describing all equilibria of this
system, we will show that system (2) with four homoge-
neous oscillators, sin ðÞ coupling, equal aij ¼ a > 0 8ij 2 E,
and qij ¼ 0 8ij 2 E, has infinitely many topologically dis-
tinct equilibria.

These equilibria can be defined by means of a parameter
b. Then, for each value of b 2 ð0;p=2Þ, phases: f2 ¼
f1 þ p=2, f3 ¼ f1 þ b, f4 ¼ f3 � p=2, and coupling strengths
K12¼K34 ¼ 0,K13¼ cos ðbÞ � a, K14¼K23¼ cos ðp=2�bÞ� a¼
sin ðbÞ�a,K24¼ cos ðp� bÞ � a¼�cos ðbÞ�a define an equilib-
rium. Phases corresponding to this equilibrium with values
of parameter b ¼ p=4 and b ¼ p=6 are shown in Fig. 4.
Notice, that in all such equilibria two coupling strengths are
equal to zero, and edges corresponding to non-zero cou-
pling strengths form a graph with a ring topology.

The infinite set of equilibria defined for the case of four
oscillators can be generalized for all systems with even
n > 2 number of oscillators: f1 . . .fn

2�1 have the same phase

f, oscillators fn
2
. . .fn�2 have phase f� p

2, and two other

oscillators have phases fn�1 ¼ f� b and fn ¼ f� b� p
2.

4 SYNCHRONIZATION AND STABILITY ANALYSIS

This section contains general results obtained for system (2)
with arbitrary values of parameters qij and arbitrary under-
lying topology. We first show in Theorem 1 by providing a
Lyapunov function that system (2) of homogeneous oscilla-
tors is gradient, and thus always converges to a set of equi-
libria, i.e., achieves frequency synchronization (Section 4.1).
After that we formulate sufficient instability and stability
conditions for equilibria of system (2) with arbitrary under-
lying topology and arbitrary qij in Theorems 2 and 3, respec-
tively (Section 4.2). We then apply the derived results to
explore the stability of the in-phase and anti-phase equilib-
ria in Section 4.3.

4.1 Frequency Synchronization

In Theorem 1 we prove that system (2) of homogeneous
oscillators is a gradient system and always achieves fre-
quency synchronization. A similar result was obtained in
[42], where a potential function was found for system (2)
and frequency synchronization was shown, but only for the
case of a complete graph topology and for qij ¼ 0, 8ij 2 E.
Therefore, Theorem 1 generalizes the result from [42] for
the case of an arbitrary topology and arbitrary values of
parameters qij.

Theorem 1 (Frequency synchronization). System (2) is a
gradient system and achieves frequency synchronization for all
initial values of phases and coupling strengths.

Proof. Notice that all phase variables fi are defined on a
n-dimensional torus Tn which is compact. The result
of the theorem holds if the coupling strengths Kij are
defined on the whole Rm. Indeed, we can provide a
potential function V :

V ¼�
X

ij2E;i> j

KijFijðfi � fjÞ �
X

ij2E;i> j

qijKij

þ 1

2

X
ij2E;i> j

K2
ij

aij
:

(6)

This function is well-defined, radially unbounded,
bounded below, and it is easy to verify that the derivative
of V with respect to time is

_V ¼ ðrV ÞT 	

_fi

:

:

_fn

_K21

:

:

_Kn;n�1

2
66666666666664

3
77777777777775
¼ �

Xn
i¼1

ð _fiÞ2 �
X

ij2E;i> j

ð _KijÞ2
aijsij

:

We can see that _V is always non-positive and is equal to

zero if and only if _fi ¼ 0 and _Kij ¼ 0 for all i and j. Thus,
by LaSalle’s Invariance Principle [43], the trajectories of
(2) always converge to a set of equilibria. In other words,
for all initial conditions frequency synchronization
occurs. tu

Remark. Notice that Theorem 1 does not imply pointwise
convergence to a single equilibrium. It is also not guaran-
teed that equilibria of system (2) are isolated.

4.2 Stability and Instability Conditions

The main results of this section are Theorem 2 which is a
sufficient instability condition, and Theorem 3 that defines
a sufficient condition for stability of an equilibrium of sys-
tem (2). These results are based on Lyapunov’s indirect
method [44], that states:

1) If Re½�i� < 0 for all eigenvalues of the Jacobian
matrix J , then equilibrium is asymptotically stable.

2) If Re½�i� > 0 for at least one eigenvalue of the Jaco-
bian matrix J , then equilibrium is unstable.

Let B 2 Rn�m denote an oriented incidence matrix of a
graph that defines underlying topology of system (2). Then
element ði; eÞ of this matrix is

Bði; eÞ ¼
1 if i is the head of e,
�1 if i is the tail of e,
0 otherwise;

8<
: (7)

where e is an edge of graph G. Although the definition of
matrix B implies that G is oriented, all properties of this

Fig. 4. Equilibria corresponding to b ¼ p=4 (left) and b ¼ p=6 (right) for
the example with four oscillators.

244 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2016



matrix used in this article do not depend on a particular ori-
entation. Therefore, we assume that for a given undirected
graph G, an arbitrary orientation of its edges is chosen, i.e.,
for every undirected edge e ¼ ij one of the nodes i, j is des-
ignated as the head of e, and another one corresponds to the
tail of e.

Let a 2 Rm, s 2 Rm, K 2 Rm, f 0 2 Rm and f 2 Rm denote
vectors whose components are aij, sij, Kij, f

0
ijðfj � fiÞ and

fijðfj � fiÞ, respectively, for each i, j such that ij 2 E.Wewill

use symbol 	 to denote the componentwise product of vec-
tors. The Jacobian of system (2) does not depend on the values
of parameters qij and can bewritten in a followingway:

J ¼ B 0
0 I

� � �diagðK 	 f 0Þ �diagðfÞ
�diagða 	 s 	 fÞ �diagðsÞ

� �
BT 0
0 I

� �
:

The first matrix in the product is of size ðnþmÞ � ðmþmÞ,
the second matrix is of size ðmþmÞ � ðmþmÞ and the last
matrix in the product has dimensions ðmþmÞ � ðnþmÞ.
Notice that Jacobian J has a trivial eigenvector ½11n 00m�T ,
where 11n 2 Rn is a vector of ones and 00m 2 Rm is a vector of
zeros with n and m components, respectively. This eigen-
vector emerges due to rotational invariance of system (2)
and corresponds to a zero eigenvalue. Since trajectories of
system (2) are orthogonal to the direction of an orbit, we still
can apply Lyapunov’s indirect method to explore stability
of the set (3). If all remaining eigenvalues of the Jacobian
have negative real part, then equilibrium is stable; if there
exists an eigenvalue with a positive real part, then equilib-
rium is unstable.

The component of vector f that corresponds to the edge
e ¼ ij is equal to fijðfi � fjÞ if edge e ¼ ij is oriented from a

tail j to a head i, and thus Bði; eÞ ¼ 1, Bðj; eÞ ¼ �1. Simi-
larly, if edge e ¼ ij is oriented from a tail i to a head j, then
Bði; eÞ ¼ �1, Bðj; eÞ ¼ 1 and component of f associated
with edge ij is equal to fijðfj � fiÞ.

Each partition P of the graph’s vertices into two sets V �

and V þ such that V � \ V þ ¼ ? and V � [ V þ ¼ V , defines a
cut CðP Þ , fij 2 Eji 2 V �; j 2 V þg. With each cut CðP Þ we
associate a cut vector cP 2 Rm which is defined as follows:

cP ðeÞ ¼
1 if e goes from V � to V þ,
�1 if e goes from V þ to V �,
0 if e =2 CðP Þ:

8<
: (8)

We can now formulate the following instabiliy condition
that is similar to Theorem 2 of [20].

Theorem 2 (Sufficient instability condition). If there exists
a cutCðP Þ such that at equilibrium �

f	;K	� of system (2):

X
ij2CðP Þ

ðKijf
0
ij � aijf

2
ijÞ < 0; (9)

where Kij ¼ K	
ij, f

0
ij ¼ f 0

ijðf	
j � f	

i Þ and fij ¼ fijðf	
j � f	

i Þ,
then

�
f	; K	� is an unstable equilibrium.

Proof. We first show that the Jacobian of system (2) can be
decomposed into a product of matricesD and A:

J ¼ DA; (10)

where D is a positive-definite diagonal matrix, and A is a
symmetric matrix. We then demonstrate that stability of
equilibria of system (2) does not depend on matrix D,
because matrices J and A have the same number of posi-
tive, negative and zero eigenvalues. Next, for matrix A

we provide a vector ~X such that ~XTA~X > 0, which guar-
antees that the symmetric matrix A has a positive eigen-
value and so does the Jacobian matrix J . This in turn
means that an equilibrium is unstable due to Lyapunov’s
indirect method.

Decomposition (10) is possible because system (2) is
a gradient system. Note that the Hessian matrix HðV Þ
of the potential function V is symmetric. Let diagonal
ðnþmÞ � ðnþmÞmatrixD be defined as

D ¼ I 0
0 diagða 	 sÞ

� �
; (11)

then, since Equation (2) can be written as follows:

_f
_K

� �
¼ �D � rV ; (12)

decomposition (10) exists with A ¼ �HðV Þ.
We now show that matrices J and A ¼ �HðV Þ have

the same numbers of positive, negative and zero eigen-

values. Observe that if matrix D
1
2 is a square root of

matrix D, then matrices DA and D
1
2AD

1
2 have the same

eigenvalues, because matrix D is positive-definite. This
also implies that Jacobian of system (2) with homoge-
neous oscillators has only real eigenvalues. Next, since A
is a symmetric matrix with real entries, it can be diago-
nalized by an orthogonal matrix, i.e., there exists a real

orthogonal matrix Q such that A ¼ QGQT , where G is a
diagonal matrix. Further, notice that

D
1
2AD

1
2 ¼ D

1
2QGQTD

1
2 ¼ LGLT ; (13)

where matrix L is defined as L ¼ D
1
2Q and is invertible.

Therefore,

QTAQ ¼ L�1ðD1
2AD

1
2ÞðL�1ÞT ¼ G: (14)

By Sylvester’s law of inertia [45], numbers of positive,
negative and zero eigenvalues of matrices A, D

1
2AD

1
2 and

G are equal. Thus, since J ¼ DA and D
1
2AD

1
2 have equal

eigenvalues, then the numbers of positive, negative and
zero eigenvalues of matrices J and A are the same.

We now consider the symmetric matrix A and show
that when condition (9) is satisfied, matrix A has a posi-
tive eigenvalue. We define a symmetric ð2mÞ � ð2mÞ
matrixM to be:

M ¼ diagðK 	 f 0Þ diagðfÞ
diagðfÞ diagð1=aÞ

� �
; (15)

where 1=a is a vector with components 1=aij, then

A ¼ � B 0
0 I

� �
M

BT 0
0 I

� �
: (16)
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We denote:

B̂ ¼ B 0
0 I

� �
; (17)

and then

A ¼ �B̂MB̂T : (18)

Now we will assume that there exists a cut CðP Þ that sat-
isfies condition (9). We define a vector ~Y 2 R2m to be:

~Y ¼ cP
�cP 	 f 	 a

� �
; (19)

where cP is a cut vector associated with the cut CðP Þ, and
multiplication in �cP 	 f 	 a is componentwise.

It can be verified that the sum from (9) is equal to
~Y TM~Y . Indeed, if an edge k ð1 � k � mÞ belongs to the
cut CðP Þ, then Yk ¼ �1 and Ykþm ¼ fkak. The summand

number k in ~Y TM~Y is equal to:

Y 2
k Kkf

0
k þ 2YkYmþkfk þ

Y 2
mþk

ak

¼ Kkf
0
k � 2f2

kak þ f2
kak ¼ Kkf

0
k � f2kak;

(20)

which is also the kth summand of the sum (9).
The cut space of the graph G is defined as a space

spanned by all cut vectors cP . It is known (see for exam-

ple [46]) that the range of BT is the cut space of G. There-
fore, for the cut vector cP there exists a vector ~x1 2 Rn

such that cP ¼ BT~x1. Therefore,

~Y ¼ BT~x1

�cP 	 f 	 a

� �
¼ BT 0

0 I

� �
� ~x1

�cP 	 f 	 a
� �

¼ B̂T ~X;

(21)

where ~X ¼ ~x1

�cP 	 f 	 a
� �

2 Rnþm. Finally,

0 > ~Y TM~Y ¼ ~XTB̂MB̂T ~X ¼ �~XTA~X; (22)

whichmeans that there is a vector ~X such that ~XTA~X > 0
and thus symmetric matrix A has a positive eigenvalue
which implies that Jacobian J has also a positive eigen-

value. Therefore, equilibrium
�
f	;K	� is unstable. tu

We now formulate a sufficient condition for an equilib-
rium of system (2) to be stable.

Remark. According to Theorem 2, an equilibrium is unsta-
ble if a cut CðP Þ with negative cost can be provided,
where the cost of a cut is defined by the left hand side of
Equation (9). Therefore, to apply the theorem it is suffi-
cient to find a cut of the minimum cost: if this cost is nega-
tive, the equilibrium is unstable. However, finding the
minimum cut in a graph whose edge weights can be neg-
ative is a difficult problem. In particular, when all weights
are negative, the problem becomes equivalent to finding
the graph maximum cut which is known to be an NP-
hard problem. Therefore, Theorem 2 may not be very effi-
cient for checking instability of an equilibrium in general.
Theorem 2, however, serves a tool for formulating our
further results.

Theorem 3 (Sufficient stability condition). If at equilib-
rium

�
f	; K	� of system (2), for each ij 2 E:

Kijf
0
ij � aijf

2
ij > 0; (23)

where Kij ¼ K	
ij, f

0
ij ¼ f 0ijðf	

j � f	
i Þ and fij ¼ fijðf	

j � f	
i Þ,

then equilibrium
�
f	; K	� is asymptotically stable.

Proof. All eigenvalues of the Jacobian of system (2) are real.
To apply Lyapunov’s indirect method, we need to show
that at equilibrium

�
f	; K	� Jacobian has only negative

eigenvalues. However, it has always at least one zero
eigenvalue that corresponds to the rotational invariance
of the system: if all phases fi (i ¼ 1; . . . ; n) are simulta-
neously shifted by the same value, the system does not
change. The eigenvector associated with this zero eigen-

value is a vector ½11n 00m�T . As previouslymentioned, in this
article we do not distinguish equilibria that belong to the
same set (3), and thus study stability of the whole set Ef	 .
To show stability of Ef	 using an indirect Lyapunov’s
method, we need to show that all remaining eigenvalues of
the Jacobian are strictly negative.

In the proof of Theorem 2 it was shown that the Jaco-
bian matrix J and symmetric matrix A have the same
numbers of negative, positive and zero eigenvalues. This
means that matrix A also possesses a zero eigenvalue cor-
responding to the rotational invariance. Moreover, it is

easy to see that vector ½11n 00m�T is also an eigenvector of
matrix A associated with a zero eigenvalue. Therefore, to

prove that equilibrium
�
f	; K	� is stable, it is sufficient to

demonstrate that all eigenvalues of matrix A are negative
(except for one zero eigenvalue corresponding to the rota-

tional invariance), or that ~XTA~X < 0 for all non-zero vec-

tors ~X 2 Rnþm, ~X 62 span
�½11n 00m�T

�
, sinceA is symmetric.

Notice that because A ¼ �B̂MB̂T , the matrix A will
have only negative eigenvalues (except one) if
~Y TM~Y > 0 for all non-zero vectors ~Y 2 R2m. Indeed, if

B̂T ~X 6¼ 00nþm, then

~XTA~X ¼ �~XTB̂MB̂T ~X ¼ �~Y TM~Y < 0; (24)

where the vector ~Y , B̂T ~X.
Additionally, if ~X ¼ ½~x1 ~x2�T , where ~x1 are the first n

components of ~X, and ~x2 are the lastm components of ~X,

then B̂T ~X ¼ 00nþm only if BT~x1 ¼ 00n and ~x2 ¼ 00m. And

since kerðBT Þ ¼ spanð11nÞ for a connected G (see for

example [46]), then B̂T ~X 6¼ 00nþm if ~X 6¼ span
�½11n 00m�T

�
.

Therefore, it is now enough to show that condition
(23) is sufficient for matrix M to be positive definite. Let
~Y 2 R2m be an arbitrary vector, then ~Y TM~Y is a sum of
m terms, where the kth term is equal to

Y 2
k Kkf

0
k þ 2YkYmþkfk þ

Y 2
mþk

ak
: (25)

We now consider this term as a quadratic function of Yk.
This equation is the equation of a parabola whose
branches are directed upwards because Kkf

0
k > 0 due to

(23). Then, the minimum value of (25) is achieved at the
vertex of the parabola and is equal to:
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�Ymþkfk
Kkf

0
k

�2
Kkf

0
k � 2

�Ymþkfk
Kkf

0
k

�
Ymþkfk þ

Y 2
mþk

ak

¼ �Y 2
mþkf

2
k

Kkf 0k
þ Y 2

mþk

ak
¼ Y 2

mþk � f2
k

Kkf 0k
þ 1

ak

� 	
:

(26)

The last expression is positive if Ymþk 6¼ 0 and if condi-
tion (23) is satisfied.

Suppose that Ymþk ¼ 0, then (25) becomes equal to

Y 2
k Kkf

0
k � 0, and is equal to zero only if Yk ¼ 0. Since ~Y is

a non-zero vector, there exists at least one component k

of vector ~Y such that the sum (25) is strictly positive, and
for all other components these sums are non-negative.

Therefore, for all vectors ~Y 2 R2m: ~Y TM~Y > 0, and
~XTA~X < 0 for all vectors ~X 2 Rnþm such that
~X 62 span

�½11n 00m�T
�
. Thus, all eigenvalues of A except one

are negative, so are eigenvalues of J , and therefore the

equilibrium
�
f	; K	� is asymptotically stable. tu

Remark. Notice that sufficient conditions formulated in The-
orems 2 and 3 can also be applied to investigate the stability
of equilibria of system (1) of heterogeneous oscillators,
because Jacobians of systems (1) and (2) are the same.

Remark. Condition (23) is equivalent to the following con-
dition:

ðFij þ qijÞ � f 0
ij � f2

ij > 0; (27)

where Fij ¼ Fijðf	
j � f	

i Þ, since Kij ¼ aijðFij þ qijÞ at an
equilibrium, and aij > 0.

We have proved frequency synchronization of system (2)
and found sufficient stability and instability conditions of
its equilibria for a fairly general class of functions fij. In the
next section we will apply these conditions for a more spe-
cific class of these functions to investigate stability of in-
phase and anti-phase equilibria.

4.3 Stability of In-Phase and Anti-Phase Equilibria

In this section we investigate the stability properties of two
special types of equilibria of system (2): in-phase and anti-
phase equilibria. Equilibrium ðf	; K	Þ is called in-phase,
if f	

1 ¼ f	
2 ¼ � � � ¼ f	

n, while for an anti-phase equilibrium
the absolute value of the phase difference between any two
oscillators is either zero or p: jf	

i � f	
j j ¼ 0 or jf	

i � f	
j j ¼ p

for any i, j. To exclude the in-phase equilibrium from the
set of anti-phase equilibria, we additionally require that at
any anti-phase equilibrium at least for one pair of oscillators
i and j, their phase difference is equal to p. Such in-phase
and anti-phase states are indeed equilibria of system (2)
because fijð0Þ ¼ fijðpÞ ¼ 0 for any i and j due to the
Assumption 1. Notice that the in-phase equilibrium is

unique (up to rotational symmetry), and there are 2n�1 � 1
topologically distinct anti-phase equilibria.

In the rest of the article we concentrate on a more special
class of functions fijðÞ. In particular, these functions must
fulfill the following conditions.

Assumption 2. The functions fij 8ij 2 E satisfy:

1) Assumption 1;

2) f 0
ijð0Þ > 0, f 0

ijðpÞ < 0;
3) fijðxÞ > 0; 8x 2 ð0;pÞ.

Example of a function that meets all conditions of
Assumption 2 is shown on the left side of Fig. 1. Notice, that
for instance, function fijðÞ ¼ sin ðÞ belongs to this type of
functions. If fijðÞ satisfies Assumptions 2, then its corre-
sponding function Fij is strictly decreasing on the interval

½0;p�, and Fijð0Þ ¼ Fmax
ij > 0, FijðpÞ ¼ Fmin

ij < 0. Therefore,

there exists a single point x 2 ð0;pÞ such that FijðxÞ ¼ 0.
This property is crucial for showing isolation of equilibria
of system (2) with a tree topology in Corollary 9. If the func-
tion fij satisfies Assumption 2, then positive coupling

(qij � qþij) between oscillators i and j is also attractive, and

negative coupling (qij � q�ij) is repulsive. Thus, in the rest of

the article we will use these concepts interchangeably.
For any set of phase values f1; . . . ;fn there exists a

unique arc of a circle S1 that contains all phase values and
has a minimum possible length. Let dðfÞ denote the length
of this arc for phases f1; . . . ;fn. Next theorem provides
characterization of the in-phase equilibrium.

Theorem 4 (Stability of the in-phase equilibrium). If
functions fijðÞ satisfy Assumption 2, then the in-phase equilib-
rium ðf	; K	Þ is:

� asymptotically stable, if qij > q�ij 8ij 2 E;
� unstable, if qij < q�ij 8ij 2 E.

Moreover, if qij < q�ij 8ij 2 E, or qij > qþij 8ij 2 E, then the
in-phase equilibrium is the only equilibrium satisfying
dðfÞ < p.

Proof. The first part of this theorem can be shown by a
direct application of Theorems 2 and 3. Indeed, for the in-
phase equilibrium and functions fij satisfying Assump-
tion 2: fijð0Þ ¼ 0 and f 0

ijð0Þ > 0 for each ij 2 E. Further,

ðFijð0Þ þ qijÞ > 0 if qij > q�ij , because Fijð0Þ ¼ Fmax
ij (func-

tion Fij is decreasing on ½0;p�). Then, ðFijð0Þ þ qijÞ�
f 0ijð0Þ > 0 8ij 2 E, condition (27) is satisfied, and the

equilibrium is stable by Theorem 3. Similarly, ðFijð0Þþ
qijÞ < 0 if qij < q�ij which means that aijðFijð0Þ þ qijÞ�
f 0ijð0Þ¼ Kijf

0
ijð0Þ < 0 8ij 2 E, condition (9) is satisfied,

and the equilibrium is unstable according to Theorem 2.
The second part of this theorem is similar to Lemma 3 of

[20] and can be proved as follows. Condition dðfÞ < p
implies that all phases of oscillators belong to the same
half-circle. Suppose that qij < q�ij 8ij 2 E (strictly repul-

sive coupling), or qij > qþij 8ij 2 E (strictly attractive cou-

pling) and there exists a non-in-phase equilibrium ðf̂; K̂Þ
with dðfÞ < p. Let fmin be theminimal phase value among
all oscillators for this equilibrium. Then at least one oscilla-

tor kwith phase value f̂k ¼ fmin is connected to an oscilla-

tor l with strictly greater phase value f̂l > f̂k, because
the graph is assumed to be connected. Therefore,

0 < ðf̂l � f̂kÞ < p and fklðf̂l� f̂kÞ > 0 due to the
Assumption 2. If qij < q�ij 8ij 2 E, then all coupling

strengths are strictly negative:Kij < 0 8ij 2 E. Thus, _̂fk ¼P
l2Nk

K̂kl � fklðf̂l � f̂kÞ < 0. Similarly, if qij > qþij 8ij 2 E,

thenKij > 0 8ij 2 E, and _̂fk ¼
P

l2Nk
K̂kl � fklðf̂l � f̂kÞ > 0.

In both cases ðf̂; K̂Þ cannot be an equilibrium. tu
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In [42] it was demonstrated that when in system (2) each

fij ¼ sin ðfj � fiÞ, qij ¼ qþij ¼ 1, and the underlying topology

is a complete graph, then the in-phase equilibrium is
asymptotically stable. Theorem 4 thus provides a comple-
mentary set of results to [42] under more general topologies
and coupling functions.

A similar result can be formulated for the anti-phase
equilibria of system (2).

Theorem 5 (Stability of anti-phase equilibria). If func-
tions fijðÞ satisfy Assumption 2, then an anti-phase equilib-
rium ðf	; K	Þ is:

� asymptotically stable, if qij > q�ij (when f	
i ¼ f	

j ),
and qij < qþij (when jf	

i � f	
j j ¼ p), 8ij 2 E;

� unstable, if qij < q�ij (when f	
i ¼ f	

j ), and qij > qþij
(when jf	

i � f	
j j ¼ p), 8ij 2 E.

Proof. The proof is again based on the sufficient instability
and stability conditions of Theorems 2 and 3. According
to Theorem 3 (condition (27)), an anti-phase equilibrium
ðf	; K	Þ is stable if

ðFij þ qijÞ � f 0ij > 0; 8ij 2 E; (28)

because at such equilibria fij ¼ 0 for any i and j. If
f	
i ¼ f	

j , then f 0
ij > 0 due to the Assumption 2. Therefore,

condition (28) is satisfied if qij > �Fijð0Þ which is equiv-
alent to qij > �Fmax

ij ¼ q�ij . Similarly, if jf	
i � f	

j j ¼ p,

then f 0ij < 0, and inequality (28) will be fulfilled if

FijðpÞ þ qij < 0, that is, if qij < �Fmin
ij ¼ qþij .

From Theorem 2, an anti-phase equilibrium will be
unstable if

ðFij þ qijÞ � f 0
ij < 0; 8ij 2 E; (29)

again since at such equilibria fij ¼ 0 for any i and j, and
because Kij ¼ aijðFij þ qijÞ. If f	

i ¼ f	
j , then f 0

ij > 0,

and condition (29) is met if Fijð0Þ þ qij < 0, i.e., if
qij < �Fmax

ij ¼ q�. If in turn jf	
i � f	

j j ¼ p, then f 0
ij < 0,

and equilibrium is unstable if FijðpÞ þ qij > 0, i.e., if

qij > �Fmin
ij ¼ qþij . tu

Notice that the first part of Theorem 4 follows from
Theorem 5.

Remark. Requirements for instability of Theorems 4 and 5
are generallymore restrictive than the instability condition
of Theorem 2. Indeed, these requirements guarantee that

Kijf
0
ij� aijf

2
ij < 0 8ij 2 E which is a stronger requirement

than (9).

A direct consequence of Theorems 4 and 5 is the follow-
ing result.

Corollary 6. If qij takes values from an interval ðq�ij ; qþijÞ
8ij 2 E, then the in-phase and all anti-phase equilibria of sys-
tem (2) are asymptotically stable.

Conditions formulated in Theorems 2 and 3 are suffi-
cient, and therefore, there may exist equilibria of system (2)
whose stability cannot be characterized by these conditions.
We overcome this problem in the next section by requiring

underlying topology to be a tree graph. For such graphs we
provide a criterion of stability that allows us to verify the
stability of any equilibrium.

5 PHASE LOCKING FOR TREE TOPOLOGY

In this section we consider system (2) when the underlying
topology graph G is a tree. For example, star and chain
graphs are two graphs belonging to this type of topology.
We apply the results formulated in the previous section and
show how they can be further extended for the tree graphs.
We first consider in Section 5.1 the case of a general cou-
pling, when parameters qij are allowed to take any arbitrary

values except for qþij and q�ij , and then explore a special case

when each network connection is either strictly attractive

(qij > qþij) or strictly repulsive (qij < q�ij) in Section 5.2.

5.1 General Coupling

When the topology is a tree, each single edge defines a cut of
G, and condition (9) for a single-edge cut CðP Þ ¼ ij can be

written as ðFij þ qijÞ � f 0ij � f2
ij < 0, because Kij ¼ aijðFij þ

qijÞ at an equilibrium and aij > 0. Thus, using Theorem 2, a
sufficient instability condition for tree graphs can be formu-
lated as follows.

Corollary 7 (Sufficient instability condition for trees). If
there exists an edge ij 2 E such that at equilibrium

�
f	; K	� of

system (2) with tree topology and functions fij satisfying
Assumption 1:

ðFij þ qijÞ � f 0ij � f2ij < 0; (30)

where Fij ¼ Fijðf	
j � f	

i Þ, f 0
ij ¼ f 0

ijðf	
j � f	

i Þ and fij ¼
fijðf	

j � f	
i Þ, then

�
f	; K	� is an unstable equilibrium.

Using Theorem 3 and Corollary 7, the stability of an
equilibrium of system (2) with a tree topology can be deter-
mined if ðFij þ qijÞ � f 0

ij � f2
ij 6¼ 0 for every ij 2 E. As will

be further shown, the last condition is always satisfied
if all functions fijðÞ satisfy Assumption 2. Besides these
additional assumptions on functions fijðÞ, we also require

throughout this Section that qij 6¼ qþij ¼ �Fmin
ij and

qij 6¼ q�ij ¼ �Fmax
ij , 8ij 2 E. The following fact establishes a

property of all equilibria of system (2) with a tree topology,
and with functions fijðÞ satisfying Assumption 2.

Lemma 8. Let
�
f	; K	� be an equilibrium of system (2) with a

tree underlying topology and with functions fijðÞ satisfying
Assumption 2, and let fij ¼ fijðf	

j � f	
i Þ, Fij ¼ Fijðf	

j � f	
i Þ,

Kij ¼ K	
ij. Suppose in addition, that qij 6¼ qþij and qij 6¼ q�ij ,

8ij 2 E. Then, for each pair ij 2 E exactly one of the following
two conditions is satisfied:

� fij ¼ 0; this implies that either f	
j � f	

i ¼ 0, or
f	
j � f	

i ¼ p.

� Kij ¼ 0; this implies that Fij þ qij ¼ 0.

Proof. Since the underlying topology is defined by a graph
G that is a tree, there are nodes in G each of which has a
single neighbor. These nodes are the leaves of a tree
graph G. Let fi be an oscillator associated with a leaf
node i, and let fj be an oscillator such that node j is a
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single neighbor of node i. Then, from equation (2a), at an

equilibrium
�
f	; K	�: _fi ¼ 0 if and only if Kij ¼ 0 or

fijðf	
j � f	

i Þ ¼ 0. Notice that Kij ¼ 0 if and only if Fij þ
qij ¼ 0. When qij 6¼ �Fmin

ij and qij 6¼ �Fmax
ij , for function

fij satisfying Assumption 2, fij and Fij þ qij are not equal
to zero simultaneously. This implies that either fij ¼ 0 or
Kij ¼ Fij þ qij ¼ 0. We then remove all leaf nodes from
the graph G and apply the same reasoning for the leaves
of a new smaller graph which is also a tree. We repeat
this procedure until we obtain a single node, and at each
step the condition of the theorem is satisfied. tu

Corollary 9. Every equilibrium of system (2) with a tree topol-
ogy and functions fijðÞ satisfying Assumption 2, is isolated.

We can now see thatwhen the underlying topology of sys-
tem (2) is a tree, qij 6¼ qþij , qij 6¼ q�ij (8ij 2 E), and if coupling
functions fijðÞ satisfy Assumption 2, then at any equilibrium:

ðFij þ qijÞ � f 0
ij � f2

ij 6¼ 0; (31)

for every ij 2 E. Indeed, if at equilibrium fij ¼ 0, then from
Lemma 8, Kij 6¼ 0, and f 0

ij 6¼ 0 due to Assumption 2. Hence,

ðFij þ qijÞ � f 0
ij 6¼ 0. IfKij ¼ 0, i.e.,Fij þ qij ¼ 0, then by defini-

tion of Fij, properties of qij, and fromAssumption 2: fij 6¼ 0.
Since Assumption 2 guarantees that condition (31) holds

for every equilibrium, it is possible to formulate a criterion
of stability for system (2) with underlying tree topology.

Theorem 10 (Criterion of stability for tree topology). If
the underlying topology of system (2) is a tree, qij 6¼ qþij ,
qij 6¼ q�ij , and functions fijðÞ satisfy Assumption 2 for each

ij 2 E, then an equilibrium
�
f	; K	� is stable if and only if

condition (27) holds for every edge ij 2 E. Moreover, each sta-
ble equilibrium is also asymptotically stable.

Proof. Suppose that for equilibrium
�
f	;K	� condition (27) is

satisfied for any ij 2 E, then this equilibrium is asymptoti-
cally stable by Theorem 3. Now assume that there exists an
edge ij 2 E such that condition (27) does not hold for it, i.e.,

ðFij þ qijÞ � f 0
ij � f2

ij � 0:

The above inequality must be strict since condition (31)
holds for trees. Now consider a cut CðP Þ ¼ ij defined by
a single edge ij. It immediately follows that the equilib-
rium must be unstable by Theorem 2. tu
From this criterion we also conclude that (under the

criterion’s conditions) an equilibrium with K	
ij ¼ 0 for some

edge ij 2 E will be unstable. We now provide a result

regarding ranks of matrices B̂ and M for a tree topology.
This result will be later used to show global convergence to
a stable equilibrium almost surely in Theorem 12.

Lemma 11. At any equilibrium of system (2) with a tree under-
lying topology and qij 6¼ qþij , qij 6¼ q�ij (8ij 2 E):

n ¼ mþ 1;

RankðB̂Þ ¼ RankðB̂T Þ ¼ minðnþm;mþmÞ ¼ 2m;

RankðMÞ ¼ 2m:

Proof. First two equations are satisfied even outside of the
equilibria. In particular, the first equation says that in a
tree graph the number of vertices is greater than the num-
ber of edges by one, and is straightforward. The second
fact follows from the properties of the incidence matrix B
and because we consider a tree topology. We now show
that at an equilibrium the third equation is correct. Recall
that matrix M has dimensions ð2mÞ � ð2mÞ. Suppose by
contradiction that at some equilibrium RankðMÞ < 2m,
then there exists a non-zero vector ~x such that M~x ¼ 0.
This system contains 2m equations, the first m of them
are of the form:

xiKif
0
i þ xmþifi ¼ 0; (32)

where i ¼ 1; . . . ;m, and the remainingm equations are:

xi � fi þ xmþi=ai ¼ 0; (33)

where i ¼ 1; . . . ;m again. We choose a particular index i
such that 1 � i � m, and consider a pair of correspond-
ing equations: one from (32) and another one from (33).
According to Lemma 8, at an equilibrium exactly one of
the following conditions holds: fi ¼ 0 or Ki ¼ 0. We first
consider the case when fi ¼ 0. Then, from Equation (32),
xi ¼ 0 becauseKi 6¼ 0, f 0

i 6¼ 0 and fi ¼ 0. And from Equa-
tion (33): xmþi ¼ 0 since ai > 0. Now consider the case
when Ki ¼ 0, then fi 6¼ 0. From the Equation (32):
xmþi ¼ 0, and then from the Equation (33): xi ¼ 0 since
fi 6¼ 0. Therefore, in both cases xi ¼ xmþi ¼ 0, and since
this should be true for all 1 � i � m, vector ~x has to be a
zero vector which contradicts our assumption that ~x is
non-zero. tu
While Theorem 1 does not guarantee pointwise conver-

gence and isolation of equilibria in general, for the case of a
tree underlying topology we proved isolation of equilibria
in Corollary 9, and now can show that the system converges
to a stable equilibrium almost surely.

Theorem 12. At any equilibrium of system (2) with a tree topol-
ogy, qij 6¼ qþij , qij 6¼ q�ij (8ij 2 E), and with functions fij satis-
fying Assumption 2, the Jacobian has only one zero eigenvalue
due to rotational invariance, and system converges to a stable
equilibrium almost surely.

Proof. The Jacobian matrix J and symmetric matrix A in
decomposition (10) are both of size ðnþmÞ � ðnþmÞ or,
using Lemma 11, of size ð2mþ 1Þ � ð2mþ 1Þ. Moreover,
matrix A can be expressed as follows:

A ¼ �B̂MB̂T ; (34)

where matrix M is of size ð2mÞ � ð2mÞ, and matrices B̂

and B̂T are of size ð2mþ 1Þ � ð2mÞ, ð2mÞ � ð2mþ 1Þ,
respectively. We now employ the following fact: if matrix
A1 has dimensions x� y, matrix A2 is of size y� z and
RankðA2Þ ¼ y, then RankðA1A2Þ ¼ RankðA1Þ. Using this

fact we conclude that RankðB̂MÞ ¼ 2m, and RankðAÞ ¼
RankðB̂MB̂T Þ ¼ 2m. Because rank of a symmetric matrix
is equal to the number of its non-zero eigenvalues, A has
a single zero eigenvalue. Then, since J and A have the
same numbers of zero eigenvalues (as was shown in the
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proof to Theorem 2), Jacobian matrix J has only one zero
eigenvalue which is due to the rotational invariance.
Thus, all equilibria of (2) with a tree topology and func-
tions fij satisfying Assumption 2, are hyperbolic (i.e.,
they do not have any center manifold) when domain of
the system is restricted to the subspace orthogonal to

½11n 00m�T . Therefore, system (2) almost surely converges
to a stable equilibrium (due to Proposition 1 of [47], for
example). tu

Remark. Theorem 12 implies that for a tree topology at least
one stable equilibrium exists. We can verify this fact by
constructing a stable in-phase or anti-phase equilibrium
for a given system (2) with a tree underlying topology,
functions fijðÞ satisfying Assumption 2, and parameters qij
such that qij 6¼ qþij and qij 6¼ q�ij for all edges ij 2 E. Without

loss of generality, the phase value of each oscillator at such
equilibrium is either 0 or p. To construct a stable equilib-
rium, we arbitrarily choose an oscillator to be the root of a
tree, assign phase value equal to zero to this oscillator, and
then traverse the tree using, for example, the breadth-first
search. During the tree traversal, at each iteration we con-
sider an edge connecting a previously visited oscillator
with assigned phase value and a new oscillator whose
phase is determined at this iteration. For example, if edge
ij 2 E is considered, and previously visited oscillator i has
phase f	

i ¼ 0, then the phase of oscillator j is assignedwith

value 0 if qij > qþij , and with value p, otherwise. The equi-

librium constructed in this manner will be asymptotically
stable due to Theorem 5.

5.2 Attractive and Repulsive Coupling

All previously formulated results also hold for systems
where each connection ij 2 E is either strictly attractive

(qij > qþij) or strictly repulsive (qij < q�ij) coupling. Addi-

tionally, Lemma 8 can be further improved: for strictly
repulsive or attractive connections, Kij cannot attain a zero
value, and thus each equilibrium is characterized by condi-
tions fij ¼ 0 for each ij 2 E. This implies that at each equi-
librium all phase differences are multiples of p. Moreover,
the following result holds.

Theorem 13 (Almost global stability for trees). Suppose
in system (2) the functions fijðÞ satisfy Assumption 2, and the
underlying topology is a tree graph. If each connection ij 2 E

is either strictly attractive (qij > qþij) or strictly repulsive

(qij < q�ij), then system (2) has a (unique) almost globally

asymptotically stable in-phase or anti-phase equilibrium
ðf	; K	Þ that, for each edge ijlig;2 E, ðf	; K	Þ satisfies:

f	
i ¼ f	

j if qij > qþij ;
jf	

i � f	
j j ¼ p if qij < q�ij :



(35)

Proof. As was previously mentioned, under the conditions
of this theorem the equilibrium set of system (2) consists
of in-phase and anti-phase equilibria. Due to Theorem 10,
an equilibrium ðf	; K	Þ is stable if and only if condition

ðFij þ qijÞ � f 0
ij > f2

ij holds for each edge ij 2 E. Because

fij ¼ 0 at each equilibrium of system (2) satisfying
assumptions of Theorem 13, an equilibrium is stable if

and only if ðFij þ qijÞ � f 0ij > 0. If qij > qþij , then this

condition will be satisfied if and only if f 0
ij > 0, which

implies that f	
i ¼ f	

j due to Assumption 2. If qij < q�ij ,
then f 0ij must be negative, and it means that jf	

i � f	
j j ¼ p.

Therefore, condition (35) is both necessary and sufficient
for stability of an equilibrium. Moreover, according to
Theorem 10, if an equilibrium is stable, it is also asymp-
totically stable.

Existence of a stable in-phase or anti-phase equilibrium
satisfying (35) was shown by construction in the remark to
Theorem 12. It remains to show, therefore, the uniqueness
of this constructed stable equilibrium. Suppose, there
exists another stable equilibrium ðf̂; K̂Þ, which is different
from the constructed equilibrium ðf	;K	Þ. Since it is sta-

ble, equilibrium ðf̂; K̂Þ, must also satisfy condition (35).

And because ðf̂; K̂Þ is different from ðf	;K	Þ, there exists
at least one pair of oscillators k and l (not necessary con-

nected) such that jf	
k � f	

l j 6¼ jf̂k � f̂lj. It cannot happen if

k and l are connected, i.e., if kl 2 E, because of the condi-
tion (35). Now, assume that k and l are not connected, then
since the underlying topology graph G is a tree, there
exists a single shortest path from k to l in G: k; p1; . . . ; ph; l,
where p1; . . . ; ph 2 V are some oscillators and h � 1. This
path consists of hþ 1 edges kp1; p1; p2; . . . ; phl, and let M
be the number of edges in this path with strictly repulsive
coupling (q < q�). Then, to satisfy condition (35), in any
stable equilibrium the phase difference between oscillators
k and lmust be equal to zero ifM is even, and equal to p if

M is odd. Thus, jf	
k � f	

l jmust be equal to jf̂k � f̂lj, which

contradicts our assumption about equilibrium ðf̂; K̂Þ. tu
Corollary 14. If for system (2) under the assumptions of Theo-

rem 13, all connections are strictly attractive (qij > qþij
8ij 2 E), then the in-phase equilibrium is almost globally
asymptotically stable. If all connections are strictly repulsive
(qij < q�ij 8ij 2 E), then the unique anti-phase equilibrium

satisfying: jf	
i � f	

j j ¼ p 8ij 2 E is almost globally asymptoti-

cally stable.

Condition jf	
i � f	

j j ¼ p 8ij 2 E implies that oscillators
are divided into two sets (corresponding to phase values 0
and p, for example) so that each graph edge connects an
oscillator from one set with an oscillators in the other set.
This division can be done if the graph is bipartite which is
always the case when the graph is a tree. Moreover, since
the graph is connected, bipartition is unique, and thus, the
anti-phase equilibrium satisfying condition jf	

i � f	
j j ¼ p

8ij 2 E is also unique.

6 PHASE LOCKING FOR ARBITRARY TOPOLOGY

In Theorem 12 we demonstrated that when the underlying
topology is a tree, convergence to a stable equilibrium occurs
almost surely. It was possible to show this fact mainly due to
the characterization of the equilibria formulated in Lemma 8.
In particular, for the case of a tree topology all equilibria are
isolated and moreover, hyperbolic. However, equilibria are
not necessary isolated in the case of a non-tree topology as
was demonstrated in Section 3.3 by means of an example of
four completely connected oscillators. In that example all val-
ues of parameters qij were equal to zero.
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It turns out that the example in Section 3.3 is degenerate.
That is, the non-isolation of the equilibria was mainly due
to the special choice of qij and aij. Thus, we can formulate a
result similar to Theorem 12 by making additional assump-
tion on the choice of parameters a and q. This leads again
towards a condition that guarantees convergence to a stable
equilibrium almost surely.

Theorem 15 (Convergence to a stable equilibrium for
arbitrary topology). Suppose all functions fijðÞ satisfy
Assumption 2, and for each ij 2 E parameters aij and qij are
chosen randomly from continuous probability distributions on
the intervals ð0;1Þ and ð�1;1Þ, respectively. Then, with
probability one in the selection of these parameters, system (2)
converges to a stable equilibrium almost surely.

Proof. The proof is similar to the proof of Theorem 4 in [48]
and is based on the parametric transversality theorem
(Theorem 6.35 of [49]). To get rid of a zero eigenvalue of
the Jacobian J of system (2) which corresponds to rota-
tional invariance, instead of n phase variables f1; . . . ;fn

we will consider n� 1 phase differences mj , fjþ1 � f1,

where j ¼ 1; . . . ; n� 1. Thus, all other phase values are
measured relative to the phase value of the first oscillator.
Notice, since the sum of all phases is an invariant of sys-
tem (2), variables mj, j ¼ 1; . . . ; n� 1, uniquely define

phase values fi, where i ¼ 1; . . . ; n. Let matrices

R 2 Rn�ðn�1Þ and U 2 Rn�ðn�1Þ be defined as

R ¼ 0Tn�1

In�1

� �
; U ¼ �1Tn�1

In�1

� �
; (36)

where In�1 denotes an identity matrix of dimension
n� 1, and 0n�1, 1n�1 are vectors of zeros and ones,

respectively, of length n� 1. Note that UTR ¼ In�1 and

BT ¼ BTRUT . Then, in the new variables ðm; KÞ system
(2) can be rewritten as follows:

_m ¼ �UTB diagðKÞf½BTRm�;
_K ¼ S

�
AðF ½BTRm� þ qÞ �K

�
:

(37)

Here F 2 Rm is a vector whose components are Fij,
and q 2 Rm is a vector containing parameters qij for
each ij 2 E. Further, A 2 Rm�m and S 2 Rm�m are diag-
onal matrices with parameters aij and sij (ij 2 E),
respectively, on the diagonal. In the above equations
and further in the proof, diagðxÞ, where vector x 2 Rm,
denotes a diagonal matrix of size m�m with elements
of x in its diagonal.

The main idea of the proof is to show that at the equilib-
ria of system (37), the Jacobian does not have eigenvalues
with zero real part. To show this we first prove that the
Jacobian is invertible at each equilibrium for almost all
values of parameters a and q, and then demonstrate that
all its eigenvalues are real. Let T denote the finite collec-
tion of all m�m diagonal matrixes D ¼ diagfd1; . . . ; dmg
such that either dk ¼ ðFkð0Þ þ qkÞ � f 0

kð0Þ or dk ¼ ðFkðpÞþ
qkÞ� f 0kðpÞ, where k ¼ 1; . . . ;m is the edge index. For each
suchmatrixD 2 T , we define the closed set

PD ¼ fa 2 Rm : det
�
RTBADBTR

�¼ 0g; (38)

Matrix D is invertible due to Assumption 2 and because
ðFijðxÞ þ qijÞ 6¼ 0 for x ¼ 0 and x ¼ p, since qij 6¼ q�ij and

qij 6¼ qþij . Additionally, the columns of BTR are indepen-

dent since they are rows 2; . . . ; n of the incidence matrix

B. Then, PD 6¼ Rm (for instance, if A ¼ D�1), and thus PD

is a closed algebraic set having zero measure. Therefore,
P ¼ S

D2T PD is also a closed algebraic set having zero

measure, and set Oa ¼ Rm
þ n P is a nonempty open set.

Further, let Oq be the set of vectors q 2 Rm whose compo-

nents satisfy qij 6¼ q�ij and qij 6¼ qþij . It is easy to show that

the set Rm n Oq has a zero measure.
Let Hðm; K; qÞ be a mapping Tn�1 �Rm �Oq !

Rn�1þm:

Hðm; K; qÞ ¼
�UTB diagðKÞf ½BTRm�
S
�
AðF ½BTRm� þ qÞ �K

�" #
; (39)

and a 2 Oa. Notice that Hðm; K; qÞ ¼ 0 only at the equi-
libria of system (37). Next, the Jacobian ofHðm; K; qÞ is

DHðm;K; qÞ ¼ @H
@m

@H
@K

@H
@q

� �
; (40)

where

@H
@m

¼ �UTB diagðK 	 f 0½BTRm�ÞBTR

�SA diagðf ½BTRm�ÞBTR

� �
; (41)

@H
@K

¼ �UTB diagðf ½BTRm�Þ
�S

� �
; (42)

@H
@q

¼ 0ðn�1Þ�m

SA
� �

; (43)

and 0x�y denotes a zero matrix of dimensions x by y.
We now show that when Hðm; K; qÞ ¼ 0, matrix

DHðm;K; qÞ has full row rank for all ðm; K;a; qÞ 2
Tn�1 �Rm �Oa �Oq. Consider the following block
matrix:

W ¼
In�1 0ðn�1Þ�m

L 0m�m

A�1L Im

2
4

3
5; (44)

where

L ¼ A diagðf ½BTRm�Þþ � diag
�
ðF ½0m� þ qÞ 	 f 0½0m�

� ðF ½BTRm� þ qÞ 	 f 0½BTRm�
�
BTR;

(45)

here ð�Þþ denotes the Moore-Penrose pseudoinverse.

Then, sinceK ¼ AðF ½BTRm� þ qÞwhenHðm; K; qÞ ¼ 0,

DHðm; K; qÞ � W

¼ �UTBADðmÞBTR 0ðn�1Þ�m

�SA diagðf ½BTRm�ÞBTR SA

� �
;

(46)
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where DðmÞ is a diagonal matrix

DðmÞ ¼ diag
�
ðF ½BTRm� þ qÞ 	 f 0½BTRm�

�
þ diag

�
f½BTRm��� diag�f½BTRm��þ

� diag
�
ðF ½0m� þ qÞ 	 f 0½0m� � ðF ½BTRm� þ qÞ 	 f 0½BTRm�

�
:

(47)

Because functions fðÞ satisfy Assumption 2, fðxÞ ¼ 0 if

and only if x 2 f0;pg, and therefore, for any m 2 Tn�1,
the matrix DðmÞ belongs to T . It implies that matrix

RTBADðmÞBTR is invertible for ðm; K;a; qÞ 2 Tn�1�
Rm �Oa �Oq. Next, because

UTB ¼ UTURTB; (48)

and matrix UTU is invertible, it follows that matrix

�UTBADðmÞBTR ¼ �ðUTUÞðRTBADðmÞBTRÞ in (46) is
also invertible. We now conclude that the whole matrix
(46) is invertible, because its rows are independent (SA is
a diagonal matrix with positive numbers on the diago-
nal). As a consequence of this, when Hðm; K; qÞ ¼ 0, the
Jacobian matrix DHðm;K; qÞ must have independent

rows for all ðm; K;a; qÞ 2 Tn�1 �Rm �Oa �Oq.
Thus, H t f0g, and it follows from the parametric

transversality theorem ([49], Theorem 6.35) that there
exists a set Y � Oq having zero measure such that if
q 2 Oq n Y, thenHq t f0g, whereHq denotes the mapping
ðm; KÞ ! Hðm; K; qÞ. Therefore, ðn� 1þmÞ � ðn� 1 þ
mÞmatrix

@H
@m

@H
@K

� �
(49)

is invertible when Hðm;K; qÞ ¼ 0 for almost all values of
parameters a and q.

Now observe that matrix (49) is the Jacobian of sys-
tem (37). It remains to show that this matrix can have
only real eigenvalues. Indeed, (49) is equal to a prod-
uct of a diagonal positive-definite matrix and a sym-
metric matrix:

@H
@m

@H
@K

� �
¼ UTU 0ðn�1Þ�m

0m�ðn�1Þ SA
� � �A1 �A2

�A3 �A�1

� �
;

(50)

where

A1 ¼ RTB diag
�
K 	 f 0½BTRm��BTR; (51)

A2 ¼ RTB diagðf ½BTRm�Þ; (52)

and
A3 ¼ diagðf½BTRm�ÞBTR: (53)

We observe that the second matrix in the product (50) is
indeed symmetric since AT

2 ¼ A3, and A1 is symmetric.
To summarize the results, for almost all randomly

selected system parameters aij and qij, the Jacobian of
system (37) at each equilibrium cannot have eigenvalues
with zero real part, and system (37) converges to a stable
equilibrium almost surely, so does system (2). tu

Remark. Theorem15 states that system (2) converges to a sta-
ble equilibrium almost surely for almost all values of
parameters a and q. In other words, the set of parameters a
and q for which convergence to a stable equilibrium is not
guaranteed, has zeromeasure. The theorem, however, does
not provide a description of this zero-measure set and,
therefore, it cannot be applied to guarantee convergence to
a stable equilibrium for a given example with some fixed
values of parameters. This is the main distinction between
this theorem and its analog Theorem 12 for a tree topology:
the latter result guarantees convergence for all values of the
parameters (except for q ¼ qþ and q ¼ q�).

In Corollary 14 we proved that the in-phase equilibrium
is almost globally asymptotically stable in the case of strictly
attractive coupling if the underlying topology is a tree. With
additional requirements on the coupling functions fijðÞ it is
possible to show almost globally asymptotically stability of
the in-phase equilibrium for an arbitrary topology. In partic-
ular, we now assume that each function fij satisfies

Assumption 3. There exists a parameter b 2 ð0;pÞ such that
functions fij 8ij 2 E satisfy:

1) Assumption 1;
2) f 0

ijðxÞ > 0, 8x 2 ½0; bÞ;
3) f 0

ijðxÞ < 0, 8x 2 ðb;p�.
Notice that Assumption 3 is stronger than Assumption 2

in a sense that if functions fij satisfy Assumption 3, they
also satisfy Assumption 2. Function whose graph is shown
on the left side of Fig. 1 satisfies Assumption 3. The follow-
ing theorem is a generalization of [20] to systems with plas-
tic connectivity.

Theorem 16 (Almost global stability). Suppose functions
fij satisfy Assumption 3 with b � p

n�1, and qij > qþij for each

ij 2 E, then with probability one in the selection of parameters
a and q, the in-phase equilibrium of system (2) is almost glob-
ally asymptotically stable.

Proof. The proof is almost identical to the proof of Theorem 6
in [20] and is not presented here due to the space limita-
tions. The main idea is that if all functions fij satisfy

Assumption 3 and qij > qþij 8ij 2 E, then the in-phase equi-

librium is the only stable equilibrium of system (2). Then
the statement of the theorem follows fromTheorem 15. tu

Remark. The in-phase equilibrium will be also almost glob-
ally asymptotically stable if all functions ð�fijÞ satisfy
Assumption 3 with b � p

n�1 and qij < q�ij 8ij 2 E.

In Table 1 we summarized the convergence results of sys-
tem (2) with arbitrary and tree underlying topology, and for
various values of parameters a and q.

7 NUMERICAL ILLUSTRATIONS

In this section we consider several network examples and
apply our results to explore their behavior and investigate
stability of their equilibria. In these examples we will
assume that fij ¼ sin ðfj � fiÞ and Fij ¼ cos ðfj � fiÞ
8ij 2 E, then qþij ¼ 1 and q�ij ¼ �1 8ij 2 E. Thus, system (2)

becomes a generalized Kuramoto model with plastic
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coupling strengths. Notice that this choice of functions fij
guarantees that Assumptions 2 and 3 are satisfied. Addi-
tionally, (strictly) positive and (strictly) negative coupling cor-
responds to (strictly) attractive and (strictly) repulsive
coupling, respectively.

7.1 Two Oscillators (Lemma 8, Theorems 10, 12,
13, 16)

Since two connected oscillators form a tree topology, we can
apply the results of Lemma 8 and Theorems 10, 12. In partic-
ular, for a tree topology case we can easily find all equilibria
of the system using our results (Lemma 8). We will assume
that a12 takes an arbitrary positive value.

If q12 ¼ 0, thenLemma 8 can be applied to describe all equi-
libria of system (2) with two oscillators. The first type of
equilibria corresponds to condition f12 ¼ 0 which implies
that sin ðf2 � f1Þ ¼ 0, and K=a12 ¼ F12 þ q12 ¼ f 0

12 þ q12 ¼
cos ðf2� f1Þ þ q12 ¼ cos ðf2 � f1Þ. The second type of equi-
libria is defined by condition cos ðf2 � f1Þ ¼ 0, i.e., K ¼ 0,
and f12 ¼ sin ðf2 � f1Þ ¼ 1. Stability of each equilibrium type
can be verified using a criterion provided in Theorem 10. The
criterion’s stability condition (27) takes the following form:

ð cos ðf2 � f1Þ þ q12Þ � cos ðf2 � f1Þ > 0: (54)

If q12 ¼ 0, then (54) is satisfied for the first type of equilibria
(in-phase (Fig. 2c-i) and anti-phase (Fig. 2c-ii)), making
these equilibria stable. The second equilibrium type corre-
sponding to K ¼ 0 is unstable (Fig. 2c-iii) because (54) does
not hold for it.

Next, if q12 ¼ 2 or q12 ¼ �2, then system (2) of two oscilla-
tors has only in-phase and anti-phase equilibria. We can use
Theorem 13 to conclude that when q12 ¼ 2, then the in-phase
equilibrium is stable (Fig. 2a-i) and the anti-phase equilib-
rium is unstable (Fig. 2a-ii), and in the case when q12 ¼ �2,
the in-phase (Fig. 2b-i) and anti-phase (Fig. 2b-ii) equilibria
are unstable and stable, respectively. We can observe that
all results are in agreement with Fig. 2 as expected.

According to Theorem 12, system (2) converges to a stable
equilibrium almost surely for each of the considered values
of parameter q12. Moreover, when q12 ¼ 2 (strictly attractive
coupling) or when q12 ¼ �2 (strictly repulsive coupling) the
system has a unique almost global stable in-phase (if q12 ¼ 2)
or anti-phase (when q12 ¼ �2) equilibrium, as predicted
by Theorem 13. In addition, since p

2 ¼ b < p
2�1 ¼ p, we can

apply Theorem 16 when q12 ¼ 2 to reestablish the almost
global stability of the in-phase equilibrium.

The behavior of the system with q12 ¼ 0 of two oscillators
after a small perturbation from the anti-phase equilibrium

is shown in Fig. 5a. This equilibrium is stable, and the sys-
tem converges to it after a perturbation.

7.2 Three Oscillators (Theorems 2, 3, 4, 5, 15, 16)

Here we examine the stability of equilibria and the behavior
of system (2) with three all-to-all connected oscillators. In
this case the underlying topology is not a tree and we will
employ Theorems 2 and 3 to show stability or instability.
We will assume for simplicity that aij ¼ 1 for all ij 2 E, and
as in Section 3.2, will explore the cases qij ¼ 0, qij ¼ 2 and
qij ¼ �2 (8ij 2 E).

We first consider the case when qij ¼ 0 for each ij 2 E. The
in-phase equilibrium is stable (Fig. 3c-i) since condition (27)

is satisfied: cos2ð0Þ > sin2ð0Þ. Clearly, the anti-phase equilib-
rium, i.e., when f1 ¼ f2 and f3 ¼ f1 þ p, is also stable
(Fig. 3c-ii). Now consider equilibrium f2 ¼ f1 þ 2p=3,
f3 ¼ f1 � 2p=3, and a two-edge cut CðP Þ ¼ f12; 13g. Because
2
�
cos2ð2p=3Þ � sin2ð2p=3Þ�< 0, condition (9) is satisfied and

the equilibrium is unstable (Fig. 3c-iii). The next equilibrium
is defined as f1 ¼ f2, f3 ¼ f1 þ p=2. Using our cut

CðP Þ ¼ f13; 23g, we obtain: 2
�
cos2ðp=2Þ � sin2ðp=2Þ�< 0,

which means that the equilibrium is unstable (Fig. 3c-iv)
due to Theorem 2. If the equilibrium is described by
f2 ¼ f1 þ p=3, f3 ¼ f1 � p=3, then using the cut CðP Þ ¼
f12; 13g, we get 2

�
cos2ðp=3Þ � sin2ðp=3Þ�< 0, and thus the

equilibrium is unstable (Fig. 3c-v). In Fig. 5b behavior of this
system is shown after a small perturbation from this unstable
equilibrium. Finally, when f2 ¼ f1 þ p=2, f3 ¼ f1 � p=2,

we can use the cut CðP Þ ¼ f12; 13g to get 2
�
cos2ðp=2Þ �

sin2ðp=2Þ�< 0 which makes the equilibrium unstable

(Fig. 3c-vi).
We now assume that qij ¼ 2, 8ij 2 E. Then, the in-phase

equilibrium is stable (Fig. 3a-i) since ð cos ð0Þ þ 2Þ �
cos ð0Þ > 0, and condition (27) is satisfied. Next, the cut
CðP Þ ¼ f12; 13g can be used to demonstrate the instability
of the anti-phase equilibrium (Fig. 3a-ii): 2ð cos ðpÞ þ 2Þ �
cos ðpÞ < 0, so that condition (9) is fulfilled. Using the same
cut CðP Þ, the instability of equilibrium f2 ¼ f1 þ 2p=3,
f3 ¼ f1 � 2p=3 can be shown (Fig. 3a-iii).

Finally, we explore the case when qij ¼ �2, 8ij 2 E. The
in-phase equilibrium is unstable (Fig. 3d-i): ð cos ð0Þ � 2Þ �
cos ð0Þ < 0. The stability of the anti-phase equilibrium,
however, cannot be verified by our sufficient condition
in Theorem 3, because ð cos ð0Þ � 2Þ � cos ð0Þ < 0. Further,
equilibrium f2 ¼ f1 þ 2p=3, f3 ¼ f1 � 2p=3 is stable

(Fig. 3d-iii): ð cos ð2p=3Þ � 2Þ � cos ð2p=3Þ � sin2ð2p=3Þ > 0.
And Theorem 2 does not allow us to verify the instability of
the last equilibrium (Fig. 3d-iv).

TABLE 1
Behavior of System (2) for Various Choices of Its Parameters

Theorem Functions fij Topology Parameters qij Parameters aij Synchronization/Convergence to

Theorem 1 Assumption 1 arbitrary ð�1;1Þ ð0;1Þ frequency synchronization
Theorem 12 Assumption 2 tree qij 6¼ qþij , qij 6¼ q�ij ð0;1Þ stable eq. a.s.

Theorem 13 Assumption 2 tree qij > qþij or qij < q�ij ð0;1Þ unique stable in/anti-phase eq. satisfying (35) a.s.

Theorem 15 Assumption 2 arbitrary Oq n Y Oa stable eq. a.s.
Theorem 16 Assumption 3 arbitrary Oq n Y, qij > qþij Oa in-phase stable eq. a.s.

Parameters sij are from ð0;1Þ in each case. SetsOq n Y andOa have full measure in Rm andRm
þ , respectively. See the proof of Theorem 15 for a precise definition

of these sets.
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Stability or instability of in-phase and anti-phase equilib-
ria in some cases can be also checked using Theorems 3 and
4. As was pointed out in the Remark of Section 4.3, the insta-
bility conditions of Theorems 4 and 5 are generally weaker
than condition of Theorem 2. For example, while we could
apply Theorem 2 to show that the anti-phase equilibrium is
unstable when qij ¼ 2 (8ij 2 E), the sufficient instability
condition of Theorem 5 is not fulfilled.

Because the topology of this example is not a tree,
Theorem 12 cannot be applied. In addition, Theorem 15
formulated for an arbitrary topology, does not guarantee
convergence to a stable equilibrium for given values of
the parameters a and q. Nevertheless, when qij ¼ 2, The-
orem 16 can be used since p

2 ¼ b ¼ p
3�1 ¼ p

2. Therefore, the

in-phase equilibrium is almost globally asymptotically
stable when qij ¼ 2 (8ij 2 E), which is in agreement with
Fig. 3a.

7.3 Four Oscillators (Theorems 2, 15)

In Section 3.3 we described a set of equilibria of system (2)
with qij ¼ 0 (8ij 2 E) and aij ¼ a > 0 (8ij 2 E) of four all-
to-all connected oscillators, characterized by a parameter
b 2 ð0;p=2Þ. We will first check that each equilibrium of
this set is unstable. At any such equilibrium with fixed
b 2 ð0;p=2Þ: f2 ¼ f1 þ p=2, f3 ¼ f1 þ b, f4 ¼ f1� ðp=2� bÞ,
and we define a cut CðP Þ as CðP Þ ¼ f12; 13; 14g. Since�
cos2ðp=2Þ � sin2ðp=2Þ� þ �

cos2ðbÞ � sin2ðbÞ�þ �
sin2ðbÞ �

cos2ðbÞ�< 0, then Theorem 2 guarantees that this equilib-

rium is unstable.
This set of equilibria is of a special interest, because it

consists of non-isolated equilibria, and the result of The-
orem 15 does not apply to this system. Therefore, the
values of parameters a and q corresponding to this
example, i.e., aij ¼ a > 0 (8ij 2 E) and qij ¼ 0 (8ij 2 E)
belong to the zero-measure set of parameters that is
excluded in the statement of Theorem 15. The

requirement aij ¼ a > 0 (8ij 2 E) can be generalized: it
is sufficient that a13 ¼ a14 and a23 ¼ a24 for the described
set of equilibria to persist.

7.4 Twelve Oscillators

In [42] it was shown that when in system (2) all coupling
functions are sin ðÞ, qij ¼ 0 (8ij 2 E), and the underlying
topology is a complete graph, then the only stable equilibria
are those in which every phase difference is a multiple of p.
This property does not generally hold in the case of an arbi-
trary topology as we will demonstrate here using an exam-
ple with twelve oscillators and sin ðÞ coupling functions.
The underlying topology is a ring graph, so that the pairs
of connected oscillators are ð1; 2Þ; ð2; 3Þ; ð3; 4Þ; . . . ; ð11; 12Þ,
ð12; 1Þ. We will assume that aij ¼ a > 0 (8ij 2 E), and
qij ¼ q (8ij 2 E). The equilibrium is defined by the follow-
ing phase values: f1 ¼ 0, and fi ¼ fi�1 þ p=12, where
i ¼ 2; . . . ; 12. The phases of the oscillators at the equilibrium
are shown in Fig. 6.

We can apply Theorem 3 to find stability conditions for
this equilibrium under various values of q. Condition (27) in
this example takes the form:

ð cos ðbÞ þ qÞ � cos ðbÞ � sin ðbÞ2 > 0; (55)

where b ¼ 2p
n is the phase difference between two neigh-

boring oscillators in equilibrium, and b ¼ p
6 when n ¼ 12.

The inequality (55) implies that if q > � 1ffiffi
3

p , then the equilib-

rium is stable for n ¼ 12 oscillators. In Fig. 5c the behavior
of the system is shown after a small perturbation from this
equilibrium.

8 CONCLUSION

In this work we studied a model of arbitrarily intercon-
nected homogeneous coupled oscillators with a plastic
coupling. We demonstrated that systems of oscillators
described by this model always achieve frequency synchro-
nization. Sufficient stability and instability conditions for
equilibria were provided for a general underlying topology,
and a criterion of stability was formulated for a tree topol-
ogy. We additionally derived a sufficient condition that
guarantees almost surely convergence to a stable equilib-
rium for tree topologies, and then obtained an analogous
condition for the arbitrary topology case. Further, under
certain assumptions on the coupling (strictly attractive or
strictly repulsive connections), we formulated an almost

Fig. 5. Behavior of system (2) with qij ¼ 0 (8ij 2 E) of two (left), three (center) and twelve (right) oscillators after a small perturbation from a stable
anti-phase, unstable and stable equilibrium, respectively.

Fig. 6. Stable equilibrium corresponding to the example with twelve
oscillators with ring topology.
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global stability result for tree topologies. A similar condition
was also derived for arbitrary topologies and strictly attrac-
tive connections. We illustrated our theoretical results with
several examples.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research,
Arlington, under Grant N00014-12-1-1055.

REFERENCES

[1] J. A. Acebr�on, L. L. Bonilla, C. J. P�erez Vicente, F. Ritort, and
R. Spigler, “The Kuramoto model: A simple paradigm for syn-
chronization phenomena,” Rev. Modern Phy., vol. 77, no. 1, 2005,
Art. no. 137.

[2] F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths, “The Kura-
moto model in complex networks,” Phys. Rep., vol. 610, pp. 1–98,
2016.

[3] H. G. Schuster and P. Wagner, “A model for neuronal oscillations
in the visual cortex,” Biological Cybern., vol. 64, no. 1, pp. 77–82,
1990.

[4] H. Sompolinsky, D. Golomb, and D. Kleinfeld, “Cooperative
dynamics in visual processing,” Phys. Rev. A, vol. 43, no. 12,
pp. 6990–7011, 1991.

[5] M. Breakspear, S. Heitmann, and A. Daffertshofer, “Generative
models of cortical oscillations: Neurobiological implications of the
Kuramoto model,” Front. Hum. Neurosci., vol. 4, no. 190, 10–3389,
2010.

[6] J. G�omez-Gardees, G. Zamora-L�opez, Y. Moreno, and A. Arenas,
“From modular to centralized organization of synchronization in
functional areas of the cat cerebral cortex,” PLoS One, vol. 5, no. 8,
2010, Art. no. e12313.

[7] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural
Networks, vol. 126. New York, NY. USA: Springer, 1997.

[8] T. A. Winfree, “Biological rhythms and the behavior of popula-
tions of coupled oscillators,” J. Theoretical Biol., vol. 16, no. 1,
pp. 15–42, 1967.

[9] S. Yamaguchi, et al., “Synchronization of cellular clocks in the
suprachiasmatic nucleus,” Science, vol. 302, no. 5649, pp. 1408–
1412, 2003.

[10] S. A. Marvel and S. H. Strogatz, “Invariant submanifold for series
arrays of Josephson junctions,” Chaos Interdisciplinary J. Nonlinear
Sci., vol. 19, no. 1, 2009, Art. no. 013132.

[11] P. C. Bressloff and S. Coombes, “Travelling waves in chains of
pulse-coupled integrate-and-fire oscillators with distributed
delays,” Physica D: Nonlinear Phenomena, vol. 130, no. 3, pp. 232–
254, 1999.

[12] S.-Y. Ha, Z. Li, and X. Xue, “Formation of phase-locked states in a
population of locally interacting Kuramoto oscillators,” J. Differen-
tial Equations, vol. 255, no. 10, pp. 3053–3070, 2013.

[13] I. Z. Kiss, Y. Zhai, and J. L. Hudson, “Emerging coherence in a
population of chemical oscillators,” Science, vol. 296, no. 5573, vol.
1676–1678, 2002.

[14] F. D€orfler, M. Chertkov, and F. Bullo, “Synchronization in com-
plex oscillator networks and smart grids,” Proc. Nat. Academy
Sci. United States America, vol. 110, no. 6, pp. 2005–2010, 2013.

[15] E. Mallada and A. Tang, “Distributed clock synchronization: Joint
frequency and phase consensus,” in Proc. 50th IEEE Conf. Decision
Control Eur. Control Conf., 2011, pp. 6742–6747.

[16] P. Ashwin and J. W. Swift, “The dynamics of n weakly coupled
identical oscillators,” J. Nonlinear Sci., vol. 2, vol. 1, pp. 69–108,
1992.

[17] F. D€orfler and F. Bullo, “Exploring synchronization in complex
oscillator networks,” in Proc. IEEE 51st Annu. Conf. Decision
Control, 2012, pp. 7157–7170.

[18] O. V. Popovych, Y. L. Maistrenko, and P. A. Tass, “Phase chaos in
coupled oscillators,” Phys. Rev.-Series E, vol. 71, no. 6, 2005, Art.
no. 065201.

[19] Y. Kuramoto, “Self-entrainment of a population of coupled non-
linear oscillators,” in Proc. Int. Symp. Math. Problems Theoretical
Phys., 1975, pp. 420–422.

[20] E. Mallada and A. Tang, “Synchronization of phase-coupled oscil-
lators with arbitrary topology,” in Proc. IEEE Amer. Control Conf.,
2010, pp. 1777–1782.

[21] E. Brown, P. Holmes, and J. F. Moehlis, “Globally coupled oscilla-
tor networks,” in Perspectives and Problems in Nolinear Science.
New York, NY, USA: Springer, 2003. 183–215.

[22] E. Mallada and A. Tang, “Synchronization of weakly coupled
oscillators: Coupling, delay and topology,” J. Phys. A: Math.
Theoretical, vol. 46, no. 50, 2013, Art. no. 505101.

[23] A. Gushchin, E. Mallada, and A. Tang, “Synchronization of phase-
coupled oscillators with plastic coupling strength,” in Proc. Inf.
Theory Appl. Workshop, 2015, pp. 291–300.

[24] P. Monz�on and F. Paganini, “Global considerations on the Kura-
moto model of sinusoidally coupled oscillators,” in Proc. 44th
IEEE Conf. Decision Control, Eur. Control Conf., 2005, pp. 3923–3928.

[25] A. Gushchin, E. Mallada, and A. Tang, “Synchronization of het-
erogeneous Kuramoto oscillators with graphs of diameter two,”
in Proc. IEEE Conf. Inf. Sci. Syst., 2015, pp. 1–6.

[26] A. Gushchin, E. Mallada, and A. Tang, “Synchronization of het-
erogeneous Kuramoto oscillators with arbitrary topology,” in
Proc. IEEE Amer. Control Conf., 2015, pp. 637–644.

[27] F. D€orfler and F. Bullo, “Synchronization in complex networks of
phase oscillators: A survey,”Automatica, vol. 50, pp. 1539–1564, 2014.

[28] H. Hong and S. H. Strogatz, “Kuramoto model of coupled oscilla-
tors with positive and negative coupling parameters: An example
of conformist and contrarian oscillators,” Phys. Rev. Lett., vol. 106,
no. 5, 2011, Art. no. 054102.

[29] P. Seliger, S. C. Young, and L. S. Tsimring, “Plasticity and learning
in a network of coupled phase oscillators,” Phys. Rev. E, vol. 65,
no. 4, 2002, Art. no. 041906.

[30] R. K. Niyogi and L. Q. English, “Learning-rate-dependent cluster-
ing and self-development in a network of coupled phase oscil-
lators,” Phys. Rev. E, vol. 80, no. 6, 2009, Art. no. 066213.

[31] D. Cumin and C. P. Unsworth, “Generalising the Kuramoto
model for the study of neuronal synchronisation in the brain,”
Physica D: Nonlinear Phenomena, vol. 226, no. 2, pp. 181–196, 2007.

[32] R. C. Moioli, P. A. Vargas, and P. Husbands, “The dynamics of a
neural network of coupled phase oscillators with synaptic plastic-
ity controlling a minimally cognitive agent,” in Artificial Neural
Networks—ICANN 2010. Berlin, Germany: Springer, 2010. 245–255.

[33] Q. Ren and J. Zhao, “Adaptive coupling and enhanced synchroni-
zation in coupled phase oscillators,” Phys. Rev. E, vol. 76, no. 1,
2007, Art. no. 016207.

[34] P. De Lellis, M. Di Bernardo, F. Sorrentino, and A. Tierno,
“Adaptive synchronization of complex networks,” Int. J. Comput.
Math., vol. 85, no. 8, pp. 1189–1218, 2008.

[35] D. Hebb, The Organization of Behavior. New York, NY, USA:
Wiley, 1968, p. 44.

[36] L. Timms and L. Q. English, “Synchronization in phase-coupled
Kuramoto oscillator networks with axonal delay and synaptic
plasticity,” Phys. Rev. E, vol. 89, no. 3, 2014, Art. no. 032906.

[37] T. Aoki and T. Aoyagi, “Co-evolution of phases and connection
strengths in a network of phase oscillators,” Phys. Rev. Lett.,
vol. 102, no. 3, 2009, Art. no. 034101.

[38] T. Aoki and T. Aoyagi, “Self-organized network of phase oscilla-
tors coupled by activity-dependent interactions,” Phys. Rev. E,
vol. 84, no. 6, 2011, Art. no. 066109.

[39] Y. L. Maistrenko, B. Lysyansky, C. Hauptmann, O. Burylko, and
P. A. Tass, “Multistability in the Kuramoto model with synaptic
plasticity,” Phys. Rev. E, vol. 75, no. 6, 2007, Art. no. 066207.

[40] A. Isakov and L. Mahadevan, “Synchronization in a stochastic
Hebbian network of phase oscillators,” arXiv preprint arXiv:
1404.2328, 2014.

[41] S.-Y. Ha, S. E. Noh, and J. Park, “Synchronization of Kuramoto
oscillators with adaptive couplings,” SIAM J. Appl. Dynamical
Syst., vol. 15, no. 1, pp. 162–194, 2016.

[42] L. Scardovi, “Clustering and synchronization in phase models
with state dependent coupling,” in Proc. 49th IEEE Conf. Decision
Control, 2010, pp. 627–632.

[43] J. P. LaSalle, “Some extensions of Liapunov’s second method,”
IRE Trans. Circuit Theory, vol. 7, no. 4, pp. 520–527, 1960.

[44] H. K. Khalil and J. W. Grizzle, Nonlinear Systems, vol. 3. Upper
Saddle River, NJ, USA: Prentice hall, 2002.

[45] D. Carlson and H. Schneider, “Inertia theorems for matrices: The
semidefinite case,” J. Math. Anal. Appl., vol. 6, no. 3, pp. 430–446,
1963.

[46] B. Bollob�as, Modern Graph Theory, vol. 184. Berlin, Germany:
Springer, 1998.

[47] R. A. Freeman, “A global attractor consisting of exponentially unsta-
ble equilibria,” in Proc. Amer. Control Conf., 2013, pp. 4855–4860.

GUSHCHIN ETAL.: PHASE-COUPLED OSCILLATORSWITH PLASTIC COUPLING: SYNCHRONIZATION AND STABILITY 255



[48] E.Mallada, R. Freeman, andA. Tang, “Distributed synchronization
of heterogeneous oscillators on networks with arbitrary topology,”
IEEE Trans. Control Netw. Syst., vol. 3, no. 1, pp. 1–12,Mar. 2016.

[49] J. M. Lee, Introduction to Smooth Manifolds, vol. 218. New York, NY,
USA: Springer, 2012.

Andrey Gushchin received the BS and MS
degrees in applied mathematics from Moscow
Institute of Physics and Technology, Russia, in
2008 and 2010, respectively. He is currently work-
ing toward the PhD degree in the Center for
Applied Mathematics, Cornell University. His
research interests include dynamical systems,
optimization, and algorithms. He became the win-
ner of the AT&T SDN Network Design Challenge
with other members of the Cornell’s Networks
Group in 2016.

Enrique Mallada received the Ingeniero en Tele-
comunicaciones degree from the Universidad
ORT, Uruguay, in 2005, and the PhD degree in
electrical and computer engineering with a minor
in applied mathematics from Cornell University, in
2014. He is an assistant professor of electrical
and computer engineering with Johns Hopkins
University. Prior to joining Hopkins in 2016, he
was a post-doctoral fellow in the Center for the
Mathematics of Information, California Institute of
Technology from 2014 to 2015. He was awarded

the ECE Director’s PhD Thesis Research Award for his dissertation in
2014, the Cornell University Jacobs Fellowship in 2011, and the Organi-
zation of American States scholarship from 2008 to 2010. His research
interests lie in the areas of control, dynamical systems, and optimization,
with applications to engineering networks such as power systems and
the Internet.

Ao Tang received the BE (Hons.) degree in elec-
tronics engineering from Tsinghua University, Bei-
jing, China, in 1999, and the MS and PhD
degrees in electrical engineering with a minor in
applied and computational mathematics from
California Institute of Technology, Pasadena, Cal-
ifornia, in 2002 and 2006, respectively. Currently,
he is an associate professor in the School of
Electrical and Computer Engineering, Cornell
University, Ithaca, New York, where he conducts
research on the control and optimization of engi-

neering networks, including communication networks, power networks,
and on-chip networks. His recent awards include the Presidential Early
Career Award for Scientists and Engineers (PECASE) from the White
House in 2012 and winning the AT&T SDN Network Design Challenge
with his research group in 2016.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

256 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


