
Optimization-Based Network Flow Deadline
Scheduling

Andrey Gushchin∗, Shih-Hao Tseng†, and Ao Tang†
∗Center for Applied Mathematics, Cornell University, Ithaca, New York 14853, U.S.A.

†School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, U.S.A.

Email: {avg36,st688}@cornell.edu, atang@ece.cornell.edu

Abstract—Many network flows nowadays, especially in a data
center environment, have associated deadlines by which they must
be fully transmitted. Nevertheless, traditional transport protocols
such as TCP, focus on concepts like throughput and fairness, and
do not aim to satisfy flow deadlines. Motivated by this limitation,
several alternative transport designs and solutions have been
recently proposed. These approaches generally achieve a better
performance in terms of the number of satisfied deadlines and
are usually built upon various heuristics. In contrast to these
previous works, this article approaches the problem directly from
an optimization perspective. We first prove that the problem
belongs to the class of NP-hard problems that do not even admit
a constant ratio approximation solution (unless P=NP), and for-
mulate it as a mixed integer-linear optimization program. Then,
using linear programming approximations, we further develop
offline and online optimization-based rate control algorithms to
approach the problem. Flow-level simulation results indicate that
the proposed algorithms can be near-optimal, and hence they can
be served as benchmarks against which other solutions to this
problem can be evaluated. We additionally performed simulations
incorporating such real network features as deployment delays
and packet-level granularity to evaluate the performance of the
proposed algorithms in a more realistic environment.

I. INTRODUCTION

With the growing popularity of data center technology
and real-time network applications, it becomes extremely
important to provide network services in a timely fashion. In
particular, many network flows are assigned with deadlines by
which they must be completely transmitted or will lose value.
However, traditional rate allocation approaches, for example
TCP transport protocol, generally do not take flow deadlines
into account and are not suitable for some modern network
environments [1], [2].

The rising Software-Defined Networking (SDN) technology
helps achieve a desired level of network efficiency by allowing
a fine-grained control over network flows. Furthermore, SDN
alleviates the problem of satisfying flow deadlines by facili-
tating implementation of algorithms designed for this problem
in practice. In many cases a network controller has to deal
with a large number of simultaneous flow requests demanding
services, and sometimes it may not be possible to fulfill all
service requests due to, for example, link capacity constraints.
It is generally desirable, however, to meet as many requests
as possible via a refined rate control of the flows. As we will
show in this article, even with a complete control of flow rates
of all time, the problem of maximizing the number of satisfied
deadlines is extremely difficult in general.

Several approaches tackling the problem of satisfying flow
deadlines have been recently proposed for data center net-

work environments. Here we will provide a brief review of
some of these works. For example, one of the goals of the
deadline-aware control protocol proposed in [3] is to maximize
the number of satisfied flow deadlines, and its rate control
mechanism is based on a greedy approach. Another protocol
for data centers is designed in [4], and the rate allocation
there is implemented according to the Earliest Deadline First
(EDF) rule [5]. In contrast, the data center transport protocol
from [6] employs the Least Attained Service (LAS) scheduling
mechanism. The main idea of the approach presented in [7] is
to replicate short TCP flows, which in practice helps reduce
flow completion time. Congestion control protocols from [2],
[8], [9] emulate processor-sharing at each router, so that a
router assigns a single rate to all flows that pass through it.
Although these protocols do not try to maximize the number of
satisfied deadlines explicitly, they do so in an implicit manner
by reducing the flow completion times. Solution described in
[1] tries to minimize the flow completion times by prioritizing
small flows over large flows. A TCP-like protocol called
DCTCP designed specifically for data centers is presented
in [10]. DCTCP utilizes Explicit Congestion Notification and
proposes a novel control scheme at the sources to decrease
the latency of short flows and therefore potentially satisfy
more flow deadlines compared to traditional TCPs. OpenTCP
described in [11] is a TCP adaptation framework for SDN-
based data centers that may lead to up to 59% reduction in
flow completion times. Another approach for reducing the flow
completion times in data center networks is described in [12]
and it achieves this goal by utilizing multiple routing paths for
each flow.

The aforementioned rate control approaches are generally
based on relatively simple heuristics that allow to increase
the number of satisfied flow deadlines compared to the state-
of-the-art TCP protocol. In contrast to these previous works,
in this article we take a principled approach and directly
start from the optimization formulation that tries to satisfy as
many flow deadlines as possible. There are several theoretical
works originating from both scheduling theory ([13], [14])
and optimization ([15]) that provide solutions for some related
problems.

The flow deadline scheduling problem studied in this article
has two special features that make it both different and more
challenging compared to the previously investigated ones,
including those in [5], [13], [14] and [15]. First, processing of
each flow (job in the context of scheduling theory) simultane-

2016 IEEE 24th International Conference on Network Protocols (ICNP)

1
978-1-5090-3281-5/16/$31.00 ©2016 IEEE

ously requires resources of several specific links (processors
or machines in the context of scheduling theory) belonging to
the flow’s routing path. Second, link bandwidth can be shared
among different flows if their routing paths contain the same
link or several links. These two features make the problem of
satisfying network flow deadlines distinctly different from the
problems studied in scheduling theory, where it is generally
assumed that a job can be served by any set of available
identical processors, and processing sharing is not allowed.
Additionally, they significantly extend the space of possible
scheduling solutions which complicates finding an optimal
solution as demonstrated by Example 2.

Depending on the amount of information about the future
flows that is available initially (at time zero), we consider two
problem setups: offline and online. In the offline setup, all
information about the upcoming flows, including their arrival
times, sizes and deadlines, is revealed prior to the operation of
the system. Therefore, a rate allocation can be precomputed in
advance before the arrival of the flows. In the online setup, on
the other hand, all information about a flow becomes available
only upon its arrival. It is easy to see that an optimal rate
control mechanism for the offline setup is at least as good as
an optimal control for the online setup.

This paper is organized as follows. In the next section
we introduce necessary notations, specify our assumptions
and provide optimization problem formulation for the offline
environment case. Further, section III contains our analysis
of the formulated problem: we show that the problem is NP-
hard and does not admit a constant ratio approximation in
polynomial time (unless P=NP). After that, for both offline and
online environments, we propose approximating algorithms
that are based on linear programming relaxation, in section
IV. We then perform flow-level and packet-level numerical
simulations in section V and conclude in section VI.

II. PROBLEM FORMULATION

We start this section by providing our assumptions and
introducing necessary notations in subsection II-A. After that
we proceed to the problem of satisfying flow deadlines in
the offline setup when all information regarding the flows,
including arrival times, sizes and deadlines, is available at
the initial time t = 0. We first formulate this problem as an
optimal control problem in subsection II-B, and then show in
Proposition 1 of subsection II-C that it can also be posed as
an optimization problem.

A. Problem Setup

We assume that the network is defined by a directed graph
G = (V,E) with V being the set of nodes and E denoting the
set of edges. Every edge e ∈ E is assigned with a nonnegative
capacity c(e) ≥ 0. Further, each network flow fi is represented
by a five-tuple < ai, zi, ri, si, di >, where ai and zi are, resp.,
the source and the destination nodes of the flow fi, ri is the
release or arrival time of the flow to the network, si > 0
is the flow size and di is its deadline. Release and deadline
times for all flows are given on the absolute time scale, and
for each flow fi its deadline must be greater than its release

Fig. 1: Earliest Deadline First rule does not maximize the
number of satisfied deadlines (Example 1).

time: di > ri. Time interval [ri, di] between arrival time and
deadline of flow fi will be called the lifespan of this flow.

We examine the problem in which a single routing path
is predefined for each source-destination pair, and hence the
network operator can only perform the flow rate control while
not being able to choose the routing paths. It is further
assumed that the flow rate can be adjusted at any time, and
the rate control decisions can be immediately deployed in the
network. While this assumption may not be realistic in the real
networks, it allows us to create a benchmark such that various
ad hoc approaches to this problem can be compared with it.
Therefore, for each source-destination pair of nodes v1 ∈ V ,
v2 ∈ V such that v1 �= v2, a single routing path v1 → · · · → v2
is provided, and traffic for flow fi can be routed using its
corresponding single routing path ai → · · · → zi. At any time
t, we can control the sending rate xi(t) of each flow fi if
t ∈ [ri, di], such that all link capacity constraints are satisfied.
Link capacity constraints require that the total amount of traffic
that can be sent at any time t through a particular link is limited
by this link bandwidth capacity. We say that the deadline of
flow fi is satisfied, if amount of traffic sent for this flow by its

deadline is at least the size of the flow, i.e., if
di∫
ri

xi(t)dt ≥ si,

and the goal is to satisfy as many flow deadlines as possible.
The offline environment implies that at time t = 0 all nec-

essary information about the flows is available. In particular,
the set of five-tuples < ai, zi, ri, si, di >, i = 1, . . . , n is
provided, where n is the total number of flows. We assume that
n and each deadline time di are finite, and thus the problem
has a finite horizon T := max

i
di.

B. Optimal Control Formulation
Any rate control mechanism for every time t ∈ [0, T]

assigns a certain rate to each flow fi. Let xi(t) denote the
assigned rate to flow fi at time t ∈ [0, T]. We will consider
only rate controls satisfying xi(t) = 0 ∀t ∈ [0, ri) ∪ (di, T]
for i = 1, . . . , n. Therefore, a flow’s rate is zero before its
arrival time and after its deadline. For each control mechanism
and flow fi, i = 1, . . . , n, we propose a utility function

Ui =

⎧⎪⎨
⎪⎩
1, if

di∫
ri

xi(t)dt ≥ si;

0, otherwise.

Here we assume that the integral is well-defined. Then, the
objective to be maximized by the optimal rate control mech-
anism is defined as the number of satisfied deadlines:

n∑
i=1

Ui. (1)

2016 IEEE 24th International Conference on Network Protocols (ICNP)

2

From the scheduling theory it is known that the Earliest
Deadline First (EDF) rule which at any moment of time selects
the task with the earliest deadline, is optimal for the case of
a single machine with non-sharable resources, i.e., when only
a single job can be processed by the machine at any moment
of time [5]. Optimality, however, is defined here in the sense
of feasibility: if a schedule satisfying all deadlines (i.e., when∑n

i=1 Ui = n) exists, then the schedule produced by the EDF
rule also satisfies all the deadlines. It is easy to see that the
EDF approach does not necessary maximize objective (1) as
the following example shows.

Example 1 (EDF rule does not maximize the number
of satisfied deadlines). Suppose that the network consists of
a single unit capacity link (A,B) and there are three flows
with arrival times r1 = r2 = 0, r3 = 2, with sizes s1 = 3,
s2 = s3 = 2 units, and deadlines d1 = 3, d2 = d3 = 4
(see Fig. 1). Then, the EDF rule would provide the whole link
capacity to flow f1 at time t = 0, and two remaining flows f2
and f3 would miss their deadlines. Thus, the value of objective
function (1) achieved by the EDF rule is equal to one. This
is, obviously, not an optimal schedule in terms of objective
function (1), since it is possible to satisfy the deadlines of
flows f2 and f3.

Because the rate of each flow fi can be changed at any
moment of time t ∈ [ri, di], the problem of maximizing total
utility (1) is an optimal control problem. The state of the
system is described by a set of n state variables Si(t). Each
state variable Si(t) is associated with a corresponding single
flow fi and is defined as follows:

Si(t) = si −
∫ t

0

xi(t)dt,

i.e., it is equal to the residual of a flow that remains to be
sent. Rate variables xi(t) are the control variables. The step
function δ(x) is defined as

δ(x) =

{
1, if x ≥ 0;

0, if x < 0.

We can now formulate the optimal control problem whose
optimal solution maximizes the number of satisfied flow
deadlines:

max
n∑

i=1

δ(−Si(T)),

∀i, ∀t : Ṡi(t) = −xi(t), (2a)

∀i : Si(0) = si, (2b)

∀i, ∀t ∈ [0, ri) ∪ (di, T] : xi(t) = 0, (2c)

∀e ∈ E, ∀t :
∑

i: e∈fi

xi(t) ≤ c(e), (2d)

∀i, ∀t : xi(t) ≥ 0. (2e)

Condition (2a) describes the evolution of the system’s state
variables, and (2b) defines the initial state of the system.
Further, condition (2c) requires that the flow’s traffic can be
sent only during its lifespan. Link capacity constraints have to

Fig. 2: Example illustrating that for any rate control x∗(t)
there exists an equivalent piecewise constant control x̂(t).

be satisfied as required by (2d), where notation e ∈ fi means
that flow fi’s routing path traverses link e, and each flow’s
rate must be nonnegative by (2e).

C. Optimization Problem Formulation

Notice that the functional of optimal control problem (2)
consists only of the endpoint cost part, and does not contain
Lagrangian. Furthermore, it is defined as a sum of nonconvex
binary-valued functions δ which makes it difficult to find an
optimal control for problem (2).

Nevertheless, as shown in the following proposition, an
optimal rate control can be found by solving an optimization
problem instead of the control problem (2).

Proposition 1. Let x∗
i (t), i = 1, . . . , n, be an arbitrary

feasible rate control of the problem (2). Then, there exists
another feasible rate control x̂i(t), i = 1, . . . , n with the same
objective value, in which each x̂i(t) is a piecewise constant
function that can change value only at the release or deadline
times of flows.

Proof: We prove this statement by showing how to obtain
an feasible piecewise constant rate control x̂i(t) from the given
arbitrary feasible rate control x∗

i (t). We divide the whole time
interval [0, T] into subintervals Δj := [tj , tj+1), where each
tk is either an arrival time or a deadline of a flow, and j =
1, . . . , J such that t1 = 0 and tJ+1 = T . Notice, that tj and
tj+1 are not necessary arrival and deadline times of the same
flow. It is assumed that the last subinterval ΔJ = [tJ , tJ+1]
contains both endpoints. In example from Fig. 2 the whole
interval [0, 4] is divided into three subintervals [0, 1), [1, 3)
and [3, 4].

Then, we define the rates of flows on each time subinterval
in a following way:

x̂i(Δj) :=
1

(tj+1 − tj)

tj+1∫
tj

x∗
i (t)dt, (3)

where i = 1, . . . , n. It is easy to see that the rate control
defined by (3) achieves the same value of objective function (1)
as the rate control x∗

i , i = 1, . . . , n. It only remains to notice
that this rate control also satisfies link capacity constraints at
any time t ∈ [0, T]. Indeed, if it is supposed that there is a

2016 IEEE 24th International Conference on Network Protocols (ICNP)

3

link e ∈ E capacity constraint violation by x̂i(t) rate control
at some interval Δj , then∑

i: e∈fi

x̂i(Δj) > c(e),

i.e.,

∑
i: e∈fi

tj+1∫
tj

x∗
i (t)dt > c(e) · (tj+1 − tj),

which implies that the given rate control mechanism defined
by x∗

i (t), i = 1, . . . , n, also violates the capacity constraint
for link e during interval Δj .

In the example from Fig. 2 it is shown how the given
rate control function x∗

i (t) for flow fi can be replaced by
a piecewise constant function x̂i(t).

Proposition 1 allows us to consider only piecewise constant
rate control functions in order to obtain an optimal solution
to problem (2). Moreover, since in the offline environment all
information including arrival and deadline times is available,
optimal control problem (2) can be formulated as an optimiza-
tion problem.

For every flow fi, i = 1, . . . , n, its lifespan [ri, di] can be
represented as a union of intervals Δj considered in the proof
of Proposition 1. In each such interval Δj , the rate of flow
fi is constant, and is denoted by xi(Δj). Let |Δj | denote the
length of interval Δj :

|Δj | := (tj+1 − tj).

The optimization problem whose objective is the number of
satisfied deadlines is formulated as follows: 1

max
n∑

i=1

δ
(∑
Δj∈fi

(xi(Δj) · |Δj |)− si

)
, (4a)

∀e ∈ E, ∀Δj :
∑

i: e∈fi

xi(Δj) ≤ c(e), (4b)

∀i, ∀Δj ∈ fi : xi(Δj) ≥ 0, (4c)

∀i, ∀Δj /∈ fi : xi(Δj) = 0. (4d)

Here
∑

Δj∈fi

(xi(Δj) · |Δj |) is the total amount of traffic that

is sent for flow fi, notation Δj ∈ fi means that time interval
Δj belongs to the lifespan [ri, di] of this flow, and Δj /∈
fi implies that Δj is not from the lifespan of fi. Further,∑
Δj∈fi

(xi(Δj) · |Δj |) − si is non-negative if and only if the

flow fi’s deadline is satisfied. Constraint (4b) is a link capacity
constraint, (4c) requires that all flow rates are non-negative,
and the rate must be equal to zero beyond the lifespan of each
flow according to (4d).

1Although optimization (4) is not a Mixed Integer Linear Program (MILP),
it can be easily reformulated in this form using ideas from [16], for example.

III. ANALYSIS

In this section we describe some features of optimization
problem (4). In particular, in Proposition 2 (subsection III-A)
we prove that this optimization problem belongs to the class of
NP-hard problems for which no polynomial algorithm with a
constant approximation ratio exists (unless P=NP). After that,
in subsection III-B we provide an example illustrating that link
bandwidth sharing among different flows may lead to a more
optimal rate control. Finally, a Linear Programming Approx-
imation (LPA) of optimization (4) is proposed in subsection
III-C. The optimal objective value of LPA establishes an upper
bound on the maximum possible number of flow deadlines
that can be satisfied. Moreover, when all flow deadlines can
be satisfied simultaneously, an optimal solution to this LPA
relaxation also satisfies them.

A. NP-hardness
Although Proposition 1 allowed us to formulate the orig-

inal control problem as an optimization problem, finding an
optimal (and even an approximating) schedule is an NP-hard
problem as shown in the following proposition.

Proposition 2. The problem of finding an optimal piecewise
constant rate control for the offline environment is NP-hard,
and cannot be approximated to a constant factor in polynomial
time (unless P=NP).

Proof: We prove this fact by reducing the Maximum Inde-
pendent Set (MIS) problem to the offline rate control problem.
Since MIS is known to be NP-hard with no polynomial time
constant factor approximation (unless P=NP), the proposition
follows.

Given an instance of the MIS problem represented by an
undirected graph Ḡ = (V̄ , Ē), we construct the directed graph
G = (V,E) from Ḡ for the corresponding instance of the of-
fline rate control problem as follows. Let V̄ =

{
v̄1, . . . , v̄|V̄ |

}
.

For each vertex v̄i ∈ V̄ , we construct two vertices ai, zi ∈ V
and make them a source-destination pair (ai, zi) connected by
a directed edge aizi ∈ E. After transforming the set V̄ , we
obtain |V̄ | source-destination pairs. Each pair has only one
feasible path, and the path has at least one edge that is not
shared with any path connecting some other source-destination
pair. We call those edges non-shared and we will maintain the
property throughout the rest of the construction.

For each v̄iv̄j ∈ Ē, we construct two vertices bij , cij ∈ V
and a shared directed edge bijcij ∈ E. From the unique path
connecting (ai, zi), we select a non-shared edge αiζi, replace
it with two non-shared directed edges αibij , cijζi and a shared
edge bijcij , then we remove αiζi from E. Similarly, we direct
the unique path for (aj , zj) to go through bijcij . After the
redirection, the property mentioned previously is maintained,
and the unique paths for (ai, zi) and (aj , zj) share an edge
bijcij .

We finish the construction by letting all the edges in E have
unit capacity and assigning

∀i : ri = 0, si = 1, di = 1,

to form the flows fi for all i.
An independent set is equivalent to a feasible offline rate

control by the assignment: vertex v̄i belongs to the independent

2016 IEEE 24th International Conference on Network Protocols (ICNP)

4

(a) Graph Ḡ of the MIS prob-
lem.

i)

a1 z1

a2 z2

a3

z3

a4 z4

ii)

a1 z1

a2 z2

a3

z3

a4 z4

b12 c12

iii)

a1 z1

a2 z2

a3

z3

a4 z4

iv)

a1 z1

a2 z2

a3

z3

a4 z4

(b) Construction of graph G for the offline rate control problem. Paths for source-destination pairs
(a1, z1), (a2, z2), (a3, z3) and (a4, z4) are shown in blue, green, red and orange, respectively.

Fig. 3: Example showing how an instance of the offline rate control problem can be obtained from a given instance of the
Maximum Independent Set problem.

A

B

C

D

E

f1 =< A,E, 0, 0.7, 1 >
f2 =< A,D, 0, 0.3, 1 >
f3 =< B,E, 0, 0.1, 1 >

f1

f2 f3

Fig. 4: Link bandwidth sharing enables satisfying more flow
deadlines (Example 2).

set if and only if the deadline of fi is satisfied. Therefore,
the MIS problem can be reduced (in polynomial time) to the
offline rate control problem, which proves the proposition.

Fig. 3 illustrates the process of instance transformation in
Proposition 2.

Proposition 2 implies that unless P=NP, it is not possible
to provide a polynomial time algorithm with a constant
approximation factor for a general case of the offline rate
control problem (4). Along with Proposition 1, we can deduce
that problem (2) also has no constant-ratio approximation
unless P=NP. It does not necessarily mean, however, that no
algorithm exists with a high average performance in practice.
In particular, in section IV we propose an optimization-based
algorithm called ILPA for the offline rate control problem and
further demonstrate in section V that its excellent performance.

B. Link Bandwidth Sharing
Another question of interest is whether link bandwidth

sharing among the flows may allow to achieve a higher
objective value compared to schedules when the bandwidth
sharing is not permitted. It can be easily seen that the answer
is yes if capacities can be different for different links. It is
also true, however, even when all link capacities are equal as
can be demonstrated by the next example.

Example 2 (bandwidth sharing allows to satisfy more
flow deadlines). Consider the network topology that consists
of five unit capacity links as illustrated in Fig. 4. Further,

three flows f1, f2 and f3 arrive to the network at time t = 0
and have equal deadline t = 1. If link bandwidth sharing is
allowed, it is possible to satisfy all three deadlines, and if it is
not permitted, only two deadlines (at most) can be satisfied.

C. Linear Programming Approximation (LPA)

A linear optimization problem approximating the original
NP-hard problem (4) can be formulated as follows.

max
n∑

i=1

∑
Δj∈fi

xi(Δj) · |Δj |
si

, (5a)

∀e ∈ E, ∀Δj :
∑

i: e∈fi

xi(Δj) ≤ c(e), (5b)

∀i :
∑

Δj∈fi

xi(Δj) · |Δj | ≤ si, (5c)

∀i, ∀Δj ∈ fi : xi(Δj) ≥ 0, (5d)

∀i, ∀Δj /∈ fi : xi(Δj) = 0. (5e)

In contrast to problem (4), objective (5a) of this optimization
problem is a linear function of the variables, and favors flows
of smaller size. Link capacity (5b) and non-negativity (5d),
(5e) constraints remain unchanged. A new set of constraints
(5c) was added requiring that an amount of flow that can be
sent for each flow fi is limited by its demand si. In the rest of
this article optimization problem (5) will be referred as LPA.

Notice that LPA (5) is a relaxation of the NP-hard problem
(4), and while an optimal solution to LPA (5) may not
necessary maximize the number of satisfied deadlines, it has
two important properties. First, if it is possible to satisfy all
flow deadlines, then an LPA optimal solution does it. Second,
the optimal value of objective function (5a) provides an upper
bound on the total number of flow deadlines that can be
satisfied, i.e., an upper bound on the optimal objective value
of problem (4). We emphasize here the difference between
the optimal solutions to optimizations (4) and (5). Optimal
objective value of optimization (5) is always greater or equal

2016 IEEE 24th International Conference on Network Protocols (ICNP)

5

Fig. 5: Illustration of a drawback of the LPA approach (Ex-
ample 3).

to optimal objective value of (4). On the other hand, an optimal
solution to (5), compared to an optimal solution to (4), may
achieve a lower value in terms of objective (4a), i.e., it may
satisfy fewer flow deadlines as can be observed in Fig. 6.
These properties are summarized in the following proposition.

Proposition 3. An optimal objective value of LPA (5)
provides an upper bound on the maximum possible number
of flow deadlines that can be satisfied. If an optimal solution
to (4) satisfies all flow deadlines, then so does an optimal
solution of LPA (5).

Therefore, there is a similarity between the EDF rule and
LPA (5): both approaches satisfy all flow deadlines when it
is possible. The difference, however, is that the EDF rule is
guaranteed to do this only in the case of a single link (or single
source-destination pair), while relaxation (5) satisfies all flow
deadlines in a general network. On the other hand, LPA (5)
is an approach for the offline environment, i.e., it requires all
information about the future flows, while the EDF rule does
not have such requirement.

IV. ALGORITHMIC SOLUTIONS

This section contains our optimization-based rate control
algorithms for offline and online setups. Although LPA al-
gorithm satisfies all flow deadlines when it is possible, its
performance may be not optimal in the case when all deadlines
cannot be satisfied simultaneously. Therefore, in subsection
IV-A we propose Iterative LPA (ILPA), an iterative algorithm
for the offline setup that generally outperforms LPA. Next,
in subsection IV-B we investigate the case of the online
environment for which we design an approximating online
algorithm called OLPA.

A. Offline Setup: ILPA
The LPA approach proposed in the previous section has a

drawback: in an optimal solution to (5), in an arbitrary interval
Δj = [tj , tj+1) traffic can be sent for flows whose deadlines
cannot be satisfied anymore. It can be illustrated with the
following example.

Example 3 (drawback of LPA). As shown in Fig. 5, the
network consists of two unit capacity links, there are three
source-destination pairs (A,B), (B,C) and (A,C), and five
flows f1 − f5. For this example, an optimal solution to LPA
(5) will first finish flows f3 and f4, and then at time t = 2
will start sending traffic for flows f1 and f2, although it is
clear at time t = 2 that the deadlines of these flows cannot
be satisfied anymore. An optimal rate control solution would
instead send traffic for flow f5 in the time interval [2, 6] to

Algorithm 1: Iterative LPA for offline environment

input : S , Δj (j = 1, . . . , J);
output: rates xi(Δj) ∀fi, ∀Δj ∈ fi;

1 S0 := S;
2 for j = 1 to J do
3 Sj := ∅;
4 for each flow fi ∈ S0 do
5 find gji using (6);

6 if di > tj and (7) holds and gji > 0 then
7 Sj := Sj ∪ fi;
8 end
9 end

10 nj := |Sj |;
11 find xi(Δj) for each fi ∈ Sj by solving (8);
12 xi(Δj) = 0 for each fi /∈ Sj ;
13 S0 := Sj ;
14 end

satisfy in total three flow deadlines instead of two deadlines
satisfied by LPA.

To overcome this drawback we propose iterative Algorithm
1 that at each time tj maintains a set of flows fi with positive
remaining size, with di > tj and whose deadlines it is still
possible to satisfy. To formalize the algorithm, some additional
notations must be introduced. First, we will denote by S the
whole set of n flows. Next, let ci denote the bottleneck link
capacity of flow fi defined as the minimum capacity over all
links belonging to the routing path of this flow:

ci := min
e∈fi

c(e).

We suppose that the lifespan [ri, di] of flow fi is a union of
ki ≥ 1 intervals:

[ri, di] = Δl ∪Δl+1 ∪ · · · ∪ Δ̄l+ki−1,

here Δ̄l+ki−1 = [tl+ki−1, tl+ki
], tl = ri and tl+ki

= di.
Further, by gji we denote the remaining size of flow fi at time
tj defined as

gji :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

si, if j ≤ l

si −
j−1∑
p=l

xi(Δp) · |Δp|, if l < j < l + ki

si −
l+ki−1∑
p=l

xi(Δp) · |Δp|, if j ≥ l + ki.

(6)

where the sums in the second and third cases (j > l)
correspond to the amount of traffic that has been sent for this
flow up to the time tj . Then, it is still possible to satisfy the
deadline of flow fi at time tj , j < l + ki, if and only if

gji ≤ ci ·
l+ki−1∑

p=max(j,l)

|Δp|. (7)

Algorithm 1 at each time tj selects flows fi with di > tj ,

with positive remaining size gji > 0 and whose deadlines can
still be satisfied (lines 6-8). Only for such flows linear program
(8) is solved, and the flow rate assignment on the interval

2016 IEEE 24th International Conference on Network Protocols (ICNP)

6

Δj is defined by its optimal solution (lines 11-12). Notice
that although a solution to optimization (8) contains rate
assignments for all intervals Δp where j ≤ p ≤ J , Algorithm
1 at step j uses the part of this solution corresponding to the
nearest interval Δj . Rate assignment for intervals Δp, p > j
is determined at the further iterations of the algorithm.

max

nj∑
i=1

∑
Δp∈fi,
p≥j

xi(Δp) · |Δp|
gji

, (8a)

∀e ∈ E, ∀Δp, p ≥ j :
∑

i: e∈fi

xi(Δp) ≤ c(e), (8b)

∀i :
∑

Δp∈fi,
p≥j

xi(Δp) · |Δp| ≤ gji , (8c)

∀i, ∀Δp ∈ fi, p ≥ j : xi(Δp) ≥ 0, (8d)

∀i, ∀Δp /∈ fi, p ≥ j : xi(Δp) = 0. (8e)

The main difference between linear program (8) and LPA
(5) is that remaining flow size gji is used in optimization (8)
instead of the total flow size si.

B. Online Setup: OLPA

We now consider the online environment when it is assumed
that no information about a flow fi is available prior to
its arrival time ri. Instead, all details about a flow become
available at the flow’s arrival time ri.

Algorithm 2 for online environment (Online LPA or OLPA)
maintains a set of flows S whose deadlines it is still possible
to satisfy, and invokes Algorithm 1 every time a new flow (or
several flows) arrive. Therefore, between two subsequent flow
arrival times tk and tk+1 the flow rate assignment is obtained
by applying Algorithm 1 to the flows with arrival time less
or equal to tk. Then, when a set of new flows F (|F | ≥ 1)
arrives at time tk+1, it is added to the flow set S (line 11),
and sizes of all flows are updated (line 6). Here gi(t) denotes
the remaining size of a flow fi at time t, i.e.,

gi(t) = si −
t∫

t∗

xi(τ)dτ. (9)

Further, from the set S , flows whose deadlines cannot be
satisfied anymore, flows with di ≤ t, or of zero remaining
size are removed from this set (lines 7 - 9). It is not possible
to satisfy the deadline of a flow fi at time t, if

gi(t) > ci · (di − t). (10)

After that, a set of subintervals Δj dividing interval
[tk+1,max

fi∈S
di] is obtained, and Algorithm 1 is invoked for the

flow set S and intervals Δj .
To demonstrate the operation of Algorithm 2, we apply it

to the example shown in Fig. 5. At time t = 0 a set of flows
F = {f1, f2, f3} arrives and it is added to the empty set S:
S = {f1, f2, f3}, n = 3. At this step remaining size of each

Algorithm 2: OLPA: LPA for online environment

1 S := ∅;
2 t∗ := 0;
3 while 1 > 0 do
4 if set of flows F arrives at time t then
5 for each flow fi ∈ S do
6 si := gi(t) defined by (9);
7 if di ≤ t or (10) holds or si = 0 then
8 S := S \ fi;
9 end

10 end
11 S := S ∪ F ;
12 n := |S|;
13 obtain intervals Δj (j = 1, . . . , Jt) for S;
14 invoke Algorithm 1 for S , Δj ;
15 use rate assignment obtained by Algorithm 1;
16 t∗ := t;
17 end
18 end

flow from S is equal to its initial size. The horizon T of the
problem at time t = 0 is equal to max

fi∈S
di, i.e., T = 6. Time

interval [0, T] is divided into two subintervals Δ1 = [0, 1) and
Δ2 = [1, 6]. For these subintervals Δj , j = 1, 2 and flow set
S , Algorithm 1 is invoked, and optimization problem (8) is
solved for each subinterval Δj . The output of Algorithm 1 at
time t = 0 is the following rate assignment: on the interval
Δ1, flow f3 is processed, and then processing of flows f2,
f3 is performed on the interval Δ2. This rate assignment is
implemented on Δ1 = [0, 1), i.e., the deadline of flow f3 is
satisfied by t = 1, but then a new flow f4 arrives at this time.
Therefore, at time t = 1 flow f3 is removed from the set S ,
because d3 = t = 1 ≤ 1 (lines 7 - 9 of Algorithm 2), and set S
consists of flows f1, f2 and f4 with n = 3. Then, interval [1, 6]
is divided into two intervals Δ1 = [1, 2) and Δ2 = [2, 6], and
Algorithm 1 is applied to the flow set S and these intervals.
Rate assignment obtained by Algorithm 1 at time t = 1 will
satisfy the deadline of flow f4 on the interval [1, 2). Further, at
time t = 2, when flow f5 arrives, flows f1 and f2 are removed
from S , since for each of these two flows condition (10) is
satisfied: g1(t = 2) = g2(t = 2) = 5, c1 = c2 = 1, and
(d1 − t) = (d2 − t) = 4 for t = 2. In addition, flow f4 is also
removed from the set S since d4 = t = 2. Thus, at time t = 2
the flow set S contains only one flow f5, and its deadline will
be satisfied by time t = 6.

V. SIMULATIONS

To evaluate and compare the performance of our algorithms
we implemented two types of numerical simulations: flow-
level and packet-level. Flow-level simulations do not take into
account some features of the real network flows, but allow
us to estimate theoretical performance of different rate con-
trol mechanisms. On the other hand, packet-level simulations
demonstrate how various rate control approaches behave in a
more realistic environment.

2016 IEEE 24th International Conference on Network Protocols (ICNP)

7

LPA OLPA ILPA best-effort solution to MILP

4 7 10 13 16

0.1

0.125

0.15

0.175

0.2

Flow Size Parameter x

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

(a) q = 1, λ ∈ (0, 2).

4 7 10 13 16

0.075

0.1

0.125

Flow Size Parameter x

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

(b) q = 1, λ ∈ (0, 4).

4 7 10 13 16
0.125

0.15

0.175

0.2

0.225

Flow Size Parameter x

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

(c) q = 2, λ ∈ (0, 2).

4 7 10 13 16

0.1

0.125

0.15

Flow Size Parameter x

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

(d) q = 2, λ ∈ (0, 4).

Fig. 6: Flow-level simulation results. The value of the flow size parameter x determines interval [0, x] from which the flow
sizes are sampled.

Fig. 7: Network topology used for flow-level simulations.

A. Flow-level Simulations

Results of the flow-level simulations were obtained for a tree
network topology shown in Fig. 7, where source-destination
pairs were formed by the green (bottom level) switches
only. Performance of the algorithms was compared with the
best-effort objective value of optimization (4) obtained using
COIN-OR [17] branch and cut (CBC) finding the best feasible
solution to the mixed integer linear program. The timeout of
the CBC solver was set to 10 minutes due to the computational
power limitation.

In the experiments the time line was divided into unit length
intervals, and it was assumed for simplicity that flows can
arrive and depart only at the beginning of each interval. For
each source-destination pair, the flows arrived according to a
Poisson distribution with a specific for each pair rate. Further,
the flow sizes were distributed according to the exponential
distribution with a specific for each source-destination pair
parameter, and the deadline of a flow was proportional to its
size such that the coefficient of proportionality was the same
for all flows. Capacity of each link was equal to 2. All flow
arrival rate and size parameters were generated randomly ac-
cording to a uniform distribution. In particular, arrival rate was

sampled either from interval (0, 2) or from (0, 4). Flow sizes
were sampled from the interval [0, x], where x was varying
from 4 to 16 with a step of 3 in each experiment. Deadline
of each flow was defined as follows: let τ be the minimum
possible time in which a flow can be completely transmitted,
i.e., under the assumption that all link bandwidth is available.
Then, deadline d of this flow satisfies (d−r) = qτ . Parameter
q, therefore, regulates the tightness of the deadlines: q = 1,
for example, implies that a flow’s deadline can be satisfied
only if maximum available link bandwidth (determined by the
capacity of the bottleneck link) is provided over the whole
lifespan of this flow.

Fig. 6 illustrates the results of the flow-level simulations,
in which 100 random cases were simulated for each x and
the medians of the fractions of satisfied deadlines are plotted.
As can be observed, Iterative LPA (ILPA) generally slightly
outperforms LPA and OLPA. Additionally, ILPA is generally
within 10% of the 10-minute timeout best-effort performance,
which is better than LPA (15%) and OLPA (20%).

B. Packet-level Simulations
Results of flow-level simulations demonstrate that the pro-

posed algorithms achieve a high level of performance in an
idealistic environment, i.e., when the network controller has
freedom to adjust the flow rates arbitrarily without deployment
delays and the packet-level granularity is not taken into
account. To evaluate how well our rate control algorithms
behave under more realistic scenarios, we implemented LPA,
ILPA, OLPA, pFabric [1], and D3 [3] on ns-3.25 with COIN-
OR [17] linear programming (CLP) as the LP solver. For

2016 IEEE 24th International Conference on Network Protocols (ICNP)

8

Fig. 8: The multi-tier tree topology used for packet-level
simulations.

pFabric, we used the remaining time to the deadline quantized
in microseconds to prioritize the packets. We allowed D3 to
quench the expired flows.

1) Simulation Setup: Extensive packet-level simulations
were implemented under two different scenarios: the request
burst scenario and the stochastic demand scenario. We con-
ducted simulations for a multi-tier tree data center network
with the topology shown in Fig. 8. The network consisted
of 12 hosts, 4 top-of-rack (ToR) switches and a root switch
as in [3]. Each packet in our simulations had a fixed size of
2500 bytes. Taking into account the protocol overheads, the
capacities of the links were set to 10.2 Gbps bidirectionally
with propagation delay 1 microsecond (μs) to provide 10 Gbps
capacity for the packet payloads. We also set all transmit and
receive buffer sizes to 125 KB. In each simulation, flows
utilized the shortest paths to send data to their destinations.
As assumed in the formulation, each flow chose only one
path to send its traffic if multiple choices were available. A
flow was deemed satisfied if it was completely transmitted
by its deadline plus the connection establishment time (1.5
RTT for TCP connection). We kept track of the fraction of the
flows that met their deadlines, which is also named application
throughput in [3] and [1].

2) Request Burst Scenario: We first focus on the request
burst scenario that takes place when a number of flows arrive
at the network at the same time. The concurrent flows, which
have the same arrival time, were generated to be sent between
randomly picked source-destination pairs of the hosts. We
varied the number of concurrent flows to create different
network workloads. The size of each flow was uniformly
distributed over [5, 100] KB, and the deadline of the flow was
set according to exponential random variables with mean 2, 3,
and 4 milliseconds (ms). For each number of concurrent flows,
we conducted 10 experiments, and the fraction of satisfied
deadlines was defined based on the aggregated number of
the flows generated in all 10 experiments. Simulation results
shown in Fig. 9 demonstrate that LPA, ILPA, and OLPA all
outperform pFabric and D3 as the number of concurrent flows
increases.

Our methods allocate bandwidth before packets arrive at the
network. As such, we can utilize available bandwidth more
efficiently than pFabric and D3. pFabric does not limit the
sending rate of the flows, and congestion can happen when
bandwidth is not enough to support all the flows. D3 needs
the packets to probe the routing path, which is generally not
as efficient as our approach. pFabric performs better than D3

in this scenario since the D3 allocates the bandwidth in a
first-come-first-serve manner. The flows that are closer to their
destination can benefit from this bandwidth allocation strategy
no matter when their deadlines are. However, under an online

50 100 150 200
0.8

0.85

0.9

0.95

1

Number of Concurrent flows

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

LPA OLPA ILPA

pFabric D3

(a) The mean of the generated deadline is 2 ms.

50 100 150 200
0.8

0.85

0.9

0.95

1

Number of Concurrent flows

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

(b) The mean of the generated deadline is 3 ms.

50 100 150 200
0.8

0.85

0.9

0.95

1

Number of Concurrent flows

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

(c) The mean of the generated deadline is 4 ms.

Fig. 9: The fraction of satisfied deadlines under request burst
scenario.

scenario, flows no longer have the same arrival time and D3

can perform better than pFabric because of the bandwidth
reservation for the early coming flows. We can observe the
phenomenon in the next simulation.

3) Stochastic Demand Scenario: Unlike request bursts,
stochastic demands arrive at the network intermittently. We
let each source-destination pair of hosts send flows to the
network according to a Poisson process with the average inter-
arrival time uniformly distributed over (0, 50] milliseconds.
The flow sizes were uniformly distributed over [0, x] KB and
the deadlines were set according to the tightness parameter q
similarly to the flow-level case. In particular, given q, we set
the deadline of a flow as the arrival time plus q times of the
minimum time needed to complete the flow when the flow
could acquire full capacity of all the links on its path.

We varied the flow size parameter x to adjust the load of
the system. Under different loads, the fraction of the satisfied
deadlines converged to a limit as the system approached the
steady state. 100 traffic instances were generated randomly
per x and we plotted the median of the corresponding limits
along with the flow size parameters in Fig. 10, in which the
online solutions OLPA, pFabric, and D3 were simulated and
compared. We also fixed x = 50 (KB) and generated 300
random traffic instances to obtain the statistical results shown
in Fig. 11.

2016 IEEE 24th International Conference on Network Protocols (ICNP)

9

100 200 300 400
0

0.2
0.4
0.6
0.8
1

Flow Size Parameter x (KB)

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

OLPA pFabric D3

(a) q = 1.

100 200 300 400
0

0.2
0.4
0.6
0.8
1

Flow Size Parameter x (KB)

F
ra

ct
io

n
o
f

S
at

is
fi

ed
D

ea
d
li

n
es

(b) q = 2.

Fig. 10: The median of the fraction of satisfied deadlines
under stochastic demand scenario with the sizes of the flows
uniformly distributed between 0 and x KB.

0 0.2 0.4 0.6 0.8 1

D3
pFabric

OLPA

Fraction of Satisfied Deadlines

(a) q = 1.

0 0.2 0.4 0.6 0.8 1

D3
pFabric

OLPA

Fraction of Satisfied Deadlines

(b) q = 2.

Fig. 11: The 1st − 5th − 50th − 95th − 99th percentiles of the
fraction of satisfied deadlines.

Not surprisingly, larger tightness parameter q enables the al-
gorithms to achieve more deadlines. In Fig. 10, OLPA satisfies
a large fraction of deadlines and it outperforms pFabric and
D3. OLPA can maintain a good performance while the load is
getting heavier (with larger x). Statistically, OLPA is also more
promising in achieving high deadline satisfaction fraction as
shown in the box plots in Fig. 11. As discussed in the previous
part, D3 can perform better than pFabric statistically when the
deadlines are tight (Fig. 11a).

VI. CONCLUSION

In this article we investigate the problem of scheduling
network flows with an objective to maximize the number of
satisfied flow deadlines. Unlike previous heuristic-based at-
tempts, we approach the problem directly from an optimization
perspective and propose relaxation-based benchmark methods
that can be used to evaluate the performance of other solutions
to this problem. We show that the problem is NP-hard, and

moreover, it cannot be approximated within a constant factor
in polynomial time (unless P=NP). Nevertheless, with proper
optimization formulation, we develop offline and online algo-
rithms that can achieve excellent performance as demonstrated
by both flow-level and packet-level simulations.

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion (NSF) under Grant No. CPS-1544761, and by the Huawei
HIRP program.

REFERENCES

[1] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. “pfabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Computer Communication Review, 43(4), 435-446,
2013.

[2] N. Dukkipati, and N. McKeown. “Why flow-completion time is the right
metric for congestion control,” ACM SIGCOMM Computer Communi-
cation Review, 36(1), pp.59-62, 2006.

[3] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. “Better never
than late: Meeting deadlines in datacenter networks,” in ACM SIG-
COMM Computer Communication Review, Vol. 41, No. 4, pp. 50-61,
2011.

[4] C.Y. Hong, M. Caesar, and P. Godfrey. “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM Computer Communication
Review 42, no. 4 (2012): 127-138, 2012.

[5] P. Brucker. “Scheduling algorithms.” Vol. 3. Berlin: Springer, 2007.
[6] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,

and B. Khan. “Minimizing flow completion times in data centers,” in
INFOCOM, 2013 Proceedings IEEE (pp. 2157-2165). IEEE, 2013.

[7] H. Xu, and B. Li. “RepFlow: Minimizing flow completion times with
replicated flows in data centers,” in INFOCOM, 2014 Proceedings IEEE
(pp. 1581-1589). IEEE, 2014.

[8] N. Dukkipati, N. McKeown, and A. G. Fraser. “RCP-AC: Conges-
tion control to make flows complete quickly in any environment,” in
INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings (pp. 1-5). IEEE, 2006.

[9] N. Dukkipati. “Rate Control Protocol (RCP): Congestion control to make
flows complete quickly.” (Doctoral dissertation, Stanford University),
2007.

[10] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. “Data center tcp (dctcp),” ACM SIG-
COMM computer communication review 41, no. 4 (2011): 63-74, 2011.

[11] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou. “A roadmap for
traffic engineering in SDN-OpenFlow networks,” Computer Networks,
71, 1-30, 2014.

[12] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. “DeTail: reducing
the flow completion time tail in datacenter networks,” ACM SIGCOMM
Computer Communication Review, 42(4), 139-150, 2012.

[13] V. Raghunathan, V. Borkar, M. Cao, and P. R. Kumar. “Index policies
for real-time multicast scheduling for wireless broadcast systems,” in
INFOCOM 2008. The 27th Conference on Computer Communications.
IEEE, 2008.

[14] S. Chen, L. Tong, and T. He. “Optimal deadline scheduling with
commitment,” in Communication, Control, and Computing (Allerton),
2011 49th Annual Allerton Conference on (pp. 111-118). IEEE, 2011.

[15] B. Lucier, I. Menache, J. S. Naor, and J. Yaniv. “Efficient online
scheduling for deadline-sensitive jobs,” in Proceedings of the twenty-fifth
annual ACM symposium on Parallelism in algorithms and architectures
(pp. 305-314). ACM, 2013.

[16] B. McCarl, and T. Spreen. “Applied mathematical programming using
algebraic systems,” 1997.

[17] COIN-OR projects. [Online]. Available: http://www.coin-or.org/projects/

2016 IEEE 24th International Conference on Network Protocols (ICNP)

10

