
AUTOMATED MACHINE LEARNING UNDER
RESOURCE CONSTRAINTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Chengrun Yang

May 2022

© 2022 Chengrun Yang

ALL RIGHTS RESERVED

AUTOMATED MACHINE LEARNING UNDER RESOURCE CONSTRAINTS

Chengrun Yang, Ph.D.

Cornell University 2022

Automated machine learning (AutoML) seeks to reduce the human and ma-

chine costs of finding machine learning models and hyperparameters with good

predictive performance. AutoML is easy with unlimited resources: an ex-

haustive search across all possible solutions finds the best performing model.

This dissertation studies resource-constrained AutoML, in which only limited

resources (such as compute or memory) are available for model search. We

present a wide variety of strategies for choosing a model under resource con-

straints, including meta-learning across datasets with low rank matrix and ten-

sor decomposition and experiment design, and efficient neural architecture

search (NAS) using weight sharing, reinforcement learning, and Monte Carlo

sampling. We propose several AutoML frameworks that realize these ideas,

and describe implementations and experimental results.

BIOGRAPHICAL SKETCH

Chengrun Yang was born in Zhengzhou, Henan, China. He attended

Zhengzhou Foreign Language Middle School and Zhengzhou No.1 High

School, where he developed a strong interest in science and engineering sub-

jects. He then attended Fudan University in Shanghai, China, where he first

majored in Mechanical Science and Engineering and then switched to Physics.

He was fascinated by how different fields in physics connect and exhibit the

same set of principles in different ways. He then spent the spring semester of

his junior year at University of California, Berkeley, where he also got a taste of

the fields of electrical engineering and computer science. In his senior year at

Fudan, he worked on his undergraduate thesis on circuit partitioning under the

supervision of Prof. Fan Yang in the School of Microelectronics.

Chengrun joined the Electrical and Computer Engineering PhD program

at Cornell University in Ithaca, NY, USA after his undergraduate studies. He

was first intimidated by the remote location of Ithaca, but then quickly fell in

love with all the gorgeous waterfalls, fields, lakes, and snow that nature of-

fers, especially when working from home during the COVID-19 pandemic. He

was fortunate to have Prof. Madeleine Udell as his dissertation chair, and have

Prof. Thorsten Joachims and Prof. Kilian Q. Weinberger on the personal com-

mittee. He developed a broad research interest in optimization methods for

machine learning, and worked on automated machine learning (AutoML) un-

der resource constraints towards his PhD thesis. He was grateful for the pro-

fessional and life skills he developed at Cornell, and the company of everyone

around who offered help and shared sorrow and joy along the way.

iii

To my family and my friends.

iv

ACKNOWLEDGEMENTS

It is impossible for me to complete my challenging but fruitful PhD journey

without the firm support of many people.

Advisor: Madeleine Udell. Since my first day of working with Madeleine in

2017, I have been constantly amazed by her ability to visualize complicated

concepts in simple pictures, her skill in drawing connections among objects that

seem barely related, her enthusiasm exhibited in teaching and discussing cool

ideas, and her attitude of making every tiny part of a work reasonable. Her

pursuit of working on projects that are not only methodologically beautiful but

also practically useful has greatly influenced my research taste. She spared no

effort to ramp me up, and offered me ample guidance in work and life. She is

an excellent researcher, collaborator, and educator.

Other dissertation committee members (alphabetical order): Thorsten

Joachims, Kilian Q. Weinberger. Thorsten and Kilian are pioneers and experts in

their respective fields that can see through fogs. I have attended classes offered

by both of them. From their words and actions, I have the opportunity to learn

how they find a way forward in a field that is under-explored or with intimidat-

ing obstacles. They strive to make methodological contributions with broader

impacts, and are more than glad to teach students how to do that. They give

me sincere and down-to-earth advice when I am faced with difficulties, and ap-

plaud me for my achievements. The interactions I have with them are valuable

takeaways of my PhD studies.

Other collaborators (alphabetical order): Yuji Akimoto, Gabriel Bender, Jerry

Chee, Chris De Sa, Lijun Ding, Jicong Fan, Yingjie (Tom) Fei, Da Huang, Dae

Won Kim, Pieter-Jan Kindermans, Quoc Le, Hanxiao Liu, Yifeng Lu, Ziyang Wu,

v

Qiantong Xu. They are brilliant people that together made my work possible.

The discussions and debates I had with them were essential to improving the

quality of my work. With them, I was not lonely.

Other Udell group members (alphabetical order): Zachary Frangella, Yang

Guo, Zuhao (Jason) Hua, Huichen Li, Xiaojie Mao, Nandini Nayar, Mike Van

Ness, Richard Lanas Phillips, Yiming Sun, Miaolan Xie, Haoyue Yang, Yuqian

Zhang, Shipu Zhao, Yuxuan Zhao, Song (Sam) Zhou, Zhengze Zhou. They are

brilliant peers in group meetings and offline discussions.

Other Cornell faculty members (alphabetical order): Jayadev Acharya,

Yudong Chen, A. Kevin Tang. Their valuable advice on research philosophy

made my PhD journey less bumpy.

Other colleagues and friends (alphabetical order): Being an ECE1 PhD student

with an ORIE2 advisor and two CS3 minor committee members, I am fortunate

to have the opportunity to work and have fun with a diverse cohort of smart

and energetic people: Yu Gan, Emre Gonultas, Kursat Rasim Mestav, Buddhika

Nettasinghe, Ziteng Sun, Huanyu Zhang in ECE; Raul Astudillo, Yilun Chen,

Yichun Hu, Haici Tan, Matthew Zalesak, Xiangyu Zhang in ORIE; Junwen Bai,

Di Chen, Xilun Chen, Junteng Jia, Yucheng Lu, Tianze Shi, Lequn (Luke) Wang,

Zikai (Alex) Wen in CS; Yun Liu, Dongping Qi, Lijie Tu, Wangwei Wu, Yu Wu,

Yao Yang, Tao Zhang in other fields, among many other people. I learned a

lot from them in offices and classrooms, on hiking trails, in gyms, and around

boiling hot pots on snow days.

Internship mentors and managers: Da Huang, Gabriel Bender, Hanxiao Liu,

1Electrical and Computer Engineering
2Operations Research and Information Engineering
3Computer Science

vi

Pieter-Jan Kindermans, Yifeng Lu, Quoc Le at Google; Parth Gupta and Vamsi

Salaka at Amazon; Yang Liu and Puyudi Yang at Facebook. They collectively

hosted me in three wonderful summers, offered me a taste of the tech industry,

helped me polish my engineering skills in multiple aspects, and gave me sin-

cere advice on career development. They inspired and drove me to think about

which kind of works are useful.

Parents: Aimin Wang, Hongwei Yang. “You raised me up, so I can stand on

mountains.” The values and views you teach me in words and actions powered

me to move forward, to explore the beautiful world during and beyond my PhD

studies.

Girlfriend: Lucy Wu. You are the special one that accompanied my struggles

and shared my joys. You are a blessing to me, and I am fortunate to meet you in

the beautiful Ithaca at a beautiful age.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Tables . xi
List of Figures . xii

1 Introduction 1
1.1 Previous work . 4
1.2 Notation and terminology . 6

2 Oboe: Collaborative Filtering for Fast Machine Learning Model Selec-
tion 11
2.1 Introduction . 11
2.2 Methodology . 14

2.2.1 Model performance prediction 14
2.2.2 Runtime prediction . 16
2.2.3 Time-constrained information gathering 17

2.3 The Oboe system . 18
2.3.1 Offline stage . 19
2.3.2 Online stage . 19

2.4 Python implementation . 21
2.5 Experiments and discussions . 23

2.5.1 Performance comparison across AutoML systems 24
2.5.2 Why does Oboe work? . 28

3 TensorOboe: Collaborative Filtering for Fast Machine Learning
Pipeline Selection 32
3.1 Introduction . 33
3.2 Methodology . 36

3.2.1 Overview . 36
3.2.2 Tensor collection for meta-training 37
3.2.3 Tensor decomposition and rank 38
3.2.4 Tensor completion . 40
3.2.5 Fast and accurate resource-constrained active learning . . 41

3.3 Python implementation . 47
3.4 Experiments and discussions . 47

3.4.1 Comparison with time-Constrained AutoML pipeline
build systems . 48

3.4.2 Tensor completion vs matrix completion for error tensor
completion . 50

3.4.3 Cold-start performance by greedy experiment design . . . 51

viii

3.4.4 Pipeline runtime prediction performance 53
3.4.5 Learning the hyperparameter landscapes 53

3.5 Overfitting analysis . 56

4 PEPPP: Collaborative Filtering to Select Network Precision 58
4.1 Introduction . 58
4.2 Methodology . 63

4.2.1 Meta-training . 64
4.2.2 Meta-test . 66

4.3 Python implementation . 69
4.4 Experiments and discussions . 69

4.4.1 Meta-training . 71
4.4.2 Meta-leave-one-out cross-validation (meta-LOOCV) 73
4.4.3 Tuning optimization hyperparameters 76
4.4.4 Meta-learning across architectures 76

4.5 Conclusion . 77

5 TabNAS: Resource-Constrained Neural Architecture Search on Tabu-
lar Datasets 78
5.1 Introduction . 78
5.2 More notations and terminologies 83
5.3 Methodology . 85

5.3.1 Weight sharing with layer warmup 86
5.3.2 One-shot training and REINFORCE 88
5.3.3 Rejection-based reward with MC sampling 89

5.4 Experiments and discussions . 93
5.4.1 When do previous RL rewards fail? 94
5.4.2 NAS with the rejection-based reward 98
5.4.3 Ablation studies . 98

A Appendix for Oboe 101
A.1 Machine learning models . 101
A.2 Dataset meta-features . 101
A.3 Meta-feature calculation time . 101
A.4 Comparison of experiment design with different constraints . . . 104

B Appendix for TensorOboe 105
B.1 Reproducibility for meta-training 105

B.1.1 Meta-training OpenML datasets 105
B.1.2 Meta-test UCI datasets . 106
B.1.3 Pipeline search space . 106

B.2 Experiment design for weighted least squares 106
B.3 Zoomed-in hyperparameter landscapes 109

ix

C Appendix for PEPPP 111
C.1 Datasets and low-precision formats 111
C.2 The SOFTIMPUTE algorithm . 111
C.3 Algorithms for experiment design 112
C.4 Information to hardware design . 114
C.5 More details on experiments . 114

C.5.1 Introduction to RANDOM-MF, QR-MF and BO 116
C.5.2 Additional meta-training results: non-uniform sampling . 117
C.5.3 Additional meta-LOOCV results 118
C.5.4 Tuning optimization hyperparameters 119
C.5.5 Learning across architectures 122

D Appendix for TabNAS 128
D.1 Algorithm pseudocode . 128
D.2 Details of experiment setup . 130

D.2.1 Toy example . 130
D.2.2 Real datasets . 131
D.2.3 Difficulty in using the MnasNet reward 136

D.3 More failure cases of the Abs Reward 137
D.4 Comparison with weight-sharing Bayesian optimization and

evolutionary search . 141
D.5 Difficulty of hyperparameter tuning 142

D.5.1 Resource hyperparameter β 143
D.5.2 RL learning rate η . 144
D.5.3 Number of MC samples N 144

D.6 More on ablation with a non-differentiable P(V) (or P̂(V)) 145
D.7 Proofs . 146

D.7.1 P̂(V) is an unbiased and consistent estimate of P(V) 146
D.7.2 ∇ log[P(y)/P̂(V)] is a consistent estimate of ∇ log[P(y | y ∈ V)]148

Bibliography 150

x

LIST OF TABLES

1.1 Objectives and constraints for resource-constrained AutoML . . 4

2.1 Runtime prediction accuracy on OpenML datasets (Oboe) 30

3.1 Runtime prediction accuracy on OpenML datasets (TensorOboe) 55

4.1 Meta-LOOCV experiment settings 74

A.1 Base Algorithm and Hyperparameter Settings 102
A.2 Dataset Meta-features . 103

B.1 Pipeline search space . 107

C.1 Datasets . 125
C.2 Format A (for activations and weights) 127
C.3 Format B (for optimizer) . 127
C.4 Datasets and learning rates in Section 4.4.3 127

D.1 Dataset details . 131
D.2 Weight training hyperparameter details 132
D.3 Some Pareto-optimal architectures in Figure D.2. All architec-

tures shown here and almost all other Pareto-optimal architec-
tures have the bottleneck structure. 135

D.4 Comparison of TabNAS, Bayesian optimization (BO) and evolu-
tionary search (ES) with weight sharing. TabNAS finds the ar-
chitecture with the smallest loss. 142

xi

LIST OF FIGURES

1.1 Learning vs meta-learning. 7
1.2 An 8-bit floating point number representing (−1)sign · 2exponent−7 ·

1.b3b2b1b0. 9
1.3 Example error and memory matrices for some datasets and low-

precision configurations. Dataset 1: CIFAR-10, 2: CIFAR-100
(fruit and vegetables), 3: ImageNet-stick [33]. Configuration For-
mat A (exponent bits, mantissa bits), Format B (exponent bits,
mantissa bits). a: (3, 1), (6, 7); b: (3, 4), (7, 7); c: (4, 3), (8, 7); d: (5,
3), (6, 7). 10

2.1 Illustration of model performance prediction via the error matrix
E (yellow blocks only). Perform PCA on the error matrix (of-
fline) to compute dataset (X) and model (Y) latent meta-features
(orange blocks). Given a new dataset (row with white and blue
blocks), pick a subset of models to observe (blue blocks). Use Y
together with the observed models to impute the performance of
the unobserved models on the new dataset (white blocks). 15

2.2 Singular value decay of an error matrix. The entries are calcu-
lated by 5-fold cross validation of machine models (listed in Ap-
pendix A.1, Table A.1) on midsize OpenML datasets. 16

2.3 Diagram of data processing flow in the Oboe system. 18
2.4 Comparison of sampling schemes (QR or ED) in Oboe and PMF.

”QR” denotes QR decomposition with column pivoting; ”ED
(number)” denotes experiment design with number of observed
entries constrained. The left plot shows the regret of each Au-
toML method as a function of number of entries; the right shows
the relative rank of each AutoML method in the regret plot (1 is
best and 5 is worst). 25

2.5 Comparison of AutoML systems in a time-constrained set-
ting, including Oboe with experiment design (red), auto-sklearn
(blue), and Oboe with time-constrained random initializations
(green). OpenML and UCI denote midsize OpenML and
UCI datasets. ”meta-LOOCV” denotes leave-one-out cross-
validation across datasets. In 2.5(a) and 2.5(b), solid lines rep-
resent medians; shaded areas with corresponding colors repre-
sent the regions between 75th and 25th percentiles. Until the
first time the system can produce a model, we classify every data
point with the most common class label. Figures 2.5(c) and 2.5(d)
show system rankings (1 is best and 3 is worst). 27

2.6 Runtime prediction performance on different machine learning
algorithms, on midsize OpenML datasets. 29

2.7 comparison of cold-start methods 31

xii

2.8 Histogram of Oboe ensemble size. The ensembles were built in
executions on midsize OpenML datasets in Section 2.5.1. 31

3.1 An example pipeline. 33
3.2 A pipeline ensemble with 3 base learners. 37
3.3 Tucker decomposition on an order-3 tensor. 39
3.4 Relative error heatmaps when varying ranks in dataset and esti-

mator dimensions. Here, training entries are the ones with run-
time less than 90 seconds; the test entries are the ones with run-
time between 90 and 120 seconds. 40

3.5 Which estimators work best? Distribution of estimator types in
best pipelines on meta-training datasets. 49

3.6 Rankings of AutoML systems for pipeline search in a time-
constrained setting, vs the baseline pipeline. We meta-train on
OpenML classification datasets and meta-test on UCI classifica-
tion datasets [39]. Until the first time the systems can produce
a pipeline, we classify every data point with the most common
class label. Lower ranks are better. 49

3.7 CDF of pipeline runtime on meta-training datasets. 50
3.8 Tensor completion vs matrix completion for inferring pipeline

performance. 52
3.9 Comparison of time-constrained experiment design methods

across meta-training datasets. The y-axes in 3.9(a) and 3.9(c) are
regrets: the difference between minimum pipeline error found
by each method and the true minimum. The x-axes are runtime
limit ratios: ratios of the runtime limit to the total runtime of all
pipelines on each dataset. 54

3.10 Hyperparameter landscape prediction examples. 56

4.1 Test error vs memory for ResNet-18 across 99 low-precision
floating point configurations. Figure (a) shows the tradeoff on
CIFAR-10. (Non-dominated points are blue circles.) Figure (b)
shows that the best precision to use varies depending on the
memory budget, on 87 image datasets. See Section 4.4 for ex-
perimental details. 59

xiii

4.2 The PEPPP workflow. We begin with a collection of (meta-)
training datasets and low precision configurations. In the meta-
training phase, we sample dataset-configuration pairs to train,
and compute the misclassification error. We use matrix factor-
ization to compute a low dimensional embedding of every con-
figuration. In the meta-test phase, our goal is to pick the perfect
precision (within our memory budget) for the meta-test dataset.
We compute the memory required for each configuration, and
we select a subset of fast, informative configurations to evalu-
ate. By regressing the errors of these configurations on the con-
figuration embeddings, we find an embedding for the meta-test
dataset, which we use to predict the error of every other con-
figuration (including more expensive ones) and select the best
subject to our memory budget. 62

4.3 Memory usage under two training paradigms. Both train a
ResNet-18 on CIFAR-10 with batch size 32. 64

4.4 Kendall tau correlation of test error of all configurations between
all pairs of datasets, and singular value decay of corresponding
error matrix. Strong correlations allow PEPPP to succeed with a
few measurements. Details in Appendix C.1. 65

4.5 Meta-test on CIFAR-10. After meta-training on all other datasets
in Appendix C.1 Table C.1, we use ED-MF to choose six infor-
mative measurements (orange squares) with a 275MB memory
limit for each measurement on CIFAR-10. Then we estimate test
errors of other configurations by ED-MF, and restrict our atten-
tion to configurations that we estimate to be non-dominated (red
x’s). Note some of these are in fact dominated, since we plot true
(not estimated) test error! Finally we select the estimated non-
dominated configuration with highest allowable memory (blue
square). 68

4.6 Illustration of Pareto frontier metrics. (a) Convergence is the av-
erage distance from each estimated Pareto optimal point to its
closest true point: average(d1, d2, d3). (b) HyperDiff is the abso-
lute difference in area of feasible regions given by the true and
estimated Pareto optimal points: the shaded area between Pareto
frontiers. 70

xiv

4.7 Pareto frontier estimation in PEPPP meta-training, with uniform
sampling of configurations. The violins show the distribution of
the performance on individual datasets, and the error bars (blue)
show the range. The red error bars show the standard deviation
of the error on CIFAR-10 across 100 random samples of the error
matrix. Figure (a) shows the matrix completion error for each
dataset; Figure (b) and (c) show the performance of the Pareto
frontier estimates. Modest sampling ratios (around 0.1) already
yield good performance. 72

4.8 Error vs memory on CIFAR-10 with true and estimated Pareto
frontiers from uniform sampling in PEPPP meta-training. A 20%
uniform sample of entries yields a better estimate of the Pareto
frontier (convergence 0.03 and HyperDiff 0.02) compared to a 5%
sample (convergence 0.09 and HyperDiff 0.16). 73

4.9 Pareto frontier estimates in meta-LOOCV Setting I and IV (with a
20% meta-training sampling ratio and an 816MB meta-test mem-
ory cap). Each error bar is the standard error across datasets.
The x axis measures the memory usage relative to exhaustively
searching the permissible configurations. ED-MF consistently
picks the configurations that give the best PF estimates. 75

4.10 Relative performance with respect to ED-MF in meta-test Set-
ting IV when making 3 measurements (memory usage ∼10%) on
10 ImageNet partitions. ED-MF outperforms in most cases. . . . 76

xv

5.1 A toy example for tabular NAS in the 2-layer search space with
a 2-dimensional input and a limit of 25 parameters. The left half
shows the number of parameters and loss of each candidate ar-
chitecture in the search space. The infeasible architectures have
striped patch in the corresponding cells. The bottom left cell
squared in bold is the global optimal architecture with hidden
size 1 = 4 and hidden size 2 = 2. The right half shows the change
of sampling probabilities in weight-sharing NAS with different
RL rewards. Each cell represents an architecture; the sampling
probability value is shown both as a percentage in the cell, and
with the color intensity indicated by the right colorbar. The or-
ange bars on the top and right sides show the sampling prob-
ability distribution among size candidates for each layer. With
the Abs Reward, the sampling probability of each architecture
is the product of sampling probabilities of its layer sizes; with
the rejection-based reward, the sampling probability of an in-
feasible architecture is 0, and that of a feasible architecture gets
reweighted by the sum of probabilities of all feasible architec-
tures. At epoch 500, the cell squared in bold shows the archi-
tecture picked by the corresponding RL controller. RL with the
Abs Reward Q(x) + β|T (x)/T0 − 1| proposed in TuNAS [11] either
converges to a feasible but suboptimal architecture (β = −2, mid-
dle row) or violates the resource constraint (β = −1, top row).
Other latency-aware reward functions show similar failures. In
contrast, our new rejection-based controller converges to the op-
timal solution (bottom row). 81

5.2 Rejection-based reward distributionally outperforms random
search and resource-aware Abs Reward on the Criteo dataset
within a 3-layer search space. All error bars and shaded regions
are 95% confidence intervals. The x axis is the time relevant to
training a single architecture in the search space. Results of ran-
dom sampling comes from 100 independent runs on 50 archi-
tectures within the number of parameters range. The result of
each RL method comes from 5 independent runs. The skyline is
the performance of 3 independent retrains of the best architec-
ture that is found by 3 independent exhaustive searches. More
details in Appendix D.2.2. 82

xvi

5.3 Tradeoff between loss and number of parameters on Criteo
within a 3-layer search space. The search space and Pareto-
optimal architectures are shown in Appendix D.2.2. We use lo-
gistic loss as the loss metric. When training each architecture 5
times, the standard deviation (std) across different runs is 0.0002,
meaning that the architectures whose performance difference is
larger than 2× std are qualitatively different with high probabil-
ity. 85

5.4 Illustration of weight-sharing on two-layer FFNs for a binary
classification task. The edges denote weights, and arrows at the
end of lines denote activations. The circles denote hidden nodes,
and the two squares in the output layer denote the output logits.
The search space of the size of each hidden layer is {2, 3, 4}, thus
the SuperNet is a two-layer network with size 4-4. At this mo-
ment, the controller picks the child network 3-2 in the SuperNet
4-4, thus only the first 3 hidden nodes in the first hidden layer
and the first 2 hidden nodes in the second hidden layer, together
with the connected edges (in red), are enabled to compute the
output logits. 87

5.5 Example layer warmup and valid probabilities. Figure 5.5(a)
shows our schedule of layer warmup probabilities: linearly de-
cay from 1 to 0 in the first 25% epochs. Figure 5.5(b) shows an
example of the change of true and estimated valid probabili-
ties (P(V) and P̂(V)) in a successful search, with 8,000 architec-
tures in the search space and the number of Monte-Carlo sam-
ples N = 1024. Both probabilities are (nearly) constant during
warmup before RL starts, then start to increase when the RL
starts because of rejection sampling. 93

5.6 Failure case of the Abs Reward on Criteo in a search space of
3-layer FFNs. The change of sampling probabilities and compar-
ison of retrain performance between the 32-144-24 reference and
the 32-64-96 architecture found with the Q(x)+ β|T (x)/T0 − 1| Abs
Reward, the target for the reward was 41,153 parameters. Re-
peated runs of the same search find the same architecture. Fig-
ure 5.6(d) shows the change of validation losses across 5 retrains
of 32-64-96 (NAS-found) and 32-144-24 (reference). 94

xvii

5.7 SuperNet calibration on Criteo among 3-layer networks (with
search space in Appendix D.2), and the Layer 2 change of prob-
abilities in a search with the same number of epochs for only
SuperNet training. The y coordinates in Figure (a) are from a
SuperNet trained with the same hyperparameters as the search
in Figure 5.6, except that there are no RL updates in the first 60
epochs; the x coordinates are from stand-alone training of archi-
tectures with performance standard deviation 0.0003, with each
errorbar spanning a range of 0.0006. Figure (a) has a 0.96 Pearson
correlation coefficient. 96

5.8 On Volkert, the retrain performance of two Q(x) + β|T (x)/T0 −

1|-found architectures versus the 48-160-32-144 reference. Each
architecture is trained 5 times with the same setting. The plots
of layer-wise sampling probabilities like Figure 5.6(a) – 5.6(c) are
omitted for brevity. 97

5.9 Success case: on Criteo in a search space of 3-layer FFNs, Monte-
Carlo sampling with rejection eventually finds 32-144-24, the ref-
erence architecture, with RL learning rate 0.005 and number of
MC samples 3,072. Figure 5.9(d) shows the change of true and
estimated valid probabilities. 99

A.1 Meta-feature calculation time and corresponding dataset sizes of
the midsize OpenML datasets. The collection of meta-features is
the same as that used by auto-sklearn [42]. We can see some
calculation times are not negligible. 102

A.2 Comparison of different versions of ED with PMF. ”ED (time)”
denotes ED with runtime constraint, with time limit set to be
10% of the total runtime of all available models; ”ED (number)”
denotes ED with the number of entries constrained. 104

B.1 Standard deviation of prediction accuracy of each pipeline,
across meta-training datasets. 108

B.2 Comparison of time-constrained experiment design methods,
including the weighted-greedy method. 109

B.3 Zoomed-in hyperparameter landscapes in Figure 3.10. The y-
axes here do not start from 0. 110

C.1 Convexification vs greedy for ED. 114
C.2 Explained variance of the first several singular values in Fig-

ure 4.4(b). 115
C.3 Histograms of error and memory. The dashed lines are the re-

spective medians. 116
C.4 Histogram of datasets by the number of configurations that take

memories less than the overall median of 816MB. 116

xviii

C.5 Pareto frontier estimation performance in PEPPP meta-training
with non-uniform sampling of configurations. The violins and
scatters have the same meaning as Figure 4.7. The x axis mea-
sures the memory usage relative to exhaustive search. 117

C.6 Pareto frontier estimates in meta-LOOCV Setting II (full meta-
training error matrix, a 816MB memory cap), Setting III (uni-
formly sample 20% meta-training measurements, no meta-test
memory cap), Setting V (non-uniformly sample 20% meta-
training measurements, no meta-test memory cap), and Set-
ting VI (non-uniformly sample 20% meta-training measure-
ments, an 816MB meta-test memory cap). Each error bar is the
standard error across datasets. ED-MF is among the best in ev-
ery setting and under both metrics. 119

C.7 Errors of 99 configurations trained for different numbers of epochs.120
C.8 CIFAR-10 error-memory tradeoff. Figure (a) has learning rate

0.001 for all low-precision configurations. Figure (b) shows
the tradeoff with tuned learning rates: at each low-precision
configuration, the lowest test error achieved by learning rates
{0.01, 0.001, 0.0001} is selected. 120

C.9 Singular value decay of the LR-tuned error matrix. 121
C.10 The Pareto frontier estimation performance in meta-training,

with uniform sampling of configurations on the LR-tuned error
and memory matrices. Similar to Figure 4.7, the violins show the
distribution of the performance on individual datasets, and the
error bars (blue) show the range. The red error bars show the
standard deviation of the error on CIFAR-100 aquatic mammals
and learning rate 0.01, across 100 random samples of the error
matrix. Figure (a) shows the matrix completion error for each
dataset; Figure (b) and (c) show the performance of the Pareto
frontier estimates in convergence and HyperDiff. 122

C.11 The Pareto frontier estimation performance in meta-training,
with non-uniform sampling of configurations on the LR-tuned
error and memory matrices. The violins and scatters have the
same meaning as Figure C.5 in the main paper. 123

C.12 Pareto frontier estimates in meta-LOOCV settings on the LR-
tuned error and memory matrices. Each error bar is the standard
error across datasets. 123

C.13 Pareto frontier estimates in meta-LOOCV Setting I when learn-
ing across architectures: from ResNet-18 to either ResNet-34, or
to VGG variants. Each error bar is the standard error across
datasets. The x axis measures the memory usage relative to
exhaustively searching the permissible configurations. ED-MF
consistently picks the configurations that give the best PF esti-
mates. 124

xix

C.14 Benefit of meta-learning across architectures. Each error bar is
the standard error across architecture-dataset combinations (e.g.,
ResNet-18 + n02470899 is a combination). The x axis measures
the memory usage relative to exhaustively searching the permis-
sible configurations. 126

D.1 Illustration of the feasible set V within the search space S . Each
green diamond or orange dot denotes a feasible or infeasible ar-
chitecture, respectively. 129

D.2 Tradeoffs between validation loss and number of parameters in
four search spaces. 134

D.3 Rejection-based reward distributionally outperforms random
search and resource-aware Abs Reward in a number of search
spaces. The points and error bars have the same meaning as
in Figure 5.2. The time taken for each stand-alone training run
(the unit length for x axes) is 2.5 hours on Criteo (Figure 5.2,
D.3(a) and D.3(b)), 10 minutes on Volkert with 4-layer FFNs (Fig-
ure D.3(c)), and 22-25 minutes on Volkert with 9-layer FFNs (Fig-
ure D.3(d)). 139

D.4 Tuning β and N on the toy example (Figure 5.1): the number of
MC samples N in rejection-based reward is easier to tune than β
in Abs Reward, and is easier to succeed. The lines and shaded
regions are mean and standard deviation across 200 independent
runs, respectively. 143

D.5 Tuning N on Criteo: the change of P̂(V) when the number of
Monte-Carlo samples N is 256, 2,048 or 5,120, and the time taken
for each iteration. We show results with RL learning rate η =
0.005; those other η values have similar failure patterns. 143

D.6 Failure cases in ablation when P̂(V) is non-differentiable. We
show results with RL learning rate η = 0.005; those under other
η values are similar. 146

xx

CHAPTER 1

INTRODUCTION

Applications of machine learning have grown tremendously in the past decade

due to the increasing feasibility of more expensive model training. However,

modern machine learning models are increasingly expensive to train, and the

sizes of modern datasets are growing rapidly. These trends have resulted in

increasing costs despite the fast growth in computational capabilities of modern

machines. For example, the training of a 1.5-billion parameter BERT language

model [34] is estimated to cost $80k - $1.6M as of 2020 [112].

Besides the increasing costs of model training, new models are being devel-

oped [108, 131], each with its own set of hyperparameters to choose from. With a

fast-growing number of such choices, practitioners need to specify a search space

to choose the best candidate from within. These complexities increase both ma-

chine and human costs: it takes time, compute, and energy for machines to fit

models and do inference, and it takes time for machine learning engineers to

choose the appropriate models and hyperparameters.

Exhaustive search evaluates every model in the search space and chooses the

best one under some performance metric, such as cross-validation (CV) error

or area under the curve (AUC). Exhaustive search is straightforward to imple-

ment and returns the model with the best performance among all models in the

search space. However, with a growing number of choices, exhaustive search is

an (increasingly) poor choice for model selection and hyperparameter tuning:

the time (or computation) required is proportional to the number of possible

models, and choosing the model with the best performance can also result in

overfitting [6].

1

Automated machine learning (AutoML) aims to automate model selection

and hyperparameter tuning. It encompasses approaches that use surrogate mod-

els to learn the relationship among datasets, machine learning models, and hy-

perparameters. The goal is to find a model more quickly than exhaustive search,

and one that generalizes better. To this end, AutoML approaches tend to be:

(a) Cheap to run: The AutoML approach should not take too much time or

compute to train and test; it should be much cheaper than an exhaustive

search over the search space.

(b) Easy to tune: The AutoML approach should not have hyperparameters that

are more difficult to tune than the hyperparameters of machine learning

models AutoML searches over.

(c) Able to find cheap models: The AutoML approach should find models that

satisfy the resource constraint.

This thesis describes two major types of AutoML methods to achieve these

goals:

(a) Meta-learning across datasets for model selection: These methods select

machine learning models on a new dataset using information about how

models perform on other datasets, using ideas from collaborative filtering.

They collect performance information to form an error matrix (or tensor).

Low rank matrix (or tensor) decomposition serves as a surrogate model

to learn embeddings for datasets and models. To choose a good model

for a new dataset, an initial set of cheap but informative models are eval-

uated, and the performance of other models is inferred by the low rank

surrogate model. To select the set of cheap but informative models, we

2

solve a resource-constrained experiment design problem that seeks a low-

variance embedding for the new dataset.

(b) Neural architecture search (NAS) on individual datasets: To select a cheap

neural network architecture that performs well on a given dataset, this

method uses reinforcement learning (RL) and Monte-Carlo (MC) sam-

pling to select among candidate network components. The method inter-

leaves weight training and RL update steps, so that the network weights of

promising architectures determined by the RL controller are trained more

often. Weight-sharing decreases the cost of training each architecture and

reduces the size of the RL search space and make RL easier: each archi-

tecture is viewed as a child network of a SuperNet; weights for the child

network are initialized by the weights of the same parameters of the Su-

perNet. Architectures are sampled from layer-wise distributions over dif-

ferent sizes – a factorized search space. The factorized structure can intro-

duce bias: the RL controller learns the average effect of each layer size

but is blind to interactions, and so can miss the global optimal solution.

To mitigate this problem, we propose updating the RL controller by a re-

jection sampling mechanism that only accepts architectures that obey the

resource constraint. A corresponding MC-based-correction applied to the

RL policy gradient updates reduces the cost of rejection sampling.

Table 1.1 summarizes the objectives and constraints of the works to be pre-

sented in this dissertation. Since the machine learning models to be selected in

Oboe [141] can be regarded as a special case of the machine learning pipelines

in TensorOboe [144], we list them in the same row within the table.

3

Table 1.1: Objectives and constraints for resource-constrained AutoML

Chapter Work Objective: find the best ... Constraint
2, 3 Oboe [141],

TensorOboe [144]
ML pipelines maximum time allowed to

evaluate pipelines

4 PEPPP [145] low-precision configuration largest allowable memory
for network training

5 TabNAS [142] architecture number of parameters of the
found architecture

1.1 Previous work

There have been multiple pathways for AutoML. Naive approaches like grid

search and random search remain popular candidates. In many settings, when

the search space has multiple hyperparameters with different importance for

performance, random search may outperform grid search in the number of

evaluations [14]. Some works form differentiable objectives, and first-order

approaches like gradient descent to optimize over hyperparameters [12] and

choose optimizers [2].

Surrogate models like Gaussian processes [13, 116, 7] or tree-based mod-

els [13] are popular choices for hyperparameter tuning. There are also works

that combine these surrogate models into open-source packages like Auto-

WEKA [125] and Ax 1, or use these approaches for further fine-tuning [42].

As a standard practice in recommender systems, collaborative filtering

makes recommendations for a new task based on its similarity with previous

tasks on which we have more information. In AutoML, collaborative filtering

recommends models for a new dataset based on how well these models work

on similar datasets. Each AutoML approach needs to characterize dataset sim-

1https://github.com/facebook/Ax

4

ilarity with a certain surrogate model. One line of work relies on dataset meta-

features to characterize datasets [7, 43, 42]. The meta-features are simple, statis-

tical or landmarking [102] metrics of the dataset. Other approaches avoid (only

using) meta-features [46, 137], or use embeddings from dataset metadata to bet-

ter characterize dataset similarity [38]. The types of surrogate models include

nearest neighbors [42], matrix factorization [46], and Gaussian processes [7].

Some other AutoML approaches use evolutionary search [98, 25] or Monte-

Carlo Tree Search [37] to explore the search space, and gradually dedicate more

resources to more promising as the search proceeds.

Neural architecture search (NAS) [156] stems from the resurgence of deep

learning. It focuses on tuning architectural hyperparameters in neural net-

works, like hidden layer sizes in feedforward networks or convolutional ker-

nel size in convolutional networks. There are two types of surrogate models

in NAS. The first type characterizes the performance of candidate networks, to

avoid training each candidate network from scratch: a prohibitive practice be-

cause of its huge resource consumption. A popular approach is to share weights

across candidate networks by training the weights in a SuperNet that includes

all trainable weights [10, 86].

The other types of surrogate models transfer knowledge across architectures.

Examples include reinforcement learning [156, 20, 11] that learns probability

distributions over candidates, and parametric models [149, 135] that directly

predict network performance.

It is worth noting that for both AutoML on general model types and NAS,

there have been benchmarks that attempt to standardize the practice of experi-

5

mentation and make different works comparable. The OpenML AutoML bench-

marking framework [48] provides a list of datasets from different domains and

with various difficulty levels. NAS benchmarks exhaustively evaluate network

performance on a search space (e.g., [147, 35]), to not only provide a compari-

son standard but also ease the burden of resource-limited researchers. Although

the generality of such benchmarks is often under debate, these benchmarks are

valuable contributions to the goal of making AutoML and NAS research more

accessible to a broader population.

1.2 Notation and terminology

Math basics. We define [n] = {1, ··· , n} for a positive integer n. With a Boolean

variable X, the indicator function 1(X) equals 1 if X is true, and 0 otherwise.

With a scalar variable x, we use x+ to denote max{x, 0}. ⊆ and ⊂ denote subset

and strict subset, respectively.

Meta-learning. Meta-learning is the process of learning across individual

datasets or problems, which are subsystems on which standard learning is per-

formed [81]. Just as standard machine learning must avoid overfitting, experi-

ments testing AutoML systems must avoid meta-overfitting! We divide our set

of datasets into meta-training, meta-validation and meta-test sets, and report

results on the meta-test set. Each of the three phases in meta-learning — meta-

training, meta-validation and meta-test — is a standard learning process that

includes training, validation and test.

Linear algebra. We define [n] = {1, ··· , n} for n ∈ Z, and denote vector, matrix, and

tensor variables respectively by lowercase letters (x), capital letters (X) and Euler

6

Training

Validation

Test

Learning

(a) Learning

Training

Validation

Test

Learning

Training

Metalearning

Validation

Test

Training

Validation

Test

Metatraining

Meta
validation

Meta
test

(b) Meta-learning

Figure 1.1: Learning vs meta-learning.

script letters (X). The order of a tensor is the number of dimensions; matrices

are order-two tensors. Each dimension is called a mode. All vectors are column

vectors. Given a matrix A ∈ Rm×n, Ai,: and A:, j denote the ith row and jth column

of A, respectively. We define [n] = {1, ··· , n} for n ∈ Z. Given an ordered set

S = {s1, ··· , sk} where s1 < ··· < sk ∈ [n], we write A:S =

[
A:,s1 A:,s2 · · · A:,sk

]
. A

fiber is a one-dimensional section of a tensor X, defined by fixing every index

but one; for example, one fiber of the order-3 tensor X is X: jk. Fibers of a tensor

are analogous to rows and columns of a matrix. A slice is an (N−1)-dimensional

section of an order-N tensor X. The mode-n matricization of X, denoted as X(n),

is a matrix whose columns are the mode-n fibers of X. X has multilinear rank

(r1, r2, ···) if rn is the rank of X(n). For example, given an order-3 tensor X ∈ RI×J×K ,

we have X(1) ∈ RI×(J×K), and X has multilinear rank (r1, r2, r3) if X(n) has rank

rn for n ∈ [3]. We denote the n-mode product of a tensor X ∈ RI1×I2×···IN with a

matrix U ∈ RJ×In by X ×n U ∈ RI1×···In−1×J×In+1×···IN ; the (i1, i2, ··· , in−1, j, in+1, ··· , iN)-th

entry is ΣIn
in=1xi1i2···in−1inin+1···iN u jin . Given two tensors with the same shape, we use ⊙

to denote their entrywise product. Given an ordered set S = {s1, ··· , sk} where

s1 < ··· < sk ∈ [n], we write A:S = [A:,s1 , A:,s2 , ··· , A:,sk]; given an ordinary set S , we

use A:S to denote A:S, in which S is the ordered version of set S . The Euclidean

norm of a vector a ∈ Rn is ∥a∥ :=
√∑n

i=1 a2
i . To denote a part of a matrix A ∈ Rn×d,

7

we use a colon to denote the varying dimension: Ai,: and A:, j (or a j) denote the ith

row and jth column of A, respectively, and Ai j denotes the (i, j)-th entry. Given

two vectors x, y ∈ Rn, x ⪯ y means xi ≤ yi for each i ∈ [n]. Given a matrix A ∈ Rn×d

and a set of observed indices as Ω ⊆ [n] × [d], the partially observed matrix

PΩ(A) ∈ Rn×d has entries (PΩ(A))i j = Ai j if (i, j) ∈ Ω, and 0 otherwise.

Parametric hierarchy. We distinguish between three kinds of parameters:

• Parameters of a model (e.g., the splits in a decision tree) are obtained by

training the model.

• Hyperparameters of an algorithm (e.g., the maximum depth of a decision

tree) govern the training procedure. We use the word model to refer to an

algorithm together with a particular choice of hyperparameters.

• Hyper-hyperparameters of an AutoML system (e.g., the total time budget for

the system) govern the model search.

Pipeline component. A pipeline component is a model or model type. Ex-

amples include missing entry imputers, dimensionality reducers, supervised

learners, and data visualizers. We consider the following components in this

work:

• Data imputer: A preprocessor that fills in missing entries.

• Encoder: A transformer that converts categorical features to numerical

codes. Here, we consider encoding categoricals as integers or with a one-

hot encoder.

• Standardizer: A standardizer centers and rescales data.

• Dimensionality reducer: A transformer that reduces the dimensionality of

8

7 6 5 4 23 1 0
sign 3-bit exponent 4-bit mantissa

Figure 1.2: An 8-bit floating point number representing (−1)sign · 2exponent−7 ·

1.b3b2b1b0.

the dataset by either creating new features (like PCA) or subsampling fea-

tures.

• Estimator: The supervised learner. For the classification tasks in this work,

estimators are classifiers.

Time target and time budget. In Oboe systems [141, 144], the time target refers

to the anticipated time spent running models to infer latent features of each

fixed dimension and can be exceeded. However, the runtime does not usually

deviate much from the target since our model runtime prediction works well.

The time budget refers to the total time limit for Oboe and is never exceeded.

Low-precision formats. We use floating point numbers for low-precision train-

ing in this work. As an example, Figure 1.2 shows an 8-bit floating point number

with 3 exponent bits and 4 mantissa bits. A specific low-precision representa-

tion with a certain number of bits for each part is called a low-precision format.

We may use different low-precision formats for the weights, activations, and

optimizer. In the case of using two formats to train and represent a neural net-

work (as discussed in Section 4.2.1), these two formats are called Format A and B.

A specific combination of these two formats is a hyperparameter setting of the

neural network, and we call it a low-precision configuration.

Pareto frontier. Multi-objective optimization simultaneously minimizes n costs

{ci}i∈[n]. A feasible point c(1) = (c(1)
1 , ··· , c

(1)
n) is Pareto optimal if for any other feasible

9

0.85 0.71 0.32 0.28

0.80 0.80 0.80 0.69

0.80 0.68 0.46 0.45

low-precision configurations

da
ta

se
ts

a b c d

3

2

1

(a) error matrix E

181 269 272 295

180 269 272 295

590 924 927 1032da
ta

se
ts

3

2

1

low-precision configurations
a b c d

(b) memory matrix M (MB)

Figure 1.3: Example error and memory matrices for some datasets and low-
precision configurations. Dataset 1: CIFAR-10, 2: CIFAR-100 (fruit and vegeta-
bles), 3: ImageNet-stick [33]. Configuration Format A (exponent bits, mantissa
bits), Format B (exponent bits, mantissa bits). a: (3, 1), (6, 7); b: (3, 4), (7, 7); c: (4,
3), (8, 7); d: (5, 3), (6, 7).

point c(2) = (c(2)
1 , ··· , c

(2)
n), c(2) ⪯ c(1) implies c(2) = c(1) [18]. The set of Pareto optimal

points is the Pareto frontier.

(PEPPP) Tasks, datasets, measurements and evaluations. A task carries out a

process (classification, regression, image segmentation, etc.) on a dataset. Given

a deep learning model and a dataset, the training and testing of the model on

the dataset is called a measurement. In our low-precision context, we evaluate a

configuration on a dataset to make a measurement.

(PEPPP) Error matrix and memory matrix. Given a neural network, the errors

of different low-precision configurations on meta-training datasets form an error

matrix, whose (i, j)-th entry Ei j is the test error of the jth configuration on the ith

dataset. To compute the error matrix, we split the i-th dataset into training and

test subsets (or use a given split), train the neural network at the j-th configu-

ration on the training subset, and evaluate the test error on the test subset. The

memory required for each measurement forms a memory matrix M, which has

the same shape as the corresponding error matrix. Example error and memory

matrices are shown in Figure 1.3.

10

CHAPTER 2

OBOE: COLLABORATIVE FILTERING FOR FAST MACHINE LEARNING

MODEL SELECTION

This chapter presents Oboe [141], an AutoML framework that uses low rank

matrix factorization and experiment design to select promising machine learn-

ing models in the meta-learning setting.

2.1 Introduction

It is often difficult to find the best algorithm and hyperparameter settings for

a new dataset, even for experts in machine learning or data science. The large

number of machine learning algorithms and their sensitivity to hyperparame-

ter values make it practically infeasible to enumerate all configurations. Auto-

mated machine learning (AutoML) seeks to efficiently automate the selection of

model (e.g., [42, 25, 46]) or pipeline (e.g., [36]) configurations, and has become

more important as the number of machine learning applications increases.

We propose an algorithmic system, OBOE 1, that provides an initial tuning

for AutoML: it selects a good algorithm and hyperparameter combination from

a discrete set of options. The resulting model can be used directly, or the hyper-

parameters can be tuned further. Briefly, OBOE operates as follows.

During an offline training phase, it forms a matrix of the cross-validated er-

rors of a large number of supervised-learning models (algorithms together with

hyperparameters) on a large number of datasets. It then fits a low rank model

to this matrix to learn latent low-dimensional meta-features for the models and
1The eponymous musical instrument plays the initial note to tune an orchestra.

11

datasets. Our optimization procedure ensures these latent meta-features best

predict the cross-validated errors, among all bilinear models.

To find promising models for a new dataset, OBOE chooses a set of fast but

informative models to run on the new dataset and uses their cross-validated

errors to infer the latent meta-features of the new dataset. Given more time,

OBOE repeats this procedure using a higher rank to find higher-dimensional

(and more expressive) latent features. Using a low rank model for the error

matrix is a very strong structural prior.

This system addresses two important problems: 1) Time-constrained initial-

ization: how to choose a promising initial model under time constraints. OBOE

adapts easily to short times by using a very low rank and by restricting its ex-

periments to models that will run very fast on the new dataset. 2) Active learn-

ing: how to improve on the initial guess given further computational resources.

OBOE uses extra time by allowing higher ranks and more expensive computa-

tional experiments, accumulating its knowledge of the new dataset to produce

more accurate (and higher-dimensional) estimates of its latent meta-features.

OBOE uses collaborative filtering for AutoML, selecting models that have

worked well on similar datasets, as have many previous methods including

[7, 121, 148, 42, 93, 29]. In collaborative filtering, the critical question is how

to characterize dataset similarity so that training datasets “similar” to the test

dataset faithfully predict model performance. One line of work uses dataset

meta-features — simple, statistical or landmarking metrics — to characterize

datasets [102, 43, 42, 46, 29]. Other approaches (e.g., [137]) avoid meta-features.

Our approach builds on both of these lines of work. OBOE relies on model

performance to characterize datasets, and the low rank representations it learns

12

for each dataset may be seen (and used) as latent meta-features. Compared to

AutoML systems that compute meta-features of the dataset before running any

models, the flow of information in OBOE is exactly opposite: OBOE uses only the

performance of various models on the datasets to compute lower dimensional

latent meta-features for models and datasets.

The active learning subproblem is to gain the most information to guide fur-

ther model selection. Some approaches choose a function class to capture the

dependence of model performance on hyperparameters; examples are Gaussian

processes [106, 116, 13, 46, 110, 59, 89, 120], sparse Boolean functions [58] and

decision trees [8, 65]. OBOE chooses the set of bilinear models as its function

class: predicted performance is linear in each of the latent model and dataset

meta-features.

Bilinearity seems like a rather strong assumption, but confers several ad-

vantages. Computations are fast and easy: we can find the global minimizer

by PCA, and can infer the latent meta-features for a new dataset using least

squares. Moreover, recent theoretical work suggests that this model class is

more general than it appears: roughly, and under a few mild technical assump-

tions, any m × n matrix with independent rows and columns whose entries are

generated according to a fixed function (here, the function computed by train-

ing the model on the dataset) has an approximate rank that grows as log(m + n)

[128]. Hence large data matrices tend to look low rank.

Originally, the authors conceived of OBOE as a system to produce a good set

of initial models, to be refined by other local search methods, such as Bayesian

optimization. However, in our experiments, we find that OBOE’s performance,

refined by fitting models of ever higher rank with ever more data, actually im-

13

proves faster than competing methods that use local search methods more heav-

ily.

One key component of our system is the prediction of model runtime on new

datasets. Many authors have previously studied algorithm runtime prediction

using a variety dataset features [66], via ridge regression [63], neural networks

[115], Gaussian processes [64], and more. Several measures have been proposed

to trade-off between accuracy and runtime [80, 15]. We predict algorithm run-

time using only the number of samples and features in the dataset. This model

is particularly simple but surprisingly effective.

Classical experiment design (ED) [132, 95, 68, 104, 18] selects features to ob-

serve to minimize the variance of the parameter estimate, assuming that fea-

tures depend on the parameters according to known, linear, functions. OBOE’s

bilinear model fits this paradigm, and so ED can be used to select informative

models. Budget constraints can be added, as we do here, to select a small num-

ber of promising machine learning models or a set predicted to finish within a

short time budget [76, 152].

2.2 Methodology

2.2.1 Model performance prediction

It can be difficult to determine a priori which meta-features to use so that algo-

rithms perform similarly well on datasets with similar meta-features. Also, the

computation of meta-features can be expensive. To infer model performance on

14

PCA

impute
(white entries)

models

da
ta
se
ts

dataset latent metafeatures

da
ta
se
ts

models

m
od
el
 la
te
nt
 m
et
a
fe
at
ur
es

XT Y E

Figure 2.1: Illustration of model performance prediction via the error matrix
E (yellow blocks only). Perform PCA on the error matrix (offline) to compute
dataset (X) and model (Y) latent meta-features (orange blocks). Given a new
dataset (row with white and blue blocks), pick a subset of models to observe
(blue blocks). Use Y together with the observed models to impute the perfor-
mance of the unobserved models on the new dataset (white blocks).

a dataset without any expensive meta-feature calculations, we use collaborative

filtering to infer latent meta-features for datasets.

As shown in Figure 2.1, we construct an empirical error matrix E ∈ Rm×n,

where every entry Ei j records the cross-validated error of model j on dataset

i. Empirically, E has approximately low rank: Figure 2.2 shows the singular

values σi(E) decay rapidly as a function of the index i. This observation serves

as foundation of our algorithm. The value Ei j provides a noisy but unbiased

estimate of the true performance of a model on the dataset: EEi j = A j(Di).

To denoise this estimate, we approximate Ei j ≈ x⊤i y j where xi and y j mini-

mize
∑m

i=1
∑n

j=1(Ei j − x⊤i y j)2 with xi, y j ∈ R
k for i ∈ [M] and j ∈ [N]; the solution is

given by PCA. Thus xi and y j are the latent meta-features of dataset i and model

j, respectively. The rank k controls model fidelity: small ks give coarse approx-

imations, while large ks may overfit. We use a doubling scheme to choose k

within time budget; see Section 2.3.2 for details.

Given a new meta-test dataset, we choose a subset S ⊆ [N] of models and

15

0 10 20 30 40 50
index i

100

101

102

103

104

105

σ
i

Figure 2.2: Singular value decay of an error matrix. The entries are calculated
by 5-fold cross validation of machine models (listed in Appendix A.1, Table A.1)
on midsize OpenML datasets.

observe performance e j of model j for each j ∈ S. A good choice of S balances

information gain against time needed to run the models; we discuss how to

choose S in Section 2.2.3. We then infer latent meta-features for the new dataset

by solving the least squares problem: minimize
∑

j∈S(e j − x̂⊤y j)2 with x̂ ∈ Rk. For

all unobserved models, we predict their performance as ê j = x̂⊤y j for j < S.

2.2.2 Runtime prediction

Estimating model runtime allows us to trade off between running slow, infor-

mative models and fast, less informative models. We use a simple method to

estimate runtimes, using polynomial regression on nD and pD, the numbers of

data points and features in D, and their logarithms, since the theoretical com-

plexities of machine learning algorithms we use are O
(
(nD)3, (pD)3, (log(nD))3).

Hence we fit an independent polynomial regression model for each model:

f j = argmin f j∈F

M∑
i=1

(
f j(nDi , pDi , log(nDi)) − tDi

j

)2
, j ∈ [n]

where tDj is the runtime of machine learning model j on datasetD, and F is the

set of all polynomials of order no more than 3. We denote this procedure by f j =

fit runtime(n, p, t).

16

We observe that this model predicts runtime within a factor of two for half

of the machine learning models on more than 75% midsize OpenML datasets,

and within a factor of four for nearly all models, as shown in Section 2.5.2 and

visualized in Figure 2.6.

2.2.3 Time-constrained information gathering

To select a subset S of models to observe, we adopt an approach that builds on

classical experiment design: we suppose fitting each machine learning model

j ∈ [n] returns a linear measurement x⊤y j of x, corrupted by Gaussian noise. To

estimate x, we would like to choose a set of observations y j that span Rk and

form a well-conditioned submatrix, but that corresponds to models which are

fast to run. In passing, we note that the pivoted QR algorithm on the matrix

Y (heuristically) finds a well conditioned set of k columns of Y . However, we

would like to find a method that is runtime-aware.

Our experiment design (ED) procedure minimizes a scalarization of the co-

variance of the estimated meta-features x̂ of the new dataset subject to runtime

constraints [132, 95, 68, 104, 18]. Formally, define an indicator vector v ∈ {0, 1}n,

where entry v j indicates whether to fit model j. Let t̂ j denote the predicted run-

time of model j on a meta-test dataset, and let y j denote its latent meta-features,

for j ∈ [n]. Now relax to allow v ∈ [0, 1]n to allow for non-Boolean values and

solve the optimization problem

minimize log det
(∑n

j=1 v jy jy⊤j
)−1

subject to
n∑

j=1
v jt̂ j ≤ τ

v j ∈ [0, 1],∀ j ∈ [n]

(2.1)

17

data
preprocessing

error matrix
generation

compute low
dimensional
algorithm
features

timeconstrained
model selection

infer
performance of
other models

ensemblingdata
preprocessing

offline stage

time target doubling

 timeconstrained online stage

training datasets

test dataset predictions

time
remains?

Yes

No

Figure 2.3: Diagram of data processing flow in the Oboe system.

with variable v ∈ Rn. We call this method ED (time). Scalarizing the covari-

ance by minimizing the determinant is called D-optimal design. Several other

scalarizations can also be used, including covariance norm (E-optimal) or trace

(A-optimal). Replacing ti by 1 gives an alternative heuristic that bounds the

number of models fit by τ; we call this method ED (number).

Problem 2.1 is a convex optimization problem, and we obtain an approx-

imate solution by rounding the largest entries of v up to 1 until the selected

models exceed the time limit τ. Let S ⊆ [n] be the set of indices of e that we

choose to observe, i.e. the set such that vs rounds to 1 for s ∈ S. We denote this

process by S = min variance ED(t̂, {y j}
n
j=1, τ).

2.3 The Oboe system

Shown in Figure 2.3, the Oboe system can be divided into offline and online

stages. The offline stage is executed only once and explores the space of model

performance on meta-training datasets. Time taken on this stage does not affect

18

the runtime of Oboe on a new dataset; the runtime experienced by user is that

of the online stage.

One advantage of Oboe is that the vast majority of the time in the online

phase is spent training standard machine learning models, while very little time

is required to decide which models to sample. Training these standard ma-

chine learning models requires running algorithms on datasets with thousands

of data points and features, while the meta-learning task — deciding which

models to sample — requires only solving a small least-squares problem.

2.3.1 Offline stage

The (i, j)th entry of error matrix E ∈ Rm×n, denoted as Ei j, records the perfor-

mance of the jth model on the ith meta-training dataset. We generate the error

matrix using the balanced error rate metric, the average of false positive and false

negative rates across different classes. At the same time we record runtime of

machine learning models on datasets. This is used to fit runtime predictors de-

scribed in Section 2.2. Pseudocode for the offline stage is shown as Algorithm 1.

2.3.2 Online stage

Recall that we repeatly double the time target of each round until we use up the

total time budget. Thus each round is a subroutine of the entire online stage and

is shown as Algorithm 2, fit one round.

• Time-constrained model selection (fit one round) Our active learning

19

Algorithm 1 Offline Stage

Input: meta-training datasets {Di}
m
i=1, models {A j}

n
j=1, algorithm performance

metricM
Output: error matrix E, runtime matrix T , fitted runtime predictors { f j}

n
j=1

1 for i = 1, 2, ··· ,m do
2 nDi , pDi ← number of data points and features inDi

3 for j = 1, 2, ··· , n do
4 Ei j ← error of modelA j on datasetDi according to metricM
5 Ti j ← observed runtime for modelA j on datasetDi

6 end for
7 end for
8 for j = 1, 2, ··· , n do
9 fit f j = fit runtime(n, p,T j)

10 end for

procedure selects a fast and informative collection of models to run on the

meta-test dataset. Oboe uses the results of these fits to estimate the per-

formance of all other models as accurately as possible. The procedure is

as follows. First predict model runtime on the meta-test dataset using fit-

ted runtime predictors. Then use experiment design to select a subset S of

entries of e, the performance vector of the test dataset, to observe. The ob-

served entries are used to compute x̂, an estimate of the latent meta-features

of the test dataset, which in turn is used to predict every entry of e. We build

an ensemble out of models predicted to perform well within the time tar-

get τ̃ by means of greedy forward selection [24, 23]. We denote this sub-

routine as Ã =ensemble selection(S, eS, zS), which takes as input the set

of base learners S with their cross-validation errors eS and predicted labels

zS = {zs|s ∈ S}, and outputs ensemble learner Ã. The hyperparameters used

by models in the ensemble can be tuned further, but in our experiments we

did not observe substantial improvements from further hyperparameter tun-

ing.

• Time target doubling To select rank k, Oboe starts with a small initial

20

Algorithm 2 fit one round({y j}
n
j=1, { f j}

n
j=1,Dtr, τ̃)

Input: model latent meta-features {y j}
n
j=1, fitted runtime predictors { f j}

n
j=1, train-

ing fold of the meta-test datasetDtr, number of best models N to select from
the estimated performance vector, time target for this round τ̃

Output: ensemble learner Ã
1 for j = 1, 2, ··· , n do
2 t̂ j ← f j(nDtr , pDtr)
3 end for
4 S = min variance ED(t̂, {y j}

n
j=1, τ̃)

5 for k = 1, 2, ··· , |S| do
6 eSk ← cross-validation error of modelASk onDtr

7 end for
8 x̂← (

[
yS1 yS2 · · · yS|S|

]⊤
)†eS

9 ê←
[
y1 y2 · · · yn

]⊤
x̂

10 T ← the N models with lowest predicted errors in ê
11 for k = 1, 2, ··· , |T | do
12 eTk , zTk ← cross-validation error of modelATk onDtr

13 end for
14 Ã←ensemble selection(T , eT , zT)

rank along with a small time target, and then doubles the time target for

fit one round until the elapsed time reaches half of the total budget. The

rank k increments by 1 if the validation error of the ensemble learner de-

creases after doubling the time target, and otherwise does not change. Since

the matrices returned by PCA with rank k are submatrices of those returned

by PCA with rank l for l > k, we can compute the factors as submatrices of

the m-by-n matrices returned by PCA with full rank min(m, n) [49]. The pseu-

docode is shown as Algorithm 3.

2.4 Python implementation

Code for the Oboe system is at https://github.com/udellgroup/oboe.

We build the system on top of scikit-learn [101] methods, and design the Oboe

21

Algorithm 3 Online Stage

Input: error matrix E, runtime matrix T , meta-test datasetD, total time budget
τ, fitted runtime predictors { f j}

n
j=1, initial time target τ̃0, initial approximate

rank k0

Output: ensemble learner Ã
1 xi, y j ← arg min

∑m
i=1
∑n

j=1(Ei j − x⊤i y j)2, xi ∈ R
min(m,n) for i ∈ [M] , y j ∈ R

min(m,n) for
j ∈ [N]

2 Dtr,Dval,Dte ← training, validation and test folds ofD
3 τ̃← τ̃0

4 k ← k0

5 while τ̃ ≤ τ/2 do
6 {ỹ j}

n
j=1 ← k-dimensional subvectors of {y j}

n
j=1

7 Ã← fit one round({ỹ j}
n
j=1, { f j}

n
j=1,Dtr, τ̃)

8 e′
Ã
← Ã(Dval)

9 if e′
Ã
< eÃ then

10 k ← k + 1
11 end if
12 τ̃← 2τ̃
13 eÃ ← e′

Ã
14 end while

classes and methods to have the same style as scikit-learn API. For example,

here is the basic building block to create an AutoLearner instance for AutoML,

fit on the training features x train and training labels y train, and predict on

the test features x test.

from oboe import AutoLearner

m = AutoLearner(runtime limit=60)

m.fit(x train, y train)

y test pred = m.predict(x test)

The designs are:

• The line of class instantiation m = AutoLearner() finishes the offline

stage (Algorithm 1).

• Same as scikit-learn, the feature matrices x train and x test should

22

have shapes ntrain-by-d and ntest-by-d, respectively: each row corresponds

to a data point and each column corresponds to a feature. The label vector

y train should be a one-dimensional array.

• The method AutoLearner.fit() finishes the online stage (multiple

rounds of Algorithm 3) with the time limit for the online stage specified in

the AutoLearner.runtime limit attribute.

• The method AutoLearner.predict() uses the fitted ensemble to pre-

dict on each test point in x test.

API documentations of more advanced funtionalities (e.g., stacking algo-

rithm, verbose level, whether to build an ensemble) can be find at the public

GitHub repository.

2.5 Experiments and discussions

We ran all experiments on a server with 128 Intel® Xeon® E7-4850 v4 2.10GHz

CPU cores. The process of running each system on a specific dataset is limited

to a single CPU core.

We test different AutoML systems on midsize OpenML and UCI datasets,

using standard machine learning models shown in Appendix A.1, Table A.1.

Since data pre-processing is not our focus, we pre-process all datasets in the

same way: one-hot encode categorical features and then standardize all features

to have zero mean and unit variance. These pre-processed datasets are used in

all the experiments.

23

2.5.1 Performance comparison across AutoML systems

We compare AutoML systems that are able to select among different algorithm

types under time constraints: Oboe (with error matrix generated from midsize

OpenML datasets), auto-sklearn [42], probabilistic matrix factorization (PMF)

[46], and a time-constrained random baseline. The time-constrained random

baseline selects models to observe randomly from those predicted to take less

time than the remaining time budget until the time limit is reached.

Comparison with PMF. PMF and Oboe differ in the surrogate models they use

to explore the model space: PMF incrementally picks models to observe us-

ing Bayesian optimization, with model latent meta-features from probabilistic

matrix factorization as features, while Oboe models algorithm performance as

bilinear in model and dataset meta-features.

PMF does not limit runtime, hence we compare it to Oboe using either QR

or ED (number) to decide the set S of models (see Section 2.2.3). Figure 2.4 com-

pares the performance of PMF and Oboe (using QR and ED (number) to decide

the set S of models) on our collected error matrix to see which is best able to pre-

dict the smallest entry in each row. We show the regret: the difference between

the minimal entry in each row and the one found by the AutoML method. In

PMF, N0 = 5 models are chosen from the best algorithms on similar datasets (ac-

cording to dataset meta-features shown in Appendix A.2, Table A.2) are used

to warm-start Bayesian optimization, which then searches for the next model

to observe. Oboe does not require this initial information before beginning its

exploration. However, for a fair comparison, we show both ”warm” and ”cold”

versions. The warm version observes both the models chosen by meta-features

and those chosen by QR or ED; the number of observed entries in Figure 2.4 is

24

5(2%) 15(6%) 25(11%) 35(15%)
number (percentage) of observed entries

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

5(2%) 15(6%) 25(11%) 35(15%)
number (percentage) of observed entries

1.5

2.0

2.5

3.0

3.5

4.0

ra
n

k
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

5(2%) 15(6%) 25(11%) 35(15%)
number (percentage) of observed entries

1.5

2.0

2.5

3.0

3.5

4.0

av
er

ag
e

ra
n
k

ED (number)

ED (number) with meta-features

PMF

QR

QR with meta-features

Figure 2.4: Comparison of sampling schemes (QR or ED) in Oboe and PMF.
”QR” denotes QR decomposition with column pivoting; ”ED (number)” de-
notes experiment design with number of observed entries constrained. The left
plot shows the regret of each AutoML method as a function of number of en-
tries; the right shows the relative rank of each AutoML method in the regret plot
(1 is best and 5 is worst).

the sum of all observed models. The cold version starts from scratch and only

observes models chosen by QR and ED.

(Standard ED also performs well; see Appendix A.4, Figure A.2.)

Figure 2.4 shows the surprising effectiveness of the low rank model used by

Oboe:

1 Meta-features are of marginal value in choosing new models to observe. For

QR, using models chosen by meta-features helps when the number of observed

entries is small. For ED, there is no benefit to using models chosen by meta-

features.

2 The low rank structure used by QR and ED seems to provide a better guide

to which models will be informative than the Gaussian process prior used by

25

PMF: the regret of PMF does not decrease as fast as Oboe using either QR or

ED.

Comparison with auto-sklearn. The comparison with PMF assumes we can

use the labels for every point in the entire dataset for model selection, so we

can compare the performance of every model selected and pick the one with

lowest error. In contrast, our comparison with auto-sklearn takes place in a

more challenging, realistic setting: when doing cross-validation on the meta-

test dataset, we do not know the labels of the validation fold until we evaluate

performance of the ensemble we built within time constraints on the training

fold.

Figure 2.5 shows the error rate and ranking of each AutoML method as the

runtime repeatedly doubles. Again, Oboe’s simple bilinear model performs sur-

prisingly well2:

1 Oboe on average performs as well as or better than auto-sklearn (Fig-

ures 2.5(c) and 2.5(d)).

2 The quality of the initial models computed by Oboe and by auto-sklearn are

comparable, but Oboe computes its first nontrivial model more than 8× faster

than auto-sklearn (Figures 2.5(a) and 2.5(b)). In contrast, auto-sklearn must first

compute meta-features for each dataset, which requires substantial computa-

tional time, as shown in Appendix A.3, Figure A.1.

3 Interestingly, the rate at which the Oboe models improves with time is also

faster than that of auto-sklearn: the improvement Oboe makes before 16 seconds

2Auto-sklearn’s GitHub Issue #537 says “Do not start auto-sklearn for time limits less than
60s”. These plots should not be taken as criticisms of auto-sklearn, but are used to demonstrate
Oboe’s ability to select a model within a short time.

26

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

0.1

0.2

0.3

0.4

0.5

b
al

an
ce

d
er

ro
r

ra
te

(a) OpenML (meta-LOOCV)

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

0.0

0.1

0.2

0.3

0.4

0.5

b
al

an
ce

d
er

ro
r

ra
te

(b) UCI (meta-test)

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.8

1.9

2.0

2.1

2.2

ra
n

k
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(c) OpenML (meta-LOOCV)

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.4
1.6
1.8
2.0
2.2
2.4
2.6

ra
n

k
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(d) UCI (meta-test)

Figure 2.5: Comparison of AutoML systems in a time-constrained setting, in-
cluding Oboe with experiment design (red), auto-sklearn (blue), and Oboe with
time-constrained random initializations (green). OpenML and UCI denote mid-
size OpenML and UCI datasets. ”meta-LOOCV” denotes leave-one-out cross-
validation across datasets. In 2.5(a) and 2.5(b), solid lines represent medians;
shaded areas with corresponding colors represent the regions between 75th and
25th percentiles. Until the first time the system can produce a model, we clas-
sify every data point with the most common class label. Figures 2.5(c) and 2.5(d)
show system rankings (1 is best and 3 is worst).

matches that of auto-sklearn from 16 to 64 seconds. This indicates that the large

time budget may be better spent in fitting more models than optimizing over

hyperparameters, to which auto-sklearn devotes the remaining time.

4 Experiment design leads to better results than random selection in almost all

cases.

27

2.5.2 Why does Oboe work?

Oboe performs well in comparison with other AutoML methods despite making

a rather strong assumption about the structure of model performance across

datasets: namely, bilinearity. It also requires effective predictions for model

runtime. In this section, we perform additional experiments on components of

the Oboe system to elucidate why the method works, whether our assumptions

are warranted, and how they depend on detailed modeling choices.

Low rank under different metrics. Oboe uses balanced error rate to construct

the error matrix, and works on the premise that the error matrix can be approx-

imated by a low rank matrix. However, there is nothing special about the bal-

anced error rate metric: most metrics result in an approximately low rank error

matrix. For example, when using the AUC metric to measure error, the 418-by-

219 error matrix from midsize OpenML datasets has only 38 eigenvalues greater

than 1% of the largest, and 12 greater than 3%.

Runtime prediction performance. Runtimes of linear models are among the

most difficult to predict, since they depend strongly on the conditioning of

the problem. Our runtime prediction accuracy on midsize OpenML datasets

is shown in Table 2.1 and in Figure 2.6. We can see that our empirical prediction

of model runtime is roughly unbiased. Thus the sum of predicted runtimes on

multiple models is a roughly good estimate.

Cold-start. Oboe uses D-optimal experiment design to cold-start model selec-

tion. In Figure 2.7, we compare this choice with A- and E-optimal design and

nonlinear regression in Alors [93], by means of leave-one-out cross-validation

on midsize OpenML datasets. We measure performance by the relative RMSE

28

Figure 2.6: Runtime prediction performance on different machine learning al-
gorithms, on midsize OpenML datasets.

29

Table 2.1: Runtime prediction accuracy on OpenML datasets (Oboe)

Algorithm type Runtime prediction accuracy
within factor of 2 within factor of 4

Adaboost 83.6% 94.3%
Decision tree 76.7% 88.1%
Extra trees 96.6% 99.5%
Gradient boosting 53.9% 84.3%
Gaussian naive Bayes 89.6% 96.7%
kNN 85.2% 88.2%
Logistic regression 41.1% 76.0%
Multilayer perceptron 78.9% 96.0%
Perceptron 75.4% 94.3%
Random Forest 94.4% 98.2%
Kernel SVM 59.9% 86.7%
Linear SVM 30.1% 73.2%

∥e− ê∥2/∥e∥2 of the predicted performance vector and by the number of correctly

predicted best models, both averaged across datasets. The approximate rank

of the error matrix is set to be the number of eigenvalues larger than 1% of the

largest, which is 38 here. The time limit in experiment design implementation

is set to be 4 seconds; the nonlinear regressor used in Alors implementation is

the default RandomForestRegressor in scikit-learn 0.19.2 [101].

The horizontal axis is the number of models selected; the vertical axis is the

percentage of best-ranked models shared between true and predicted perfor-

mance vectors. D-optimal design robustly outperforms.

Ensemble size. As shown in Figure 2.8, more than 70% of the ensembles con-

structed on midsize OpenML datasets have no more than 5 base learners. This

parsimony makes our ensembles easy to implement and interpret.

30

2 4 6 8 10
number of best entries

0%
5%

10%
15%
20%
25%
30%
35%

ac
cu

ra
cy

p
er

ce
nt

ag
e

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

D-optimal

A-optimal

E-optimal

Alors

Figure 2.7: comparison of cold-start methods

0 5 10 15 20 25
number of models in ensemble

0%

10%

20%

30%

40%

ra
ti

o

Figure 2.8: Histogram of Oboe ensemble size. The ensembles were built in exe-
cutions on midsize OpenML datasets in Section 2.5.1.

31

CHAPTER 3

TENSOROBOE: COLLABORATIVE FILTERING FOR FAST MACHINE

LEARNING PIPELINE SELECTION

This chapter presents TensorOboe [141], an AutoML framework that builds

on Oboe in Chapter 2 to select promising machine learning pipelines in the

meta-learning setting. Since a pipeline has many components, each with var-

ious candidates to choose from, we use tensors with low multilinear ranks

to model pipeline performance on datasets. In meta-test, the convexification

method in Oboe is too expensive for the task of choosing informative pipelines

from a larger number of candidates with constrained experiment design. We

use a faster greedy method to directly find a solution to the mix-integer experi-

ment design problem, and demonstrate in experiments that this method works

better for the task.

Collecting pipeline performance data in the meta-training stage is often ex-

pensive. The hope is to collect good-enough meta-training data by only per-

forming part of the meta-training pipeline evaluations. Since some evaluations

may be more informative to the AutoML system, an abstraction of the problem

is: how can we complete a partially observed tensor, with entry-wise observa-

tion probabilities possibly uneven and depend on the entries being missing?

Towards this goal, TenIPS [143] presents a provable tensor completion method

that completes a missing-not-at-random tensor with low multilinear rank struc-

ture. We may use such an approach to provably sample runs of experimental

evaluations in the meta-training of TensorOboe.

32

impute missing entries
by mean one-hot-encoder

raw dataset

imputer encoder
0 mean and unit

variance for
each feature

PCA
 25% components

kNN
k=5

standardizer

dimensionality
reducer estimator

Predictions

Pipeline

Figure 3.1: An example pipeline.

3.1 Introduction

A machine learning pipeline is a directed graph of learning components includ-

ing imputation, encoding, standardization, dimensionality reduction, and esti-

mation, that together define a function mapping input data to output predic-

tions. Each component may also include hyperparameters, such as the output

dimension of PCA, or the number of trees in a random forest. Simple pipelines

may consist of sequences of these components; more complex pipelines may

combine inputs to form pipelines with more complex topologies. An example

pipeline is shown as Figure 3.1.

The job of a data scientist facing a new supervised learning problem is to

choose the pipeline that yields a low out-of-sample error from among all pos-

sible pipelines. This task is challenging. First, no component dominates all

others: there is “no free lunch” [138]. Rather, each performs well on certain

data distributions. For example, the PCA dimensionality reducer works well

on data points in Rd that roughly lie in a low rank subspace Rk with k < d; the

feature selector that keeps features with large variances works well on datasets

if such features are more informative; the Gaussian naive Bayes classifier works

33

well on features with normally distributed values in each class. However, it is

difficult to check these distributional assumptions without running the compo-

nent on the data: an expensive proposition! The second is the dependence of

these choices: for example, standardizing the data may help some estimators,

and harm others. Moreover, as the number of possible machine learning com-

ponents grows, the number of possibilities grows exponentially, defying enu-

meration. Automating the selection of a pipeline is thus an important problem,

which has received attention both from academia and industry [97, 42, 36, 87].

Human experts tackle this difficulty by choosing the right combination ac-

cording to their domain knowledge. However, finding the right combination

takes substantial expertise, and still requires several model fits to find the right

combination of components and hyperparameters. An automated pipeline con-

struction system, like a human expert, first forms a surrogate model to predict

which pipelines are likely to work well. Surrogate models are meta-models that

map dataset and machine learning model properties to quantities that charac-

terize performance or informativeness.

A good surrogate model enables efficient search through the pipeline space.

“All models are wrong, but some are useful [17]”: a good surrogate model

makes predictions that guide the search for pipelines without the need for

many model fits. Auto-sklearn [42] and Alpine Meadow [111] use meta-learning

[126, 2, 78, 129] to choose promising pipelines from those that perform the best

on neighboring datasets, and use Bayesian optimization to fine-tune hyperpa-

rameters. TPOT [97] uses genetic programming to search over pipeline topolo-

gies. Alpine Meadow [111] uses multi-armed bandit to balance the exploration

and exploitation of pipeline structures. In this work, we use a low multilinear

34

rank tensor as our surrogate model. This model makes explicit use of the combi-

natorial structure of the problem: as a result, the number of pipeline evaluations

required to fit the surrogate model on a new dataset is modest, and independent

of the number of pipeline components.

Our system learns the surrogate model for a new dataset by fitting a few

pipelines on it. The problem of which pipelines to evaluate first, in order to

predict the effectiveness of others, is called the cold-start problem in the litera-

ture on recommender systems. This problem is also of great interest to the Au-

toML community. Proximity in meta-features, “simple, statistical or landmark-

ing metrics to characterize datasets [141]”, are used by many AutoML systems

[102, 43, 42, 46, 111] to select models that work well on neighboring datasets,

with the belief that models perform similarly on datasets with similar charac-

teristics. Probabilistic matrix factorization has been used to extract dataset latent

representations from pipeline performance [46]. Other dataset and pipeline em-

beddings have also been proposed that use pipeline performance or even tex-

tual dataset or algorithm descriptions to build surrogate models [137, 141, 38].

In this work, we build pipeline embeddings by fitting a tensor decomposi-

tion to the (incompletely observed) tensor of pipeline performance on a set of

training datasets. The tensor model is easy to extend to a new dataset by fitting

a constant number of pipelines on it. We describe a simple rule to select which

pipelines to observe by solving a constrained version of the classical experiment

design [132, 68, 104, 18] problem using a greedy heuristic [90].

We consider the following concrete challenge in this work: select several

pipelines that perform the best within a given time limit for a new dataset, in the

case that we already know or have time to collect pipeline performance on some

35

existing datasets. We focus on small data and traditional supervised machine

learning pipelines in our experiments, although the methodology can be gen-

eralized to a wider range of disciplines. Our main technical contributions are:

a new tensor model to exploit the combinatorial pipeline performance struc-

ture, and a new pipeline search mechanism that builds on ideas from greedy

experiment design. Together, these ideas yield a new state-of-the-art system for

AutoML pipeline selection. Since Oboe 2 selects machine learning models by

matrix factorization, we name our system in this work TensorOboe: the Au-

toML system that uses tensor decomposition to select pipelines.

3.2 Methodology

3.2.1 Overview

TensorOboe has two phases. In the offline phase, we compute the performance

of pipelines on meta-training datasets to build a tensor surrogate model. In the

online phase, we run a small number of pipelines on the new meta-test dataset

to specialize the surrogate model and identify promising pipelines.

Offline Stage. We collect a partially observed error tensor using the approach

described in Section 3.2.2 to limit the total runtime of the offline phase. We

complete and decompose the error tensor E using the EM-Tucker algorithm,

shown as Algorithm 4, with dataset and estimator ranks empirically chosen to

be the ones that give low reconstruction error, described in Section 3.4.2.

Online Stage. Online, given a new dataset D with nD data points and pD fea-

36

dataset
features

pipeline 1

predictions
voting

majority

predictions 1

predictions 3

predictions 2pipeline 2

pipeline 3

Figure 3.2: A pipeline ensemble with 3 base learners.

tures, we first predict the running time of each pipeline by a simple model:

order-3 polynomial regression on nD and pD and their logarithms. This simple

model works well because the time to fit the estimator dominates the time to

fit the pipeline, and the theoretical complexities of estimators we use have no

higher order terms [66, 141].

The initial dataset and estimator ranks are set to the number of principal

components that capture 97% of the energy in the respective tensor matriciza-

tions. We double the runtime budget at each iteration and increment the esti-

mator rank if the performance improves. In each iteration, we build ensembles

whose base learners are the 5 pipelines with the best cross-validation error. An

ensemble can improve on the performance of the best base pipeline. An exam-

ple is shown as Figure 3.2.

3.2.2 Tensor collection for meta-training

In the meta-training phase of meta-learning, meta-training data is generally as-

sumed to be already available or cheap to collect. Given the large number of

possible pipeline combinations, though, collecting meta-training data can be

prohibitively expensive. As an example, even if it takes one minute on average

to evaluate each pipeline on each dataset, evaluating 20, 000 pipelines on 200

37

meta-training datasets would take more than 7 years of CPU time. This mo-

tivates us to use tensor completion to limit the time spent on the collection of

meta-training data, while preserving accuracy of our surrogate model.

We collect pipeline performance in a biased way: using 3-fold cross-

validation, we only evaluate pipelines that complete within 120 seconds. This

rule gives a missing ratio of 3.3%. Notice that the entries are not missing uni-

formly at random: for example, some datasets are large and expensive to eval-

uate; our training data systematically lacks data from these large datasets. Nev-

ertheless, we will show how to infer these entries using tensor completion in

Section 3.2.3, and demonstrate in Section 3.4.2 that the method performs well

despite bias.

3.2.3 Tensor decomposition and rank

The meta-training phase constructs the error tensor E. In the meta-test phase,

we see a new dataset, corresponding to a new slice of E. To learn about the slice

efficiently, we use a low rank tensor decomposition to predict all the entries in

this slice from a subset of its informative entries.

Unlike matrices, there are many incompatible notions of tensor ranks and

low rank tensor decompositions, including CANDECOMP/PARAFAC (CP) [22,

54], Tucker [127], and tensor-train [99]. Each emphasizes a different aspect of

the tensor low rank property. In this work, we use Tucker decomposition; an

illustration on an order-3 tensor is shown as Figure 3.3. As a form of higher-

order PCA, Tucker decomposes a tensor into the product of a core tensor and

several factor matrices, one for each mode [75]. A tensor with low multilinear

38

𝒳

𝒢
𝑈1

𝑈2

𝑈3

n1
n2

n3
n1

r2

n3
r3

r2
r1 r3

r1

n2

Figure 3.3: Tucker decomposition on an order-3 tensor.

rank has a low rank Tucker decomposition. In our setting of order-6 tensors,

Tucker decomposition of E is

E ≈ Ê = G ×1 U1 × · · · ×6 U6, (3.1)

with core tensor G ∈ Rr1×r2×···×r6 and column-orthonormal factor matrices Ui ∈

Rni×ri , i ∈ {1, 2, ··· , 6}. Ê is linear in the factor matrices. Each factor matrix can

thus be viewed as embedding the corresponding dataset or pipeline component,

with pipeline embeddings as columns of Y = (G ×2 U2 × · · · ×6 U6)(1) ∈ Rr1×(Π6
i=2ni),

the mode-1 matricization of the product. We can use this observation to approx-

imately factor the error matrix E, using Equation 3.1, as

X⊤Y ≈ E ∈ Rn1×(Π6
i=2ni), (3.2)

in which X ∈ Rr1×n1 and Y ∈ Rr1×(Π6
i=2ni) are dataset and pipeline embeddings,

respectively.

Figure 3.4 shows the low rank Tucker decomposition fits the error tensor

well.

39

25 75 125 175
dataset rank r1

5

55

105

155es
ti

m
at

or
ra

n
k
r 6

(a) Training

25 75 125 175
dataset rank r1

5

55

105

155es
ti

m
at

or
ra

n
k
r 6

(b) Test

25 50 75 100 125 150 175 200
dataset rank r1

5

30

55

80

105

130

155

es
ti

m
at

or
ra

n
k
r 6

0.0

0.1

0.2

0.3
relative

error

Figure 3.4: Relative error heatmaps when varying ranks in dataset and estima-
tor dimensions. Here, training entries are the ones with runtime less than 90
seconds; the test entries are the ones with runtime between 90 and 120 seconds.

3.2.4 Tensor completion

To infer missing entries in the error tensor we collected, namely the entries

that take more than the time threshold to evaluate, we use the expectation-

maximization (EM) [32, 119] approach together with Tucker decomposition in

each step, which we call EM-Tucker and present as Algorithm 4.

Algorithm 4 EM-Tucker algorithm for tensor completion

Input: order-n error tensor E with missing entries, target multilinear rank
[r1, ··· , rn]

Output: imputed error tensor E
1 Eobs ← E

2 Ω← observed entries in Eobs

3 do
4 G, {Ui}

n
i=1 ← Tucker(E, ranks=[r1, ··· , rn])

5 Epred ← G ×1 U1 × · · · ×n Un

6 E← Ω ⊙ Eobs + (1 −Ω) ⊙ Epred

7 while not converged

In Algorithm 4, Ω is a binary tensor that denotes whether each entry of the

error tensor E is observed or not. Ω has the same shape as the original error

tensor, with the corresponding entry Ωi1,i2,...,in = 1 if the (i1, i2, ..., in)-th entry of

40

the error tensor is observed, and 0 otherwise. The algorithm is regarded to have

converged when the decrease of relative error is less than 0.1%.

Why bother with tensor completion? To recover the missing entries of a

tensor, we can also perform matrix completion after matricization or perform

matrix completion on every slice separately. Tensors are more constrained and

so provide better fits to sparse and noisy data. Consider a tensor X ∈ RI1×I2×···IN

with multilinear rank [r1, r2, ··· , rn], where I1 = I2 = ··· = In = I and r1 = r2 = ··· =

rn = r. The number of degrees of freedom of X, which is the minimum number

of entries required to recover X, is rn+n(rI−r2) =: m0. If we unfold X to X ∈ RI×In−1 ,

the number of degrees of freedom of X is (I + In−1 − r)r =: m1. If we treat every

slice of X separately, the number of degrees of freedom is In−2(2rI − r2) =: m2.

Therefore, when r < I, we have m0 < m1 < m2, which means we need fewer

parameters to determine X, compared to the matricization and union of slices.

Thus, tensor completion may outperform matrix completion on X with the same

number of observed entries.

3.2.5 Fast and accurate resource-constrained active learning

Given a new dataset, we first select a subset of pipelines to fit, so that we may

estimate the performance of other pipelines. We use ideas from linear experi-

ment design, which picks a subset of low-cost statistical trials to minimize the

variance of the resulting estimator, to make this selection.

Concretely, we estimate the embedding x of the new dataset by linear regres-

sion. Given the linear model as Equation 3.2, with known performance eS of a

41

subset S ⊆ [n] of pipelines on the new dataset, we have

eS = (Y:S)⊤x + ϵ, (3.3)

in which Y collects the latent embeddings of pipeline performance, and ϵ is the

error in this linear model. An example of the source of error is the misspecifica-

tion of target multilinear rank for the Tucker decomposition. We estimate x by

linear regression and denote the result as x̂. Then we estimate the performance

of pipelines in [n]\S by the corresponding entries in ê = Y⊤ x̂.

Now we consider which S to choose to accurately estimate x. We will mo-

tivate the use of the experiment design model and its greedy approach by first

showing how to constrain the number of pipelines sampled in Section 3.2.5, and

then develop a time-constrained version that we use in practice in Section 3.2.5.

Greedy method for size-constrained experiment design. Suppose the error

ϵ ∼ N(0, σ2I). Using the linear regression model, Equation 3.3, we want to

minimize the expected ℓ2 error Eϵ∥x̂ − x∥2 = Eϵ∥x̂ − Eϵ x̂∥2 + ∥Eϵ x̂ − x∥2. Here, the

second term is 0 since linear regression is unbiased, and the first term is the

covariance σ2(YY⊤)−1 of the estimated embedding x̂, which is straightforward

to compute.

Imagine we have enough time to run at most m pipelines (and all pipelines

run equally slowly). Given pipeline embeddings {y j}
n
j=1 (which we call design

vectors or designs), in which each y j ∈ R
k, we minimize a scalarization of the co-

variance to obtain the (number-constrained) D-optimal experiment design prob-

lem
maximize log det

(∑
j∈S y jy⊤j

)
subject to |S | ≤ m

S ⊆ [n].

(3.4)

42

Here,
∑

j∈S y jy⊤j , the inverse of (scaled) covariance matrix, is called the Fisher

information matrix.

Obtaining an exact solution for a mixed-integer nonlinear combinatorial op-

timization problem like Problem 3.4 is prohibitively expensive. Convexifica-

tion is commonly used to solve such a problem [18, 104, 141]. However, we

have more than 20, 000 pipelines to select from, making convex relaxations also

too slow. Moreover, we can find better solutions with the greedy heuristic we

present next.

Greedy methods form another popular approach to combinatorial optimiza-

tion problems like Problem 3.4. Importantly, the objective function of Prob-

lem 3.4, f (S) = log det
(∑

j∈S y jy⊤j
)
, is submodular. (Recall a set function g : 2V →

R defined on a subset of V is submodular if for every A ⊆ B ⊆ V and every

element s ∈ V\B, we have g(A ∪ {s}) − g(A) ≥ g(B ∪ {s}) − g(B). This character-

izes a “diminishing return” property.) Given a size constraint, the submodular

function maximization problem

maximize g(S)

subject to S ⊆ V

|S | ≤ m

(3.5)

can be solved with a 1 − 1
e approximation ratio [96] by the greedy approach: in

every step, add the single design vector that maximizes the increase in function

value. In D-optimal experiment design, we can compute this increase efficiently

using Lemma 1.

Lemma 1 (Matrix Determinant Lemma [55, 90]) For any invertible matrix A ∈

Rk×k and a, b ∈ Rk,

det(A + ab⊤) = det(A)(1 + b⊤A−1a).

43

At the t-th step in our setting, with an already constructed Fisher information

matrix Xt =
∑

j∈S y jy⊤j , we have

argmax j∈[n]\S det(Xt + y jy⊤j) = argmax j∈[n]\S y⊤j X−1
t y j.

Here, y⊤j X−1
t y j can be seen as the payoff for adding pipeline j. From the t-th to

the (t+1)-th step, with the selected design vector at the t-th step as yt, we update

Xt to Xt+1 = Xt + yty⊤t by Lemma 2:

Lemma 2 (Sherman-Morrison formula [113, 53]) For any invertible matrix A ∈

Rk×k and a, b ∈ Rk,

(A + ab⊤)−1 = A−1 −
A−1ab⊤A−1

1 + b⊤A−1a
.

Pseudocode for the greedy algorithm to solve Problem 3.4 is shown as Algo-

rithm 5, with per-iteration time complexity O(k3 +nk2): it takes O(k3) (for a naive

matrix multiplication algorithm) to update X−1
t and O(nk2) to choose the best

pipeline to add.

Algorithm 5 Greedy algorithm for size-constrained D-design

Input: design vectors {y j}
n
j=1, in which y j ∈ R

k; maximum number of selected
pipelines m; initial set of designs S 0 ⊆ [n], s.t. X0 =

∑
j∈S 0

y jy⊤j is non-singular
Output: The selected set of designs S ⊆ [n]

1 function GREEDY ED NUMBER
2 S ← S 0

3 do
4 i← argmax j∈[n]\S y⊤j X−1

t y j

5 S ← S ∪ {i}
6 Xt+1 ← Xt + yiy⊤i
7 while |S | ≤ m
8 return S
9 end function

There remains the problem of how to select an initial set of designs S to start

from, such that X0 =
∑

j∈S y jy⊤j = Y:S Y⊤:S is non-singular. This is equivalent to

44

the problem of finding a subset of vectors in {y j}
n
j=1 that can span Rk. We select

this sized-k subset S 0 to be the first k pivot columns from QR factorization with

column pivoting [49, 51] on Y , with time complexity O((n + k)k2).

Greedy method for time-constrained experiment design. We here move on

to the realistic case in AutoML pipeline selection: which pipelines should we

select to gain an accurate estimate of the entire pipeline space? In this setting,

each pipeline is associated with a different cost. We characterize the cost as

running time, and form the time-constrained version of experiment design as

maximize log det
(∑

j∈S y jy⊤j
)

subject to
∑

j∈S t̂ j ≤ τ

S ⊆ [n],

(3.6)

in which {t̂i}
n
i=1 are the estimated pipeline running times. The payoff of adding

design i in the t-th step can thus be formulated as y⊤i X−1
t yi

t̂i
, giving Algorithm 6 the

greedy method to solve Problem 3.6.

Algorithm 6 Greedy algorithm for time-constrained D-design

Input: design vectors {y j}
n
j=1, in which y j ∈ R

k; estimated running time of
pipelines {t̂i}

n
i=1; maximum running time τ; initial set of designs S 0 ⊆ [n],

s.t. X0 =
∑

j∈S 0
y jy⊤j is non-singular

Output: The selected set of designs S ⊆ [n]
1 function GREEDY ED TIME
2 S ← S 0

3 do
4 i← argmax j∈[n]\S

y⊤j X−1
t y j

t̂ j

5 S ← S ∪ {i}
6 Xt+1 ← Xt + yiy⊤i
7 while

∑
i∈S t̂i ≤ τ

8 return S
9 end function

The initialization problem is solved similarly by the QR method. Given run-

time limit τ, we select among columns with corresponding pipelines predicted

45

to finish within τ
2k . Pseudocode for this initialization algorithm is shown as Al-

gorithm 7.

Algorithm 7 Initialization of the greedy algorithm for time-constrained D-
design, by QR factorization with column pivoting

Input: design vectors {y j}
n
j=1, in which y j ∈ R

k; (predicted) running time of all
pipelines {t̂i}

n
i=1; maximum running time τ

Output: A subset of designs S 0 ⊆ [n] for Algorithm 6 initialization
1 function QR INITIALIZATION
2 S valid ← {i ∈ [n] : t̂i ≤

τ
2k }

3 S 0 ← ∅, t̂sum ← 0
4 if |S valid| < k then ▷ Case 1
5 do
6 i← argmin j∈[n]\S t̂ j

7 S 0 ← S 0 ∪ {i}
8 t̂sum ← t̂sum + t̂i

9 while t̂sum ≤ τ
10 else ▷ Case 2
11 S 0 ← QR with column pivoting(Y:S valid)[: k]
12 end if
13 return S 0

14 end function

A corner case of Algorithm 7, shown as Case 1, is that there are not enough

pipelines predicted to be able to finish within time limit. This corresponds to

the case that the runtime limit is relatively small compared to the time of fitting

pipelines on current dataset. In this case we greedily select the fast pipelines

and do not run Algorithm 6 afterwards.

As a side note, the assumption that performance of different pipelines are

predicted with equal variance is not quite realistic, especially when some com-

ponents have much more pipelines than others. If the variance is known (but

unequal), we obtain a weighted least squares problem. In the error matrix E,

we can estimate the variance of prediction error of each pipeline j ∈ [n] by the

sample variance of e j − X⊤y j and select the promising pipelines with the goal of

46

minimizing the rescaled covariance. Practically, however, this rescaled method

does not systematically improve on the standard least squares approach in our

experiments (shown in Appendix B.2), so we retrench to the simpler approach.

3.3 Python implementation

The TensorOboe system follows Oboe, thus we have the implementation

in the same GitHub repository at https://github.com/udellgroup/

oboe. The basic API for class instantiation, meta-training and meta-test is

the same as in Oboe (introduced in Chapter 2, Section 2.4). We use the

sklearn.pipeline.Pipeline class to define pipelines.

3.4 Experiments and discussions

We use a Linux machine with 128 Intel® Xeon® E7-4850 v4 2.10GHz CPU cores

and 1056GB memory. Offline, we collect cross-validated pipeline performance

on meta-training datasets: 215 OpenML [130, 44] classification datasets with

number of data points between 150 and 10,000, listed in Appendix B.1.1. The

215 datasets are chosen alphabetically. Pipelines are combinations of the ma-

chine learning components shown in Appendix B.1.3, Table B.1, which lists 4

data imputers, 2 encoders, 2 standardizers, 8 dimensionality reducers and 183

estimators, resulting in 23,424 linear pipeline candidates in total.

47

3.4.1 Comparison with time-Constrained AutoML pipeline

build systems

In this section, we demonstrate the performance of TensorOboe as an AutoML

system for pipeline selection.

A naive approach for pipeline selection is to choose the one that on average

performs the best among all meta-training datasets, which we call the baseline

pipeline. Given the pipeline selection problem, it is common for human practi-

tioners to try out the best pipeline at the very beginning. On our meta-training

datasets, the baseline pipeline is: impute missing entries with the mode, encode

categorical features as integers, standardize each feature, remove features with

0 variance, and classify by gradient boosting with learning rate 0.25 and maxi-

mum depth 3. The baseline pipeline has an average ranking of 1568 among all

23,424 pipelines across all 215 meta-training datasets.

Human practitioners may also reduce the number of trials by choosing cer-

tain pipeline components to be the type that performs the best on average. Fig-

ure 3.5, however, shows that although some estimator types (gradient boosting

and multilayer perceptron) are commonly seen among the best pipelines, no

estimator type uniformly dominates the rest.

We compare TensorOboe with auto-sklearn [42], TPOT [97], and the baseline

pipeline in Figure 3.6. To ensure fair comparisons, we use a single CPU core for

each AutoML system. We allow each to choose from the same primitives. We

can see that:

1 All AutoML frameworks are able to construct pipelines that outperform the

48

gradient boosting - 38.60%

multilayer perceptron - 20.93%

kNN - 10.23%

adaboost - 8.84%

extra trees - 5.58%

logistic regression - 5.58%

decision tree - 3.72%

random forest - 3.26%

linear SVM - 1.86%

Gaussian naive Bayes - 1.40%

Figure 3.5: Which estimators work best? Distribution of estimator types in best
pipelines on meta-training datasets.

15 30 45 60 75 90 10
5

12
0

13
5

runtime limit (s)

1

2

3

4

ra
n

ki
n

g
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(a) OpenML (meta-LOOCV)

12
0

48
0

84
0

12
00

runtime limit (s)

2.0

2.5

3.0
m

et
a-

te
st

ra
n

ki
n

g
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(b) UCI (meta-test)

15 30 45 60 75 90 10
5

12
0

13
5

runtime limit (s)

1

2

3

4

ra
n

ki
n

g
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

TensorOboe

auto-sklearn

TPOT

baseline

Figure 3.6: Rankings of AutoML systems for pipeline search in a time-
constrained setting, vs the baseline pipeline. We meta-train on OpenML clas-
sification datasets and meta-test on UCI classification datasets [39]. Until the
first time the systems can produce a pipeline, we classify every data point with
the most common class label. Lower ranks are better.

baseline on average once the method returns a pipeline (for auto-sklearn, this

takes 30 seconds).

2 TensorOboe on average outperforms the competing methods and produces

meaningful pipeline configurations fastest.

3 With the longer running time in Figure 3.6(b), TensorOboe still outperforms

in most cases.

These results show that TensorOboe is able to accurately approximate the hyper-

49

0 20 40 60 80 100 120
runtime threshold (seconds)

75%

80%

85%

90%

95%

ob
se

rv
at

io
n

ra
ti

o

Figure 3.7: CDF of pipeline runtime on meta-training datasets.

parameter landscape. We discuss these results in greater detail in Section 3.4.5.

3.4.2 Tensor completion vs matrix completion for error tensor

completion

Given meta-training data {D,P,P(D)} on a subset of dataset-pipeline combina-

tions, a good surrogate model should accurately predict the performance of new

dataset-pipeline combinations.

Figure 3.7 shows that most pipelines run quickly on most datasets: for ex-

ample, over 90% finish in less than 20 seconds and over 95% finish in less than

80 seconds.

Figure 3.8 compares relative errors of predictions by tensor and matrix sur-

rogate models. For each runtime threshold, we treat pipeline-dataset combina-

tions with running time less than the threshold as training data, and those that

take longer than threshold and less than 120 seconds as test. We compute rela-

tive errors on test data, hence the name “runtime generalization”. To ensure a

fair comparison, we set the dataset and estimator ranks to be equal in the tensor

model, which is required for the matrix model, since column rank equals row

50

rank for a matrix. We can see that:

1. The tensor model outperforms the matrix model in nearly all cases, demon-

strating that the additional combinatorial structure provided by the tensor

model helps recover the combinatorial relationships among different pipeline

components.

2. Figure 3.8(b) shows the U-shaped error curve as we increase the dataset and

estimator ranks for both matrix and tensor models, moving from underfitting

(decreasing error) to overfitting (increasing error). Informed by these results,

we select both ranks to be 20, the rank in the middle, in the tensor surrogate

model.

3.4.3 Cold-start performance by greedy experiment design

We compare the performance of different approaches to solve the experiment

design problem, so as to choose which pipelines we should sample. Recall that

there are two approaches:

• Convexification: Solve the relaxed problem (Equation 3.6 with vi ∈ [0, 1],

∀i ∈ [n]) with an SLSQP solver, sort the entries in the optimal solution

v∗, and greedily add the pipeline with large v∗i until the runtime limit is

reached.

• Greedy: Solve the original integer programming problem (Equation 3.6)

by the greedy algorithm (Algorithm 6), initialized by time-constrained QR

(Algorithm 7).

51

5 10 15 20 25 30 35 40
dataset and estimator ranks

25

50

75

100

ru
nt

im
e

th
re

sh
ol

d
(s

ec
on

d
s)

0.50

0.75

1.00

1.25

1.50

ratio
of

relative
error:

m
atrix

to
ten

sor

(a) Runtime generalization for tensor vs matrix
models. Blue means the tensor model achieves
lower error; red means the matrix model does.
The tensor model outperforms for longer run-
ning times.

1 5 9 13 17 21 25 29 33 37

dataset and estimator ranks

0.0

0.1

0.2

0.3

re
la

ti
ve

er
ro

r

Runtime threshold: 90 seconds

(b) Tensor and matrix completion
errors when runtime threshold =
90 seconds (3.3% of entries in error
tensor missing).

5 10 15 20 25 30 35 40
dataset and estimator ranks

25

50

75

100

ru
nt

im
e

th
re

sh
ol

d
(s

ec
on

d
s)

0.0

0.2

0.4

0.6

0.8

relative
error

(c) Runtime generalization error by tensor
model. Darker colors mean smaller errors.

5 10 15 20 25 30 35 40
dataset and estimator ranks

25

50

75

100

ru
nt

im
e

th
re

sh
ol

d
(s

ec
on

d
s)

0.0

0.2

0.4

0.6

0.8

relative
error

(d) Runtime generalization error by ma-
trix model. Darker colors mean smaller
errors.

1 5 9 13 17 21 25 29 33 37

dataset and estimator ranks

0.0

0.1

0.2

0.3

re
la

ti
ve

er
ro

r

Runtime threshold: 90 seconds

tensor completion matrix completion

Figure 3.8: Tensor completion vs matrix completion for inferring pipeline per-
formance.

For our problem, the greedy approach is superior, since the convexification

method is prohibitive on our large 215× 23424 error matrix. Hence we compare

these methods on a subset of pipelines that only differ by estimators, 183 in

total. This setting matches an experiment in [141]. Shown in Figure 3.9, we can

see that:

1 The greedy method performs better for cold-start than convexification (Fig-

52

ure 3.9(a)): it selects informative designs that better predict the high-performing

pipelines (Figure 3.9(b)).

2 The greedy method is more than 30× faster than convexification, which allows

TensorOboe to devote its runtime budget to fitting pipelines instead of searching

for the informative pipelines.

3 Shown in Figure 3.9(d), the greedy algorithm still takes a fair amount of time

if the number of designs we select is large; however, the dataset ranks we choose

are less than 50, so it generally takes less than 10 seconds to choose informative

pipelines. This time can be further reduced using Lemma 2.

3.4.4 Pipeline runtime prediction performance

Runtime prediction accuracy is critical for the performance of our time-

constrained pipeline selection system. Recall that our predictions use order-3

polynomial regression on nD and pD, the numbers of data points and features

in D, and their logarithms. We shown in Table 3.1 that this runtime predictor

performs well.

3.4.5 Learning the hyperparameter landscapes

Hyperparameter landscapes plot pipeline performance with respect to hyper-

parameter values. While parameter landscapes have been extensively studied,

especially in the deep learning context (for example, [72, 82, 47]), hyperparam-

eter landscapes are less studied. The previous sections focus on how we can

choose among different pipeline component types. In this section, we show

53

1% 3% 5% 7% 9% 12
%

14
%

16
%

18
%

20
%

runtime limit ratio

0.01

0.02

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(a) Regret on the small error matrix
(215×183) for estimator search.

1% 3% 5% 7% 9% 12
%

14
%

16
%

18
%

20
%

runtime limit ratio

10−1

100

lo
g

el
ap

se
d

ti
m

e
(l

og
se

co
n

d
s)

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

20

40

60

80

100

120

nu
m

b
er

of
se

le
ct

ed
es

ti
m

at
or

s
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(b) ED runtime and selected estimators on
small error matrix (215×183) for estimator
search.

0.
00

5%

0.
01

5%

0.
02

5%

0.
03

5%

0.
04

5%

runtime limit ratio

0.01

0.02

0.03

0.04

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(c) Regret on the full error ma-
trix (215×23424) for pipeline search
(greedy method only).

0.
00

5%

0.
01

5%

0.
02

5%

0.
03

5%

0.
04

5%

runtime limit ratio

101

102

lo
g

el
ap

se
d

ti
m

e
(l

og
se

co
n

d
s)

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

100

200

300

400

500

nu
m

b
er

of
se

le
ct

ed
p

ip
el

in
es

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(d) ED runtime and selected pipelines on full
error matrix (215×23424) for pipeline search
(greedy method only).

1% 3% 5% 7% 9% 12
%

14
%

16
%

18
%

20
%

runtime limit ratio

0.01

0.02

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

convexification greedy

Figure 3.9: Comparison of time-constrained experiment design methods across
meta-training datasets. The y-axes in 3.9(a) and 3.9(c) are regrets: the difference
between minimum pipeline error found by each method and the true minimum.
The x-axes are runtime limit ratios: ratios of the runtime limit to the total run-
time of all pipelines on each dataset.

54

Table 3.1: Runtime prediction accuracy on OpenML datasets (TensorOboe)

Pipeline estimator type Runtime prediction accuracy
within factor of 2 within factor of 4

Adaboost 73.6% 86.9%
Decision tree 62.7% 78.9%
Extra trees 71.0% 83.8%
Gradient boosting 53.4% 77.5%
Gaussian naive Bayes 67.3% 82.3%
kNN 68.7% 84.4%
Logistic regression 53.6% 76.1%
Multilayer perceptron 74.5% 88.9%
Perceptron 64.5% 82.2%
Random Forest 69.5% 84.9%
Linear SVM 56.8% 79.5%

that our tensor surrogate model is able to learn hyperparameter landscapes of

different estimator types that exhibit qualitatively different behaviors.

Figure 3.10 shows some examples of both real and predicted hyperparam-

eter landscapes after running our system for 135 seconds. We can see that our

predictions match the overall tendencies of the curves. Larger plots (Figure B.3

in Appendix B.3) show our predictions also capture most of the small variations

in these landscapes.

Note TensorOboe does not use a subroutine for hyperparameter optimiza-

tion: it chooses the hyperparameter for each estimator from a predefined grid

of values instead of optimizing hyperparameters by, for example, Bayesian opti-

mization. The hyperparameter landscapes visualized here give confidence that

grid search effectively samples performant hyperparameter settings within the

range of hyperparameters: a coarse grid suffices.

55

0 200 400 600 800 1000
min samples split

0.0
0.1
0.2
0.3
0.4
0.5
0.6

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(a) Extra trees on OpenML Dataset 23
(1473 points, 10 features)

0 200 400 600 800 1000
min samples split

0.0
0.1
0.2
0.3
0.4
0.5
0.6

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(b) Decision tree on OpenML Dataset
1014 (797 points, 5 features)

2 4 6 8 10 12 14
k

0.0

0.1

0.2

0.3

0.4

0.5

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(c) kNN on OpenML Dataset 799
(1000 points, 6 features)

0 1 2 3 4
C

0.0

0.1

0.2

0.3

0.4

0.5

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(d) Logistic regression on OpenML
Dataset 40971 (1000 data points, 24
features)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
min samples split

0.430

0.435

0.440

0.445

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

true error predicted error

Figure 3.10: Hyperparameter landscape prediction examples.

3.5 Overfitting analysis

Two types of overfitting are of concern in AutoML systems: traditional overfit-

ting (overfitting of models on training folds) and meta-overfitting (overfitting

of AutoML surrogate models).

Traditional overfitting may happen in any machine learning system, and is

often mitigated by controlling model complexity, cross validation on training

set, etc. In TensorOboe, we always evaluate pipelines by k-fold cross validation,

and build an ensemble since the pipeline with lowest cross-validation error may

56

not be the one with lowest test error.

Meta-overfitting happens when meta-training datasets are biased in some

sense, and when the surrogate model is so complex that it captures noise in

addition to model performance. We mitigate meta-overfitting in the following

ways: The OpenML meta-training datasets we collect have diverse topics rang-

ing among multiple science and sociology disciplines. The surrogate model we

use is low rank tensor decomposition, a model with low complexity. It denoises

cross-validated pipeline error, as discussed in Chapter 2, Section 2.2.

Meta-overfitting still presents many perils. The surrogate model may lack

training instances. For example, the perceptron algorithm never performs the

best on any meta-training dataset, as shown in Figure 3.5. Hence TensorOboe

is unlikely ever to choose a perceptron pipeline. To mitigate this problem, we

must collect pipeline performance in a larger space, or consider if the perceptron

algorithm (for example) is truly dominated. Another possible source of meta-

overfitting is that our meta-training datasets have no more than 10,000 points

and smaller number of features. Order-3 polynomial runtime predictors may

not generalize well to larger problems.

57

CHAPTER 4

PEPPP: COLLABORATIVE FILTERING TO SELECT NETWORK

PRECISION

In this chapter, we present PEPPP [145], a system that uses meta learning to

automatically select a promising low-precision configuration for a new dataset

in the memory-constrained setting.

4.1 Introduction

Training modern-day neural networks is becoming increasingly expensive as

task and model sizes increase. The energy consumption of the corresponding

computation has increased alarmingly, and raises doubts about the sustainabil-

ity of modern training practices [109]. Low-precision training can reduce con-

sumption of both computation [30] and memory [117], thus minimizing the cost

and energy to train larger models and making deep learning more accessible to

resource-limited users.

Low-precision training replaces 32-bit or 64-bit floating point numbers with

fixed or floating point numbers that allocate fewer bits for the activations, opti-

mizers, and weights. A rich variety of methods appear in recent literature, in-

cluding bit-centering [30], loss scaling [92] and mixed-precision training [154].

There is however a fundamental tradeoff: lowering the number of bits of pre-

cision increases the quantization error, which may disrupt convergence and in-

crease downstream error [150, 28, 52]. The low-precision configuration is thus a

hyperparameter to be chosen according to the resource constraints of the prac-

titioner.

58

150 200 250 300
memory (MB)

0.0

0.2

0.4

0.6

0.8

te
st

er
ro

r

dominated

non-dominated

(a) error vs memory on
CIFAR-10 [77]

26% (189)

26% (186) 22% (157)

14% (105)

12% (85)5

6

7

8

9

(b) # activation bits in non-
dominated configurations

Figure 4.1: Test error vs memory for ResNet-18 across 99 low-precision float-
ing point configurations. Figure (a) shows the tradeoff on CIFAR-10. (Non-
dominated points are blue circles.) Figure (b) shows that the best precision to
use varies depending on the memory budget, on 87 image datasets. See Sec-
tion 4.4 for experimental details.

How should we choose this hyperparameter? Many believe the highest al-

lowable precision (given a memory budget) generally produces the lowest er-

ror model. However, there are typically many ways to use the same amount

of memory. As shown in Figure 4.1(a), some of these configurations produce

much lower error than others! Figure 4.1(b) shows that no one configuration

dominates all others. We might consult previous literature to choose a preci-

sion; but this approach fails for new applications.

Our goal is to efficiently pick the best low-precision configuration under

a memory budget. Efficiency is especially important for resource-constrained

practitioners, such as individual users or early-stage startups. To promote effi-

ciency, we use a meta-learning [81, 129, 61] approach: we train a small number

of cheap very-low-precision models on the dataset to choose the perfect preci-

sion. The gains from choosing the right low-precision format can offset the cost

of this extra training — but each precision must be chosen carefully to realize

the benefits of low-precision training.

We use ideas from multi-objective optimization to characterize the trade-

59

off between memory and error and identify the Pareto frontier: the set of non-

dominated solutions. Users will want to understand the tradeoff between error

and memory so they can determine the resources needed to adequately train a

model for a given machine learning task. This tradeoff may also influence the

design of application-specific low-precision hardware, with profound implica-

tions for the future [60]. For example, among all 99 low-precision configurations

we tried, we identified some configurations that are Pareto optimal across many

different tasks (listed in Appendix C.4). These results could help hardware man-

ufacturers decide which precision settings are worth manufacturing.

Computing the Pareto frontier by training models for all low-precision con-

figurations is expensive and unnecessary. Cloud computing platforms like

Google Cloud and Amazon EC2 charge more for machines with the same CPU

and double memory: 25% more on Google Cloud1 and 100% more on Amazon

EC22 as of mid-September 2021. We use techniques from meta-learning to lever-

age the information from other low-precision training runs on related datasets.

This approach allows us to estimate the Pareto frontier without evaluating all of

the low-precision configurations.

Our system, Pareto Estimation to Pick the Perfect Precision (PEPPP), has two

goals. The first goal is to find the Pareto frontiers of a collection of related tasks,

and is called meta-training in the meta-learning literature. Meta-training requires

a set of measurements, each collected by training and testing a neural network

with a given precision on a dataset. This information can be gathered offline

with a relatively large resource budget, or by crowdsourcing amongst the aca-

demic or open-source community. Still, it is absurdly expensive to exhaustively

1https://cloud.google.com/ai-platform/training/pricing
2https://aws.amazon.com/ec2/pricing/on-demand

60

evaluate all measurements: that is, every possible low-precision configuration

on every task. Instead, we study how to choose a subset of the possible mea-

surements to achieve the best estimate. The second goal we call meta-test: using

the information learned on previous tasks, how can we transfer that information

to a new task to efficiently estimate its Pareto frontier? This goal corresponds to

a resource-constrained individual or startup who wants to determine the best

low-precision configuration for a new dataset.

Both meta-training and meta-test rely on matrix completion and active learn-

ing techniques to avoid exhaustive search: we make a subset of all possible

measurements and predict the rest. We then estimate the Pareto frontier to help

the user make an informed choice of the best configuration. We consider two

sampling schemes: uniform and non-uniform sampling. Uniform sampling is

straightforward. Non-uniform sampling estimates the Pareto frontier more effi-

ciently by making fewer or even no high-memory measurements.

To the best of our knowledge, PEPPP is the first to study the error-memory

tradeoff in low-precision training and inference without exhaustive search.

Some previous works show the benefit of low-precision arithmetic in signifi-

cant energy reduction at the cost of a small accuracy decrease [56], and pro-

pose hardware-software codesign frameworks to select the desired model [79].

Many other papers focus on low-precision inference only and use it for model

compression [139, 21]. Another line of work seeks state-of-the-art (SOTA) per-

formance with low-precision training, using carefully designed learning sched-

ules [122, 123]. Our work imagines low-precision as a way to reduce training or

deployment costs of customized models trained on proprietary datasets (not

SOTA models on ML benchmarks). Even so, we show in Section 4.4 that our

61

compute
 configuration errors

meta-training
datasets 0.71 0.32

0.80 0.80 0.69 ...
0.68 0.45 ...

configurations
1 2 3 4

da
ta

se
ts

weights optimizer ...

Config 1 ...

Config 2 ...

...

new (meta-test)
dataset

matrix
factorization

Config 2
Config 1

Config 3 Config 4

error matrix configuration embeddings

select configurations
to evaluate

compute memories

0.74 0.32 ...

604 805 11051032 ...

configuration error

configuration memory

linear
regression

predicted
configuration error

0.62 0.80 0.74 0.32 ...

memory

te
st

 e
rr

or

memory
limit

 final selected
configuration

meta-training

meta-test

...

...
...

estimated non-dominated
estimated dominated
not valid (beyond memory limit)

Figure 4.2: The PEPPP workflow. We begin with a collection of (meta-) training
datasets and low precision configurations. In the meta-training phase, we sam-
ple dataset-configuration pairs to train, and compute the misclassification error.
We use matrix factorization to compute a low dimensional embedding of every
configuration. In the meta-test phase, our goal is to pick the perfect precision
(within our memory budget) for the meta-test dataset. We compute the mem-
ory required for each configuration, and we select a subset of fast, informative
configurations to evaluate. By regressing the errors of these configurations on
the configuration embeddings, we find an embedding for the meta-test dataset,
which we use to predict the error of every other configuration (including more
expensive ones) and select the best subject to our memory budget.

work picks promising models for every memory budget, which enables near-

SOTA results on CIFAR-10.

Figure 4.2 shows a flowchart of PEPPP. The rest of this work is organized

as follows. Section 4.2 describes the main ideas we use to actively sample con-

figurations and approximate Pareto frontiers. Section 4.4 shows experimental

results.

62

4.2 Methodology

PEPPP operates in two phases: meta-training and meta-test. First in meta-

training, we learn configuration embeddings by training a neural network

of a specific architecture at different low-precision configurations on different

datasets. As listed in Appendix C.1, we study image classification tasks and a

range of low-precision formats that vary in the number of bits for the exponent

and mantissa for the activations, optimizer, and weights. Our hope is to avoid

enumerating every possible configuration since exhaustive search is prohibitive

in practice. To this end, we make a few measurements and then predict the other

test errors by active learning techniques. We also compute the memory matrix

to understand the memory consumption of each measurement.

Then in meta-test, we assume that we have completed meta-training, and

hence know the configuration embeddings. The meta-test goal is to predict the

tradeoff between memory usage and test error on a new (meta-test) dataset.

This step corresponds to inference in traditional machine learning; it must be

quick and cheap to satisfy the needs of resource-constrained practitioners. To

select the configuration that has smallest test error and takes less than the mem-

ory limit, we measure a few selected (informative and cheap) configurations on

the meta-test dataset, and use the information of their test errors to predict the

rest. The problem of choosing measurements is known as the “cold-start” prob-

lem in the literature on recommender systems. Then we use the model built on

the meta-training datasets to estimate values for the other measurements on the

meta-test dataset.

63

activations optimizer weights
0

200

400

600

800

m
em

or
y

(M
B

) 872

85 42
136

37 6

full precision

low precision

Figure 4.3: Memory usage under two training paradigms. Both train a ResNet-
18 on CIFAR-10 with batch size 32.

4.2.1 Meta-training

On the n meta-training datasets, we first theoretically compute the memory

needed to evaluate each of the d low-precision configurations to obtain the full

memory matrix M ∈ Rn×d. The total memory consists of memory needed for

model weights, activations, and the optimizer (gradients, gradient accumula-

tors, etc.) [118]. Among these three types, activations typically dominate, as

shown in Figure 4.3. Thus using lower precision for activations drastically re-

duces memory usage. Additionally, empirical studies [154] have shown that

adopting higher precision formats for the optimizer can substantially improve

the accuracy of the trained model. Since the optimizer usually requires a rel-

atively small memory, it is often the best to use a higher precision format for

this component. Thus for each low-precision configuration, it is typical to use a

lower precision for network weights and activations, and a higher precision for

the optimizer, resulting in combinatorially many choices in total. An example

of the memory usage in this low-precision scenario is also shown in Figure 4.3.

In practice, ML tasks are often correlated: for example, meta-training

datasets might be subsets of a large dataset like CIFAR-100 or ImageNet. The

ranking of different configurations tends to be similar on similar tasks. For

64

0 40 80
dataset index

0

40

80

d
at

as
et

in
d

ex

C
IF

A
R

-1
00

Im
ag

eN
et

-1

0

1

(a) dataset correlation

0 10 20 30
index i

100

102

104

σ
i

(b) singular value decay

Figure 4.4: Kendall tau correlation of test error of all configurations between
all pairs of datasets, and singular value decay of corresponding error matrix.
Strong correlations allow PEPPP to succeed with a few measurements. Details
in Appendix C.1.

example, we computed the test errors of 99 low-precision configurations on

87 datasets (both listed in Appendix C.1) to form a performance vector in R99

for each dataset. We use the Kendall tau correlation to characterize the align-

ment between the ranking of errors incurred by different configurations on two

datasets: the Kendall tau correlation is 1 if the order is the same and -1 if the

order is reversed. As shown in Figure 4.4(a), similar datasets have larger cor-

relations: for example, datasets with indices 38 – 87 correspond to ImageNet

subproblems such as distinguishing types of fruit or boat. Notice also that some

dataset pairs have configuration performance rankings that are negatively cor-

related. The corresponding error matrix E concatenates the performance vector

for each dataset. It is not low rank, but its singular values decay rapidly, as

shown in Figure 4.4(b). Hence we expect low rank approximation of this matrix

from a few measurements to work well: it is not necessary to measure every

configuration.

In the uniform sampling scheme, we sample measurements uniformly at

random to obtain a partially observed error matrix PΩ(E). We then estimate the

65

full error matrix E using a low rank matrix completion method to form esti-

mate Ê. Here, we use SOFTIMPUTE [91, 57] (Algorithm 9, Appendix C.2). Using

the estimated error matrix Ê and computed memory matrix M, we compute

the Pareto frontier for each dataset to understand the (estimated) error-memory

tradeoff. Section 4.4 Figure 4.8 shows an example.

In the non-uniform sampling scheme, we sample measurements with non-

uniform probabilities, and use a weighted variant of SOFTIMPUTE, weighting

by the inverse sampling probability, to complete the error matrix [88]. Then

we estimate the Pareto frontier in the same way as above. Non-uniform sam-

pling is useful to reduce the memory needed for measurements. To this end, we

construct a probability matrix P by entry-wise transformation Pi j = σ(1/Mi j), in

which the monotonically increasing σ : R → [0, 1] maps inverse memory usage

to a sampling probability. In this way, we make more low-memory measure-

ments, and thus reduce the total memory usage.

4.2.2 Meta-test

Having estimated the embedding of each configuration, our goal is to quickly

compute the error-memory tradeoff on the meta-test dataset, avoiding the ex-

haustive search of all possible measurements.

We first compute the memory usage of each low-precision configuration on

the meta-test dataset. With this information and guided by meta-training, we

evaluate only a few (cheap but informative) configurations and predict the rest.

Users then finally select the non-dominated configuration with highest allow-

able memory. An example of the process is shown in Figure 4.5.

66

PEPPP uses Experiment Design with Matrix Factorization (ED-MF) de-

scribed below to choose informative configurations. With more time, ED-MF

evaluates more configurations, improving our estimates. We may also set a hard

cutoff on memory: we do not evaluate low-precision configurations exceeding

the memory limit. This setting has been studied in different contexts, and is

called active learning or sequential decision making.

ED-MF picks measurements to minimize the variance of the resulting esti-

mate. Specifically, we factorize the true (or estimated) error matrix E ∈ Rn×d (or

Ê) into its best rank-k approximation, and get dataset embeddings X ∈ Rn×k

and configuration embeddings Y ∈ Rd×k as E ≈ X⊤Y [46, 141]. On a meta-

test dataset, we denote the error and memory vectors of the configurations as

enew ∈ Rd and mnew ∈ Rd, respectively. We model the error on the new dataset as

enew = Y⊤xnew + ϵ ∈ Rd, where xnew ∈ Rk is the embedding of the new dataset and

ϵ ∈ Rd accounts for the errors from both measurement and low rank decomposi-

tion. We estimate the embedding xnew from a few measurements (entries) of enew

by least squares. Note that this requires at least k measurements on the meta-

test dataset to make meaningful estimations, in which k is the rank for matrix

factorization.

If ϵ ∼ N(0, σ2I), the variance of the estimator is
(∑

j∈S y jy⊤j
)−1

, in which y j is

the jth column of Y . D-optimal experiment design selects measurements on the

new dataset by minimizing (a scalarization of) the variance,

minimize log det
(∑

j∈S y jy⊤j
)−1

subject to |S | ≤ l

S ⊆ [d],

(4.1)

to find S , the set of indices of configurations to evaluate. The positive integer

67

150 200 250 300
memory (MB)

0

1

te
st

er
ro

r

memory limit

selected informative

estimated non-dominated

estimated dominated

not valid
(beyond memory limit)

final selected configuration

Figure 4.5: Meta-test on CIFAR-10. After meta-training on all other datasets
in Appendix C.1 Table C.1, we use ED-MF to choose six informative measure-
ments (orange squares) with a 275MB memory limit for each measurement on
CIFAR-10. Then we estimate test errors of other configurations by ED-MF, and
restrict our attention to configurations that we estimate to be non-dominated
(red x’s). Note some of these are in fact dominated, since we plot true (not esti-
mated) test error! Finally we select the estimated non-dominated configuration
with highest allowable memory (blue square).

l bounds the number of measurements. Given a memory cap mmax, we replace

the second constraint above by S ⊆ T , in which T = { j ∈ [d] | mnew
j ≤ mmax} is

the set of feasible configurations. Since Problem 4.1 is combinatorially hard, we

may either relax it to a convex optimization problem by allowing decision vari-

ables to have non-integer values between 0 and 1, or use a greedy method to in-

crementally choose measurements (initialized by measurements chosen by the

column-pivoted QR decomposition [51, 49]). We compare these two approaches

in Appendix C.3.

In Section 4.4.2, we compare ED-MF with competing techniques and show it

works the best to estimate the Pareto frontier and select the final configuration.

68

4.3 Python implementation

The code for PEPPP and experiments is in the GitHub repository at https:

//github.com/chengrunyang/peppp. We use QPyTorch [151] to simulate

low-precision formats on standard hardware. The lower and higher precision

formats are implemented as two quantization layers that are added to within the

forward pass of the regular architecture classes that inherit torch.nn.Module.

4.4 Experiments and discussions

The 87 datasets and 99 low-precision configurations in experiments are listed in

Appendix C.1. The datasets consist of natural and medical images from various

domains. Apart from CIFAR-10, the datasets include 20 CIFAR-100 partitions

from mutually exclusive subsets, based on the superclass labels. They also in-

clude 50 subsets of ImageNet [33], which contains over 20,000 classes grouped

into multiple major hierarchical categories like fungus and amphibian; each of

the 50 datasets come from different hierarchies. Finally, we use 16 datasets from

the visual domain benchmark [133] to increase the diversity of domains.

The 99 low-precision configurations use mixed-precision as described in Sec-

tion 4.2.1. Format A (for the activations and weights) uses 5 to 9 bits; Format B

(for the optimizer) ranges from 14 to 20 bits. For each, these bits may be split

arbitrarily between the exponent and mantissa. Across all configurations, we

use ResNet-18, ResNet-34 and VGG [114] variants (11, 13, 16, 19) with learning

rate 0.001, momentum 0.9, weight decay 0.0005 and batch size 32. Each training

uses only 10 epochs as an early stopping strategy [146] to prevent overfitting.

69

memory
te

st
 e

rr
or

(a) convergence

memory

te
st

 e
rr

or

upper boundary

(b) HyperDiff

true non-dominated
estimated non-dominated

Figure 4.6: Illustration of Pareto frontier metrics. (a) Convergence is the aver-
age distance from each estimated Pareto optimal point to its closest true point:
average(d1, d2, d3). (b) HyperDiff is the absolute difference in area of feasible re-
gions given by the true and estimated Pareto optimal points: the shaded area
between Pareto frontiers.

All the measurements take 35 GPU days on NVIDIA® GeForce® RTX 3090.

Developing a method to select the above hyperparameters at the same time

as the low-precision format is an important topic for future research, but not our

focus here. In Section 4.4.3 we demonstrate how PEPPP can naturally extend to

efficiently select both optimization and low-precision hyperparameters.

A number of metrics may be used to evaluate the quality of the obtained

Pareto frontier in a multi-objective optimization problem [140, 83, 3]: the dis-

tance between approximated and true frontiers (convergence), the uniformity

of the distances between neighboring Pareto optimal points (uniformity), how

well the frontier is covered by the approximated points (spread), etc. In our set-

ting, the memory is accurate and the test error is estimated, so we do not have

full control of the uniformity and spread of the 2-dimensional frontiers between

test error and memory. As illustrated in Figure 4.6, we evaluate the quality of

our estimated Pareto frontiers by the following two metrics:

Convergence [31] between the sets of true and estimated Pareto optimal points

P, P̂ is 1
|P̂|

∑
v∈P̂ dist(v,P), where the distance between point v and set P is

70

dist(v,P) = min{∥v − w∥ : w ∈ P}. This is a surrogate for the distance between

Pareto frontiers.

Hypervolume difference (HyperDiff) [155, 27, 140] is the absolute difference

between the volumes of solution spaces dominated by the true and estimated

Pareto frontiers. This metric improves with better convergence, uniformity, and

spread. Its computation requires an upper boundary for each resource.

When computing these metrics, we normalize the memories by proportion-

ally scaling them to between 0 and 1. To evaluate the matrix completion perfor-

mance, we use the relative error defined as ∥̂v−v∥/∥v∥, in which v̂ is the predicted

vector and v is the true vector.

4.4.1 Meta-training

We study the effectiveness of uniform and non-uniform sampling schemes. For

simplicity, we regard all 87 available datasets as meta-training in this section.

In SOFTIMPUTE, we use λ = 0.1 (chosen by cross-validation from a logarithmic

scale); and we choose a rank 5 approximation, which accounts for 78% of the

variance in the error matrix (as shown in Figure 4.4(b)).

In the uniform sampling scheme, we investigate how many samples we need

for accurate estimates: we sample the error matrix at a number of different ra-

tios, ranging from 5% to 50%, and complete the error matrix from each set of

sampled measurements. In uniform sampling, the sampling ratio is also the

percentage of memory we need to make the measurements in parallel, com-

pared to exhaustive search. Hence we show the relationship between Pareto

71

0.
1

0.
2

0.
3

0.
4

0.
5

sampling ratio

0.0

0.2

0.4

re
la

ti
ve

er
ro

r

CIFAR-10

(a) relative error

0.
1

0.
2

0.
3

0.
4

0.
5

sampling ratio

0.0

0.2

0.4

co
nv

er
ge

n
ce CIFAR-10

(b) convergence

0.
1

0.
2

0.
3

0.
4

0.
5

sampling ratio

0.0

0.2

0.4

H
yp

er
D

iff CIFAR-10

(c) HyperDiff

Figure 4.7: Pareto frontier estimation in PEPPP meta-training, with uniform
sampling of configurations. The violins show the distribution of the perfor-
mance on individual datasets, and the error bars (blue) show the range. The
red error bars show the standard deviation of the error on CIFAR-10 across 100
random samples of the error matrix. Figure (a) shows the matrix completion
error for each dataset; Figure (b) and (c) show the performance of the Pareto
frontier estimates. Modest sampling ratios (around 0.1) already yield good per-
formance.

frontier estimation performance and sampling ratio in Figure 4.7. We can see

the estimates are more accurate at larger sampling ratios, but sampling 20% of

the entries already suffices for good performance.

As a more intuitive example, Figure 4.8 shows the error-memory tradeoff

on CIFAR-10. Compared to the estimated Pareto optimal points at sampling

ratio 5%, the ones at 20% are closer to the true Pareto frontier (better conver-

gence), lie more evenly (better uniformity) and cover the true Pareto frontier

better (better spread), as shown by the respective convergence and HyperDiff

values. The non-uniform sampling scheme has a similar trend and is shown in

Appendix C.5.2.

72

150 200 250 300
memory (MB)

0.0

0.2

0.4

0.6

0.8

te
st

er
ro

r
(a) sampling ratio 5%

150 200 250 300
memory (MB)

0.0

0.2

0.4

0.6

0.8

te
st

er
ro

r

(b) sampling ratio 20%

150 200 250 300
memory (MB)

0.0

0.2

0.4

0.6

0.8
te

st
er

ro
r

dominated true non-dominated estimated non-dominated

Figure 4.8: Error vs memory on CIFAR-10 with true and estimated Pareto fron-
tiers from uniform sampling in PEPPP meta-training. A 20% uniform sample of
entries yields a better estimate of the Pareto frontier (convergence 0.03 and Hy-
perDiff 0.02) compared to a 5% sample (convergence 0.09 and HyperDiff 0.16).

4.4.2 Meta-leave-one-out cross-validation (meta-LOOCV)

Now suppose that we have already collected measurements on the meta-

training datasets to form a meta-training error matrix E (or its low rank approx-

imation Ê). On the meta-test dataset, PEPPP estimates the Pareto frontier by the

active learning technique ED-MF. We compare ED-MF with a few other active

learning techniques: Random selection with matrix factorization (RANDOM-

MF), QR decomposition with column pivoting and matrix factorization (QR-

MF) and two Bayesian optimization techniques (BO-MF and BO-FULL), to un-

derstand whether the strong assumptions in ED-MF (low rank and Gaussian

errors) are a hindrance or a help. An introduction to these techniques can be

found in Appendix C.5.1.

We use rank 3 for matrix factorization: Y:, j ∈ R
3 for each j ∈ [d]. In BO, we

tune hyperparameters on a logarithmic scale and choose the RBF kernel with

length scale 20, white noise with variance 1, and ξ = 0.01. Table 4.1 shows

the meta-LOOCV settings for each acquisition technique. We compare the tech-

73

Table 4.1: Meta-LOOCV experiment settings

meta-training error matrix memory cap on meta-test?

no yes

full I II
uniformly sampled III IV

non-uniformly sampled V VI

niques at a range of number of configurations to measure in each meta-LOOCV

split, resembling what practitioners do in hyperparameter tuning: evaluate an

informative subset and infer the rest. Setting I is the most basic, Setting IV

and VI are the most practical. We only show results of Setting I and IV in the

main paper, and defer the rest to Appendix C.5.

In Setting I, we do meta-LOOCV with the full meta-training error matrix

in each split and do not cap the memory for meta-test. This means we evaluate

every configuration on the meta-training datasets. We can see from Figure 4.9(a)

and 4.9(b) that:

• ED-MF stably outperforms under both metrics, especially with fewer mea-

surements.

• QR-MF overall matches the performance of ED-MF.

• BO-MF, BO-FULL and RANDOM-MF underperform ED-MF and QR-MF

at lower memory usage, but often match their performance with higher

memory.

Practitioners may have only collected part of the meta-training performance,

and desire or are limited by a memory cap when they do meta-test on the new

dataset. In Setting IV, we cap the single-configuration memory usage for meta-

test at 816MB, the median memory of all possible measurements across config-

74

5% 10%
relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(a) Setting I conver-
gence

5% 10%
relative memory usage

0

0.1

H
yp

er
D

iff
(m

ea
n
±

se
)

(b) Setting I HyperDiff

20% 40%
relative memory usage

0

0.07

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(c) Setting IV conver-
gence

20% 40%
relative memory usage

0

0.07

H
yp

er
D

iff
(m

ea
n
±

se
)

(d) Setting IV Hyper-
Diff5% 10%

relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

ED-MF (PEPPP) QR-MF BO-MF BO-full random-MF

Figure 4.9: Pareto frontier estimates in meta-LOOCV Setting I and IV (with a
20% meta-training sampling ratio and an 816MB meta-test memory cap). Each
error bar is the standard error across datasets. The x axis measures the memory
usage relative to exhaustively searching the permissible configurations. ED-MF
consistently picks the configurations that give the best PF estimates.

urations and datasets. Additionally, we uniformly sample 20% configurations

from the meta-training error matrix in each split. In Figure 4.9(c) and 4.9(d), we

can see similar trends as Setting I, except that QR-MF is slightly worse.

Ultimately, users would want to select a configuration that both achieves

a small error and takes lower memory than the limit. As shown in Figure 4.2,

PEPPP offers users the predicted Pareto frontier and chooses the non-dominated

configuration with the highest allowable memory and hence the lowest error.

We compare the acquisition techniques with the “random high-memory” base-

line that randomly chooses a configuration that takes the highest allowable

memory: an approach that follows the “higher memory, lower error” intuition.

Figure 4.10 shows an example.

Overall, among all approaches and across all memory usage, ED-MF out-

performs, especially at a smaller number of measurements. Compared to BO

techniques, ED-MF also enjoys the benefit of having less hyperparameters to

tune. Although techniques like QR-MF and RANDOM-MF are easier to imple-

ment, the additional cost of ED-MF is much smaller than the cost of making

measurements: neural network training and testing.

75

1 1.2 1.4
error on dataset

(relative to ED-MF)

ape
shorebird

housing
cartilaginous fish

foodstuff
substance

relation
spider

percussion
new world monkey

BO-MF

BO-full

Random-MF

random highest-memory

Figure 4.10: Relative performance with respect to ED-MF in meta-test Setting IV
when making 3 measurements (memory usage ∼10%) on 10 ImageNet parti-
tions. ED-MF outperforms in most cases.

4.4.3 Tuning optimization hyperparameters

Previously, we have shown that PEPPP can estimate the error-memory tradeoff

and select a promising configuration with other hyperparameters fixed. In prac-

tice, users may also want to tune hyperparameters like learning rate to achieve

the lowest error. In Appendix C.5.4, we tune the number of epochs and learn-

ing rate in addition to precision, and show that the methodology can be used in

broader settings.

4.4.4 Meta-learning across architectures

The meta-learning in previous sections were conducted on ResNet-18. In Ap-

pendix C.5.5, we show that on 10 ImageNet partitions, PEPPP is also capable

of estimating the error-memory tradeoff of ResNet-34, VGG-11, VGG-13, VGG-

16 and VGG-19 competitively. Moreover, the meta-learning across architectures

works better than considering each architecture separately.

76

4.5 Conclusion

We proposes PEPPP, a meta-learning system to select low-precision configura-

tions that leverages training information from related tasks to efficiently pick the

perfect precision given a memory budget. Built on low rank matrix completion

with active learning, PEPPP estimates the Pareto frontier between memory us-

age and model performance to find the best low-precision configuration at each

memory level. By reducing the cost of hyperparameter tuning in low-precision

training, PEPPP allows practitioners to efficiently train accurate models.

77

CHAPTER 5

TABNAS: RESOURCE-CONSTRAINED NEURAL ARCHITECTURE

SEARCH ON TABULAR DATASETS

This chapter presents TabNAS [142], a resource-constrained neural architec-

ture search method to search for feedforward networks on tabular datasets.

5.1 Introduction

It is often observed that to make a machine learning model better, one can scale

it up. However this is not always possible when machine learning models are

deployed since larger networks are also more expensive as measured by infer-

ence time, memory, energy, etc. These costs limit the application of large models:

training these models is unsustainable, and inference is often too slow to satisfy

end user requirements.

One of the most widespread applications of machine learning in industry is

tabular data in, e.g., finance, advertising and medicine. It was only recently that

in these applications deep learning was able to outperform classical tree-based

models [50, 70].

For vision, optimizing the models to make them suitable for practical de-

ployment often relies on Neural Architecture Search (NAS). Most NAS literature

targets these convolutional networks on vision benchmarks [86, 20, 62, 147]. De-

spite the practical importance of tabular data, NAS research on this topic is quite

limited [41, 40].

Weight-sharing allows us to reduce the cost of NAS by training a SuperNet

78

that is the superset of all architecture candidates [10]. This trained SuperNet

is then used to estimate the quality of the individual architectures, the so-called

child networks, by only activating a subset of components of that architecture and

running an evaluation. To efficiently find the most promising child networks,

Reinforcement Learning (RL) has shown to be effective [103, 20, 11] on vision

problems.

In our experiments, we observe that a direct application of the vision ap-

proaches for tabular data is suboptimal. We started from the TuNAS [11] ap-

proach from vision and observed that this struggled to find the optimal architec-

tures for tabular datasets. The failure is caused by the interaction of the search

space and the RL controller. In vision, a popular approach is to use a factorized

RL controller, which assumes that all choices can be made independently. The

search space consists of a limited number of options per layer. In tabular data,

we need more options per layer, but there are fewer layers overall. Feedfor-

ward networks with bottleneck structures often outperform other feed-forward

networks of similar size on tabular data. In such a bottleneck architecture, there

exists at least one hidden layer that is much narrower than its preceding and

following layers. A popular hypothesis is that its weights resemble the low-

rank factors of a wider network, and thus mimics the behavior of the latter with

less cost [74, 26]. These bottleneck structures often have a a very good tradeoff

between cost and quality (more examples in Appendix D.2.2, Table D.3), but

finding these bottleneck structures is difficult for a factorized RL controller. To

understand why, we consider the following toy example with 2 layers, illus-

trated in Figure 5.1. For the each layer, we can choose a layer size of 2, 3 or 4

and the maximum compute budget is set to 25. The optimal solution is to set

the size of layer 1 to 4 and layer 2 to 2. Finding this solution is difficult with

79

a cost penalty. The RL controller is initialized with uniform probabilities. As a

result, it is quite likely that the RL controller will initially be penalized heavily

when choosing option 4 for the first layer, since two thirds of the choices for the

second layer will result in a model that is too expensive. As a result, option 4

for the first layer is quickly discarded by the RL controller and we get stuck in a

local optimum.

To circumvent this problem, one could attempt to learn a non-factorized

probability distribution. However, this requires a more complicated model, e.g.,

an LSTM, that is often more difficult to tune. We propose a different solution in-

spired by rejection sampling. We only update the RL controller when the sam-

pled model satisfies our cost constraint. The RL controller is then discouraged

from sampling poor models within the cost constraint and encouraged to sam-

ple the high quality models. Rather than penalizing models which violates the

cost constraints, the controller silently discards them, thereby circumventing the

local optimum.

Our contributions can be summarized as follows:

• We first identify failure cases of existing resource-aware NAS methods on

tabular data, and link these cases to the cost penalty in the reward.

• We then propose and evaluate an alternative: a rejection mechanism which

ensures that the RL controller can only select architectures that satisfy the

user-specified resource constraint. Instead of reward shaping, this extra

rejection step allows the RL controller to explore parts of the search space

which would otherwise be overlooked.

• The rejection mechanism also introduces a systematic bias into the RL gra-

dient updates, which can skew the search results. To compensate for this

80

0 250 500
epochs

Abs
Reward
β = -1

Abs
Reward
β = -2

rejection
w/

estimated

sa
m

pl
in

g
pr

ob
ab

ilit
y

0

1

losses of 9 candidate
networks

parameters of 9
candidate networks

sampling probabilities of 9 candidate networks over time

Figure 5.1: A toy example for tabular NAS in the 2-layer search space with a 2-
dimensional input and a limit of 25 parameters. The left half shows the number
of parameters and loss of each candidate architecture in the search space. The
infeasible architectures have striped patch in the corresponding cells. The bot-
tom left cell squared in bold is the global optimal architecture with hidden size
1 = 4 and hidden size 2 = 2. The right half shows the change of sampling prob-
abilities in weight-sharing NAS with different RL rewards. Each cell represents
an architecture; the sampling probability value is shown both as a percentage
in the cell, and with the color intensity indicated by the right colorbar. The or-
ange bars on the top and right sides show the sampling probability distribution
among size candidates for each layer. With the Abs Reward, the sampling prob-
ability of each architecture is the product of sampling probabilities of its layer
sizes; with the rejection-based reward, the sampling probability of an infeasible
architecture is 0, and that of a feasible architecture gets reweighted by the sum
of probabilities of all feasible architectures. At epoch 500, the cell squared in
bold shows the architecture picked by the corresponding RL controller. RL with
the Abs Reward Q(x) + β|T (x)/T0 − 1| proposed in TuNAS [11] either converges
to a feasible but suboptimal architecture (β = −2, middle row) or violates the
resource constraint (β = −1, top row). Other latency-aware reward functions
show similar failures. In contrast, our new rejection-based controller converges
to the optimal solution (bottom row).

81

0 2 4 6 8 10
time relative to stand-alone training

0.445

0.446

0.447

lo
ss

RL with rejection-based reward (num_parameters 41,153)
RL with TuNAS reward (num_parameters target 41,153)
random sampling (num_parameters in [40000, 42000])
skyline (num_parameters in [40000, 42000])

Figure 5.2: Rejection-based reward distributionally outperforms random search
and resource-aware Abs Reward on the Criteo dataset within a 3-layer search
space. All error bars and shaded regions are 95% confidence intervals. The
x axis is the time relevant to training a single architecture in the search space.
Results of random sampling comes from 100 independent runs on 50 architec-
tures within the number of parameters range. The result of each RL method
comes from 5 independent runs. The skyline is the performance of 3 indepen-
dent retrains of the best architecture that is found by 3 independent exhaustive
searches. More details in Appendix D.2.2.

bias, we introduce a theoretically motivated and empirically effective cor-

rection into our gradient updates. This correction can be computed exactly

for small search spaces, and we show how to efficiently approximate it with

Monte-Carlo sampling when the space is large.

These contributions form TabNAS, our RL-based weight-sharing NAS with

the rejection-based reward that can robustly and efficiently find a feasible archi-

tecture that has optimal performance within the resource constraint. Figure 5.2

shows an example.

82

5.2 More notations and terminologies

In addition to the notations and terminologies defined in Section 1.2, we use

more defined as below for this chapter.

Math basics. We use stop grad(f) to denote the constant value (with gra-

dient 0) corresponding to a differentiable quantity f . This is equivalent to

tensorflow.stop gradient(f) in TensorFlow [1] or f.detach() in Py-

Torch [100]. ∇ denotes the gradient with respect to the variable in the context.

Weight, architecture, and hyperparameter. We use weights to refer to the pa-

rameters of the neural network and are trained in the neural network training.

The architecture of a neural network is the structure of how nodes are connected;

examples of architectural choices are hidden layer sizes and activation types.

Hyperparameters are the the non-architectural parameters that control the train-

ing process of either stand-alone training or RL, including learning rate, opti-

mizer type, optimizer parameters, etc.

Neural architecture. A neural network with specified architecture and hyper-

parameters is called a model. We only consider fully-connected feedforward net-

works (FFNs) in this work, since they can already achieve SOTA performance on

tabular datasets [70]. The number of hidden nodes after each weight matrix and

activation function is called a hidden layer size. We denote a single network in

our search space with hyphen-connected choices. For example, when searching

for hidden layer sizes, in the space of 3-hidden-layer ReLU networks, 32-144-

24 denotes the candidate where the sizes of the first, second and third hidden

layers are 32, 144 and 24, respectively. We only search for ReLU networks; for

brevity, we will not mention the activation function type in the sequel.

83

Loss-resource tradeoff and reference architectures. As shown in the tradeoff

plots in Figure 5.3, within the hidden layer size search space, the validation

loss in general decreases with the increase of the number of parameters, giving

the loss-resource tradeoff. Loss and number of parameters can be understood

as two costs for the NAS problem. Thus there are Pareto-optimal models that

achieve the smallest loss among all models with a given bound on the number

of parameters. With an architecture that outperforms others with a similar or

fewer number of parameters, we do resource-constrained NAS with the number

of parameters of this architecture as the resource target or constraint. We call this

architecture the reference architecture (or reference) of NAS, and its performance

the reference performance. We do NAS with the goal of matching (the size and

performance of) the reference. Note that the RL controller only has knowledge

of the number of parameters of the reference, and is not informed of its hidden

layer sizes.

Search space. When searching L-layer networks, we use capital letters like X =

X1- ··· -XL to denote the random variable of sampled architectures, in which Xi is

the random variable for the size of the i-th layer. We use lowercase letters like

x = x1- ··· -xL to denote an architecture sampled from the distribution over X, in

which xi is an instance of the i-th layer size. When there are multiple samples

drawn, we use a bracketed superscript to denote the index over samples: x(k)

denotes the k-th sample. The search space S = {si j}i∈[L], j∈[Ci] has Ci choices for the

i-th hidden layer, in which si j is the j-th choice for the size of the i-th hidden

layer: for example, when searching for a one-hidden-layer network with size

candidates {5, 10, 15}, we have s13 = 15.

Reinforcement learning. The RL algorithm learns the set of logits {ℓi j}i∈[L], j∈[Ci],

84

0.0 0.5 1.0 1.5 2.0
parameters

1e5

0.442

0.446

0.450

0.454

lo
g

lo
ss 32-144-24

 (reference architecture)
other architectures
parameters
 40,000 to 42,000

Figure 5.3: Tradeoff between loss and number of parameters on Criteo within
a 3-layer search space. The search space and Pareto-optimal architectures are
shown in Appendix D.2.2. We use logistic loss as the loss metric. When training
each architecture 5 times, the standard deviation (std) across different runs is
0.0002, meaning that the architectures whose performance difference is larger
than 2× std are qualitatively different with high probability.

in which ℓi j is the logit associated with the j-th choice for the i-th hidden layer.

With a fully factorized distribution of layer sizes (we learn a separate distribu-

tion for each layer), the probability of sampling the j-th choice for the i-th layer

pi j is given by the SoftMax function: pi j = exp(ℓi j)/
∑

j∈[Ci] exp(ℓi j). In each RL

step, we sample an architecture y to compute the single-step RL objective J(y),

and update the logits with ∇J(y): an unbiased estimate of the gradient of the RL

value function.

Resource metric and number of parameters. We use the number of parameters,

which can be easily computed for neural networks, as a cost metric in this work.

Our approach does not depend on the specific cost used.

5.3 Methodology

The methodologies we use for NAS can be decomposed into three main compo-

nents: weight-sharing with layer warmup, REINFORCE with one-shot search,

85

and Monte Carlo (MC) sampling with rejection.

As an overview, our method starts with a SuperNet, which is a network that

layer-wise has width to be the largest choice within the search space. We first

stochastically update the weights of the entire SuperNet to “warm up” over

the first 25% of search epochs. Then we alternate between updating the shared

model weights (which are used to estimate the quality of different child mod-

els) and the RL controller (which focuses the search on the most promising parts

of the space). In each iteration, we first sample a child network from the cur-

rent layer-wise probability distributions and update the corresponding weights

within the SuperNet (weight update), then sample another child network to up-

date the layerwise logits that give the probability distributions (RL update). The

latter RL update is only performed if the sampled network is feasible, in which

case we use rejection with MC sampling to update the logits with a sampling

probability conditional on the feasible set.

To avoid overfitting, we split the labelled portion of a dataset into training

and validation splits. Weight updates are carried out on the training split; RL

updates are performed on the validation split.

5.3.1 Weight sharing with layer warmup

The weight-sharing approach has shown success on various computer vision

tasks and NAS benchmarks [103, 10, 20, 11]. To do search for an FFN on tabular

datasets, we build a SuperNet where the size of each hidden layer is the largest

value in the search space. Figure 5.4 shows an example. When we sample a

child network with a hidden layer size ℓi smaller than the SuperNet, we only

86

in
pu

t
re

pr
es

en
ta

tio
n

hidden layers

1st 2nd

output layer

Figure 5.4: Illustration of weight-sharing on two-layer FFNs for a binary classi-
fication task. The edges denote weights, and arrows at the end of lines denote
activations. The circles denote hidden nodes, and the two squares in the output
layer denote the output logits. The search space of the size of each hidden layer
is {2, 3, 4}, thus the SuperNet is a two-layer network with size 4-4. At this mo-
ment, the controller picks the child network 3-2 in the SuperNet 4-4, thus only
the first 3 hidden nodes in the first hidden layer and the first 2 hidden nodes in
the second hidden layer, together with the connected edges (in red), are enabled
to compute the output logits.

use the first ℓi hidden nodes in that layer to compute the output in the forward

pass. In weight updates, only the weights in the child network are updated in

the backward pass. In RL updates, only the weights of the child network are

used to estimate the quality reward that is used to update logits.

In weight-sharing NAS, warmup helps to ensure that the SuperNet weights

are sufficiently trained to properly guide the RL updates [11]. With probability

p, we train all weights of the SuperNet, and with probability 1− p we only train

the weights of a random child model. When we run architecture searches for

FFNs, we do warmup in the first 25% epochs, during which the probability p

linearly decays from 1 to 0 (Figure 5.5(a)). The RL controller is disabled during

this period.

87

5.3.2 One-shot training and REINFORCE

We do NAS on FFNs with a REINFORCE-based algorithm. Previous works

have used this type of algorithm to search for convolutional networks on vision

tasks [124, 20, 11].

When searching for L-layer FFNs, we learn a separate probability distribu-

tion over Ci size candidates for each layer. The distribution is given by Ci logits

via the SoftMax function. Each layer has its own independent set of logits. With

Ci choices for the ith layer, where i = 1, 2, ··· , L, there are
∏

i∈[L] Ci candidate

networks in the search space but only
∑

i∈[L] Ci logits to learn. This technique

significantly reduces the difficulty of RL and make the NAS problem practically

tractable [20, 11].

The REINFORCE-based algorithm trains the SuperNet weights and learns

the logits {ℓi j}i∈[L], j∈[Ci] that give the sampling probabilities {ℓi j}i∈[L], j∈[Ci] over size

candidates by alternating between weight and RL updates. In each iteration, we

first sample a child network x from the SuperNet and compute its training loss

in the forward pass. Then we update the weights in the child network with gra-

dients of the training loss computed in the backward pass. This weight update

step trains the weights of the sampled network. The weights in the architectures

with larger sampling probabilities are sampled and thus trained more often. We

then update the logits for the RL controller by sampling a child network y that is

independent of the network x from the same layerwise distributions, compute

the quality reward Q(y) as 1 − loss(y) on the validation set, and then update the

logits with the gradient of J(y) = stop grad(Q(y) − Q̄) logP(y): the product of

the advantage of the current network’s reward over past rewards (usually an

exponential moving average) and the log-probability of the current sample.

88

The alternation creates a positive feedback loop that trains the weights and

updates the logits of the large-probability child networks; thus the layer-wise

sampling probabilities gradually converge to more deterministic distributions,

under which one or several architectures are finally selected.

Details of a resource-oblivious version is shown as Algorithm 11 in Ap-

pendix D.1, which does not take into account a resource constraint. In Sec-

tion 5.3.3, we show an algorithm that combines Monte-Carlo sampling with

rejection sampling, which serves as a subroutine of Algorithm 11 by replacing

the probability in J(y) with a conditional version.

5.3.3 Rejection-based reward with MC sampling

Only a subset of the architectures in the search space S will satisfy our resource

constraints, V denotes this set of feasible architectures. To find a feasible archi-

tecture, a resource target T0 is often used in an RL reward. Given an architec-

ture y, a latency-aware reward combines its quality Q(y) and resource consump-

tion T (y) into a single reward. MnasNet [124] proposes the reward functions

Q(y) × (T (y)/T0)β and Q(y) × max{1, (T (y)/T0)β} while TuNAS [11] proposes the

absolute value reward (or Abs Reward) Q(y)+β|T (y)/T0−1|. In these approaches

β is a hyperparameter that needs careful tuning. The idea behind these reward

functions is to encourage models with high quality with respect the resource

target.

We found that in tabular data experiments, RL controllers using these

resource-aware rewards above can struggle to discover bottleneck structures –

where we select a large number of filters for the ith layer of the network but a

89

small number of filters for the i+1st layer. Figure 5.1 shows a toy example in the

search space in Figure 5.4, in which we know the validation losses of each child

network and only train the RL controller for 200 steps. The optimal network is

4-2 among architectures with number of parameters no more than 25, but the

RL controller rarely chooses it. In Section 5.4.1, we show examples of this on

real datasets.

Such a phenomenon reveals a gap between the true distribution we want to

sample from and the distributions given by factorized search space that we are

truly sampling from:

• We only want to sample from the set of feasible architectures V , whose dis-

tribution is {P(y | y ∈ V)}y∈V . The number of parameters (or another resource

metric) of an architecture, and thus its feasibility, is determined jointly by

the sizes of all layers.

• On the other hand, the factorized search space determines that we learn

a separate (independent) probability distribution for the choices of each

layer. While this distribution is efficient to learn, the independence as-

sumption makes it difficult for a RL controller with a resource-aware re-

ward to choose a bottleneck structure. A bottleneck requires the controller

to select large sizes for some layers and small layer sizes for others. But

decisions for different layers are made independently, and both very large

and very small layer sizes, when selected independently of each other, have

very negative expected rewards. Small layers are likely to have suboptimal

quality, and large layers are likely to exceed the resource constraints.

To bridge the gap and efficiently learn layerwise distributions that take into

account the architecture feasibility, we propose a rejection-based RL reward for

90

Algorithm 11. We next sketch the idea; detailed pseudocode is provided as

Algorithm 12 in Appendix D.1.

REINFORCE optimizes a set of logits {ℓi j}i∈[L], j∈[Ci] which define a probabil-

ity distribution p over architectures. In the original REINFORCE algorithm, we

sample a random architecture y from p and then estimate its quality Q(y). Up-

dates to the logits ℓi j take the form ℓi j ← ℓi j + η
∂
∂ℓi j

J(y), where η is the learning

rate,

J(y) = stop grad(Q(y) − Q) · logP(y)

and Q is a moving average of recent rewards. If y is better (resp. worse) than av-

erage then Q(y)−Q will be positive (resp. negative), so the REINFORCE update

will increase (resp. decrease) the probability of sampling the same architecture

in the future.

In our new REINFORCE variant, motivated by rejection sampling, we skip

the REINFORCE update to the logits unless y is feasible. And if y is feasible,

we replace the probability P(y) in the REINFORCE update equation with the

conditional probability P(y | y ∈ V) = P(y)/P(y ∈ V). So J(y) becomes

J(y) = stop grad(Q(y) − Q) · log
[
P(y)/P(y ∈ V)

]
.

We can compute the probability of sampling a feasible architectureP(V) := P(y ∈

V) exactly when the search space is small, but that becomes prohibitively expen-

sive when the space is large. In the latter case, we replace the exact probability

P(y) with a differential approximation P̂(y) obtained using Monte-Carlo (MC)

sampling. In each RL step, we sample N architectures {z(k)}k∈[N] within the search

space with a proposal distribution q, and get

P̂(V) =
1
N

∑
k∈[N]

p(k)

q(k) · 1(z(k) ∈ V)

91

as an estimate of P(V). For each k ∈ [N], p(k) is the probability of sampling

z(k) with the factorized layerwise distributions, and is thus differentiable with

respect to the logits. In contrast, q(k) is the probability of sampling z(k) with the

proposal distribution, and is therefore non-differentiable.

We show P̂(V) is an unbiased and consistent estimate of P(V), and

∇ log[P(y)/P̂(V)] is a consistent estimate of ∇ log[P(y | y ∈ V)] (Appendix D.7). A

larger N gives better results (Section D.5); in our experiments, we need smaller

than the size of the sample space to get a faithful estimate (Figure 5.5(b), Sec-

tion 5.4.3 and Appendix D.3) because neighboring RL steps can correct the esti-

mates of each other. We set q = stop grad(p) in our experiments for convenience:

use the current distribution over architectures for MC sampling. Other distri-

butions that have a larger support on V may be used to reduce the sampling

variance (Appendix D.7).

At the end of NAS, we pick the layer sizes with largest sampling probabil-

ities as the found architecture if the layerwise distributions are deterministic,

or sample the distributions m times and pick n feasible architectures with the

largest number of parameters if not. Appendix D.1 Algorithm 13 provides the

full details of this procedure. Although it is cheap to use larger values, we find

m = 500 and n ≤ 3 suffice to find an architecture that can match the reference

architecture in our experiments.

In practice, we find that the distributions often (almost) converge after 2×

of the number of epochs used to train stand-alone child networks, while the

distributions are often informative enough after 1× epochs, in the sense that the

architectures found by Algorithm 13 are competitive.

92

0 15 30 45 60
epochs

0.0

0.5

1.0

wa
rm

up
 p

ro
b

(a) Warmup probability

0 30 60 90 120
epochs

0

1

va
lid

 p
ro

b estimated
 (N=2048)
true

(b) Valid probability

Figure 5.5: Example layer warmup and valid probabilities. Figure 5.5(a) shows
our schedule of layer warmup probabilities: linearly decay from 1 to 0 in the
first 25% epochs. Figure 5.5(b) shows an example of the change of true and
estimated valid probabilities (P(V) and P̂(V)) in a successful search, with 8,000
architectures in the search space and the number of Monte-Carlo samples N =
1024. Both probabilities are (nearly) constant during warmup before RL starts,
then start to increase when the RL starts because of rejection sampling.

Figure 5.1 show that our rejection-based method finds the best feasible ar-

chitecture, 4-2, in our toy example, when using the P̂(V) estimated by MC sam-

pling.

5.4 Experiments and discussions

We ran all experiments using TensorFlow on a Cloud TPU v2 with 8 cores. We

use a 1,027-dimensional input representation for Criteo, 180 features for Volk-

ert and 128 features for Aloi1. More experiment setup details can be found in

Appendix D.2.

1Our paper takes these features as given. It is worth noting that methods proposed in feature
engineering works like [73] and [84] are complementary to and can work together with TabNAS.

93

0 15 30 45 60
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 1
0

1

pr
ob

ab
ilit

y

(a) Layer 1 (final
choice 32)

0 15 30 45 60
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 2

0

1

pr
ob

ab
ilit

y

(b) Layer 2 (final
choice 64)

0 15 30 45 60
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 3

0

1

pr
ob

ab
ilit

y

(c) Layer 3 (final
choice 96)

0 15 30 45 60
epochs

0.445

0.450

lo
g

lo
ss

32-64-96 (41,345 params)
32-144-24 (41,153 params)

(d) Retrain perfor-
mance

Figure 5.6: Failure case of the Abs Reward on Criteo in a search space of 3-layer
FFNs. The change of sampling probabilities and comparison of retrain perfor-
mance between the 32-144-24 reference and the 32-64-96 architecture found with
the Q(x)+β|T (x)/T0−1|Abs Reward, the target for the reward was 41,153 param-
eters. Repeated runs of the same search find the same architecture. Figure 5.6(d)
shows the change of validation losses across 5 retrains of 32-64-96 (NAS-found)
and 32-144-24 (reference).

5.4.1 When do previous RL rewards fail?

Section 5.3.3 discussed the resource-aware RL rewards and highlighted a poten-

tial failure case. In this section, we show several failure cases of the resource-

aware rewards Q(x)(T (x)/T0)β, Q(x) max{1, (T (x)/T0)β} and Q(x)+β|T (x)/T0−1| on

our tabular datasets; more failure cases can be found in Appendix D.3.

Criteo – 3 Layer Search Space

We use the 32-144-24 reference architecture, which has 41,153 parameters. Fig-

ure 5.3 gives an overview of the costs and the losses of all architectures in the

search space. The search space requires us to choose one of 20 possible sizes for

each hidden layer in the network; details are discussed in Appendix D.3. We set

the maximum inference cost to 42,000 parameters. The search has 1.7× the cost

of a stand-alone training run.

Failure of latency rewards. Figure 5.6 shows the sampling probabilities from

94

the search when using the Abs Reward Q(x) + β|T (x)/T0 − 1|, and the retrain

performance of the found architecture 32-64-96.

In Figures 5.6(a) – 5.6(c), we can see that the sampling probabilities for the

different choices are uniform during warmup and then converge quickly. The

final selected model (32-64-96) is much worse than the reference model (32-144-

24) even though the reference model is actually less expensive. We also ob-

served similar failures for the MnasNet rewards. With the MnasNet rewards,

the RL controller also struggles to find a model within ±5% of the constraint

despite a grid search of the RL parameters (details in Appendix D.2). In both

cases, almost all found models are worse than the reference architecture.

The RL controller is to blame. To verify that a low quality SuperNet was not

the culprit, we trained a SuperNet without updating the RL controller, and man-

ually inspected the quality of the resulting SuperNet. The sampling probabil-

ities for the RL controller remained uniform throughout the search; the rest of

the training setup was kept the same. At the end of the training, we compare

two sets of losses on each of the child networks: the validation loss from the

SuperNet (one-shot loss), and the validation loss from training the child network

from scratch. Figure 5.7(a) shows that there is a strong correlation between these

accuracies; Figure 5.7(b) shows RL that starts from the sufficiently trained Su-

perNet weights in 5.7(a) still chooses the suboptimal choice 64. This suggests

that the suboptimal search results on Criteo are likely due to issues with the

RL controller, rather than issues with the one-shot model weights. In a 3 layer

search space we can actually find good models without the RL controller, but in

a 5 layer search space, we found an RL controller whose training is interleaved

with the SuperNet is important to achieve good results.

95

0.443 0.448 0.453
stand-alone loss

0.43

0.44

0.45

on
e-

sh
ot

 lo
ss

(a) SuperNet calibration on
Criteo, 3-layer networks

015 60 100
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 2

0

1

pr
ob

ab
ilit

y

(b) Layer 2 with further de-
layed RL (final choice 64)

Figure 5.7: SuperNet calibration on Criteo among 3-layer networks (with search
space in Appendix D.2), and the Layer 2 change of probabilities in a search
with the same number of epochs for only SuperNet training. The y coordi-
nates in Figure (a) are from a SuperNet trained with the same hyperparameters
as the search in Figure 5.6, except that there are no RL updates in the first 60
epochs; the x coordinates are from stand-alone training of architectures with
performance standard deviation 0.0003, with each errorbar spanning a range of
0.0006. Figure (a) has a 0.96 Pearson correlation coefficient.

Volkert – 4 Layer Search Space

We search for 4-layer and 9-layer networks on the Volkert dataset2; details are in

Appendix D.3. For resource-aware RL rewards, we ran a grid search over the RL

learning rate and β hyperparameter. The reference architecture for the 4 layer

search space is 48-160-32-144 with 27,882 parameters. Despite a hyperparame-

ter grid search, it was difficult to find models with the right target cost reliably

using the MnasNet rewards. Using the Abs Reward (Figure 5.8), searched mod-

els met the target cost but their quality was suboptimal, and the trend is similar

to what has been shown in the toy example (Figure 5.1): a smaller |β| gives an

infeasible architecture that is beyond the reference number of parameters, and

a larger |β| gives an architecture that is feasible but suboptimal.

2https://www.openml.org/d/41166

96

0 30 60 90 120
epochs

0.31
0.33
0.35

ba
la

nc
ed

 lo
ss

80-64-32-144 (27,946 params)
 (found by Abs Reward)
48-160-32-144 (27,882 params)
 (reference)

(a) β = −10, RL learning rate η =
0.001

0 30 60 90 120
epochs

0.31
0.33
0.35

ba
la

nc
ed

 lo
ss

96-48-32-96 (27,738 params)
 (found by Abs Reward)
48-160-32-144 (27,882 params)
 (reference)

(b) β = −25, RL learning rate η =
0.001

Figure 5.8: On Volkert, the retrain performance of two Q(x)+β|T (x)/T0−1|-found
architectures versus the 48-160-32-144 reference. Each architecture is trained 5
times with the same setting. The plots of layer-wise sampling probabilities like
Figure 5.6(a) – 5.6(c) are omitted for brevity.

A Common Failure Pattern

Looking back at the failure modes on Criteo and Volkert, we can see that the ref-

erence architectures on which the RL controller with soft constraint fails often

have a bottleneck structure. For example, with a 1,027-dimensional input repre-

sentation, the 32-144-24 reference on Criteo has bottleneck 32; with 180 features,

the 48-160-32-144 reference on Volkert has bottleneck 32. More examples can be

found in Appendix D.3. As the example in Section 5.3.3 shows, the wide hid-

den layers around the bottlenecks get penalized harder in the search, and it is

thus more difficult for RL with the Abs Reward to find a model that can match

the reference performance. Also, Appendix D.2.2 shows the Pareto-optimal ar-

chitectures in the tradeoff points in Figure 5.3 often have bottleneck structures.

This means resource-aware RL rewards in previous NAS practice may be more

likely to fail than imagined.

Next in Section 5.4.2, we show the performance of RL with the rejection-

based reward in matching these reference architectures.

97

5.4.2 NAS with the rejection-based reward

As introduced in Section 5.3.3, the rejection-based reward does not introduce

an additional resource-aware bias in the RL reward, but rather uses conditional

probabilities to update the logits in feasible architectures.

To match the 32-144-24 reference on Criteo, we run the search with the MC-

sampling-with-rejection approach for 120 epochs, with RL learning rate 0.005

and number of MC samples N = 3072.3

The RL controller converges to two architectures, 32-160-16 (40,769 param-

eters, with loss 0.4457 ± 0.0002) and 32-144-24 (41,153 parameters, with loss

0.4455 ± 0.0003), after around 50 epochs of NAS, then oscillates between these

two solutions (Figure 5.9). At the end of the 120-epoch search, we sample from

the layerwise distribution and pick the largest feasible architecture, causing us

to select the reference architecture 32-144-24. It is clear that this approach does

not get stuck in a local optimum immediately.

On the same hardware, the search takes 3× the time of a stand-alone training

in Figure 5.6(d) to finish. As a result, as can be seen in Figure 5.2 the proposed

architecture search method is much more efficient than a random baseline.

5.4.3 Ablation studies

We do the ablation studies on Criteo with the 32-144-24 reference. The behavior

on other datasets with other reference architectures are similar.
3The 3-layer search space has 203 = 8000 candidate architectures, which is small enough to

compute P(V) exactly. However, MC can scale to larger spaces which are prohibitively expen-
sive for exhaustive search (Appendix D.3).

98

0 30 60 90 120
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 1
0

1

pr
ob

ab
ilit

y

(a) Layer 1 (final
choice 32)

0 30 60 90 120
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 2

0

1

pr
ob

ab
ilit

y

(b) Layer 2 (final
choice 144)

0 30 60 90 120
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 3

0

1

pr
ob

ab
ilit

y

(c) Layer 3 (final
choice 24)

0 30 60 90 120
epochs

0

1

va
lid

 p
ro

b

estimated
 (N=3072)
true

(d) Valid probabili-
ties

Figure 5.9: Success case: on Criteo in a search space of 3-layer FFNs, Monte-
Carlo sampling with rejection eventually finds 32-144-24, the reference architec-
ture, with RL learning rate 0.005 and number of MC samples 3,072. Figure 5.9(d)
shows the change of true and estimated valid probabilities.

Whether to use P̂(V) instead of P(V). The Monte-Carlo (MC) sampling esti-

matesP(V) with P̂(V) to save resources. Such estimations are especially efficient

when the sample space is large. Empirically, the P̂(V) estimated with enough

MC samples (as described in Appendix D.5) enables the RL controller to find

the same architecture as P(V), because the P̂(V) estimated with a large enough

number of samples is accurate enough (e.g., Figure 5.5(b) and 5.9(d)).

Whether to skip infeasible architectures in weight updates. In each iteration

of one-shot training and REINFORCE (Appendix D.1 Algorithm 11) with the

rejection mechanism (Appendix D.1 Algorithm 12), we train the weights in the

sampled child network x regardless of whether x is feasible. Instead, we may

update the weights only when x is feasible, in a similar rejection mechanism as

the RL step. We find this mechanism may mislead the search because of insuf-

ficiently trained weights: the rejection-based RL controller can still find qual-

itatively the best architectures on Criteo with the 32-144-24 or 48-240-24-256-8

reference, but fails with the 48-128-16-112 reference. In the latter case, although

the RL controller still finds architectures with bottleneck structures (e.g., 32-384-

8-144), the first layer sizes of the found architectures are much smaller, leading

to suboptimal performance.

99

Whether to differentiate through P̂(V). REINFORCE with rejection has the

optimization objective:

J(y) = stop grad(Q(y) − Q) · log
[
P(y)/P(V)

]
To update the RL controller’s logits, we compute ∇J(y), which requires a dif-

ferentiable approximation of P(V). From a theoretical standpoint, omitting the

extra term P(V) – or using a non-differentiable approximation – will result in bi-

ased gradient estimates. Empirically, we ran experiments with multiple variants

of our algorithm where we omitted the term P(V), but found that the quality of

the searched architectures was significantly worse.

Strategy for choosing the final architecture after search. When RL finishes,

instead of biasing towards architectures with more parameters (Appendix D.1

Algorithm 13), we may also bias towards those that are feasible and have larger

sampling probabilities. We find that when the final distributions are less de-

terministic, the architectures found by the latter strategy to perform worse: for

example, the top 3 feasible architectures found with the final distribution in

Figure 5.9 are 32-128-16, 32-160-16 and 32-128-8, and they are all inferior to 32-

144-24.

100

APPENDIX A

APPENDIX FOR OBOE

A.1 Machine learning models

Shown in Table A.1, the hyperparameter names are the same as those in scikit-

learn 0.19.2.

A.2 Dataset meta-features

Dataset meta-features used throughout the experiments are listed in Table A.2

(next page).

A.3 Meta-feature calculation time

On a number of not very large datasets, the time taken to calculate meta-features

in the previous section are already non-negligible, as shown in Figure A.1. Each

dot represents one midsize OpenML dataset.

101

Table A.1: Base Algorithm and Hyperparameter Settings

Algorithm type Hyperparameter names (values)
Adaboost n estimators (50,100), learning rate

(1.0,1.5,2.0,2.5,3)

Decision tree min samples split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,0.0001,1e-05)

Extra trees min samples split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,0.0001,1e-05),

criterion (gini,entropy)

Gradient boosting learning rate (0.001,0.01,0.025,0.05,0.1,0.25,0.5),

max depth (3, 6), max features (null,log2)

Gaussian naive Bayes -
kNN n neighbors (1,3,5,7,9,11,13,15), p (1,2)

Logistic regression C (0.25,0.5,0.75,1,1.5,2,3,4), solver

(liblinear,saga), penalty (l1,l2)

Multilayer perceptron learning rate init (0.0001,0.001,0.01), learning rate

(adaptive), solver (sgd,adam), alpha (0.0001, 0.01)

Perceptron -
Random forest min samples split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,0.0001,1e-05),

criterion (gini,entropy)

Kernel SVM C (0.125,0.25,0.5,0.75,1,2,4,8,16), kernel

(rbf,poly), coef0 (0,10)

Linear SVM C (0.125,0.25,0.5,0.75,1,2,4,8,16)

0 5000 10000
Number of data points

0

5

10

15

M
et

af
ea

tu
re

ca
lc

u
la

ti
on

ti
m

e
(s

)

0 100 200 300
Number of features

0

5

10

15

M
et

af
ea

tu
re

ca
lc

u
la

ti
on

ti
m

e
(s

)

Figure A.1: Meta-feature calculation time and corresponding dataset sizes of the
midsize OpenML datasets. The collection of meta-features is the same as that
used by auto-sklearn [42]. We can see some calculation times are not negligible.

102

Table A.2: Dataset Meta-features

Meta-feature name Explanation
number of instances number of data points in the dataset

log number of instances the (natural) logarithm of number of instances
number of classes

number of features
log number of features the (natural) logarithm of number of features

number of instances with missing values
percentage of instances with missing values

number of features with missing values
percentage of features with missing values

number of missing values
percentage of missing values
number of numeric features

number of categorical features
ratio numerical to nominal the ratio of number of numerical features to the number

of categorical features
ratio numerical to nominal

dataset ratio the ratio of number of features to the number of data
points

log dataset ratio the natural logarithm of dataset ratio
inverse dataset ratio

log inverse dataset ratio
class probability (min, max, mean, std) the (min, max, mean, std) of ratios of data points in each

class
symbols (min, max, mean, std, sum) the (min, max, mean, std, sum) of the numbers of

symbols in all categorical features
kurtosis (min, max, mean, std)

skewness (min, max, mean, std)
class entropy the entropy of the distribution of class labels (logarithm

base 2)

landmarking [102] meta-features
LDA

decision tree decision tree classifier with 10-fold cross validation
decision node learner 10-fold cross-validated decision tree classifier with

criterion="entropy", max depth=1,

min samples split=2, min samples leaf=1,

max features=None

random node learner 10-fold cross-validated decision tree classifier with
max features=1 and the same above for the rest

1-NN
PCA fraction of components for 95% variance the fraction of components that account for 95% of

variance
PCA kurtosis first PC kurtosis of the dimensionality-reduced data matrix

along the first principal component
PCA skewness first PC skewness of the dimensionality-reduced data matrix

along the first principal component

103

5(2%) 15(6%) 25(11%) 35(15%)
number (percentage) of observed entries

0.00

0.01

0.02

0.03

0.04

0.05

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

ED (time)

ED (time) with meta-features

ED (number)

ED (number) with meta-features

PMF

Figure A.2: Comparison of different versions of ED with PMF. ”ED (time)” de-
notes ED with runtime constraint, with time limit set to be 10% of the total
runtime of all available models; ”ED (number)” denotes ED with the number of
entries constrained.

A.4 Comparison of experiment design with different con-

straints

In Section 2.5.1, we compared experiment design (ED) with constraint on the

number of observed entries. This version is more comparable to QR and PMF

than the version with runtime constraint (Equation 2.1). However, the time-

constrained version has decent performance, as shown in Figure A.2.

104

APPENDIX B

APPENDIX FOR TENSOROBOE

For reproducibility, refer to Section B.1 for datasets and the pipeline search

space. All the code is in the GitHub repository at https://github.com/

udellgroup/oboe.

B.1 Reproducibility for meta-training

B.1.1 Meta-training OpenML datasets

Indices of the OpenML datasets we use for meta-training: 2, 3, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18,

20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 48, 50, 53, 54, 59, 60, 181,

182, 183, 187, 285, 307, 313, 316, 329, 336, 337, 338, 375, 377, 389, 446, 450, 458, 463, 469, 475, 694,

715, 717, 718, 720, 721, 723, 725, 728, 730, 732, 733, 735, 737, 740, 742, 743, 744, 745, 746, 747, 748,

749, 750, 751, 753, 763, 769, 773, 776, 778, 779, 788, 792, 794, 796, 797, 799, 803, 805, 806, 807, 813,

818, 819, 820, 824, 825, 826, 830, 832, 837, 838, 847, 853, 855, 863, 866, 869, 870, 871, 873, 877, 880,

884, 888, 896, 900, 903, 904, 906, 907, 908, 909, 910, 911, 912, 913, 915, 917, 920, 923, 925, 926, 933,

934, 935, 936, 937, 941, 943, 952, 953, 954, 955, 958, 962, 970, 971, 973, 976, 978, 979, 980, 983, 987,

991, 994, 995, 996, 997, 1005, 1011, 1012, 1014, 1016, 1020, 1021, 1022, 1025, 1026, 1038, 1039, 1041,

1042, 1048, 1049, 1050, 1054, 1056, 1063, 1065, 1067, 1068, 1069, 1071, 1073, 1100, 1115, 1116, 1121,

4134, 40966, 40971, 40975, 40978, 40979, 40981, 40982, 40983, 40984, 40994, 40997, 41000, 41004,

41005.

105

B.1.2 Meta-test UCI datasets

banknote-authentication, blood-transfusion-service-center, breast-cancer-wisconsin-diagnostic,

breast-cancer-wisconsin-original, breast-cancer-wisconsin-prognostic, chess-king-rook-vs-king-

pawn, cnae-9, congressional-voting-records, connectionist-bench, connectionist-bench-sonar,

contraceptive-method-choice, cylinder-bands, haberman-survival, heart-disease-cleveland,

heart-disease-hungarian, heart-disease-va, hepatitis, hill-valley, hill-valley-noise, horse-

colic, image-segmentation, indian-liver-patient, iris, libras-movement, mammographic-

mass, monks-problems-2, ozone-level-detection-eight, ozone-level-detection-one, parkin-

sons, pen-based-recognition-handwritten-digits, planning-relax, qsar-biodegradation, seeds,

seismic-bumps, statlog-project-german-credit, statlog-project-landsat-satellite, thoracic-surgery,

thyroid-disease-allbp, thyroid-disease-allhyper, thyroid-disease-allhypo, thyroid-disease-allrep,

thyroid-disease-ann-thyroid, thyroid-disease-dis, thyroid-disease-new-thyroid, thyroid-disease-

sick, thyroid-disease-sick-euthyroid, thyroid-disease-thyroid-0387, wall-following-robot-navigation-

2, wall-following-robot-navigation-24, wall-following-robot-navigation-4.

B.1.3 Pipeline search space

We build pipelines using scikit-learn [101] primitives. The available compo-

nents are listed in Table B.1. “null” denotes a pass-through.

B.2 Experiment design for weighted least squares

When factorizing the error matrix by SVD, we approximate performance of dif-

ferent pipelines to different accuracies. Different accuracies can be characterized

106

Table B.1: Pipeline search space

Component Algorithm type Hyperparameter names (values)
Data imputer Simple imputer strategy (mean, median, most frequent, constant)

Encoder
null -
OneHotEncoder handle unknown (ignore), sparse (0)

Standardizer
null -
StandardScaler -

Dimensionality
reducer

null -
PCA n components (25%, 50%, 75%)

VarianceThreshold -
SelectKBest k (25%, 50%, 75%)

Estimator

Adaboost n estimators (50,100), learning rate

(1.0,1.5,2.0,2.5,3)

Decision tree min samples split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,1e-4,1e-5)

Extra trees min samples split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,1e-4,1e-5),

criterion (gini,entropy)

Gradient boosting learning rate

(0.001,0.01,0.025,0.05,0.1,0.25,0.5), max depth

(3, 6), max features (null,log2)

Gaussian naive Bayes -
Perceptron -
kNN n neighbors (1,3,5,7,9,11,13,15), p (1,2)

Logistic regression C (0.25,0.5,0.75,1,1.5,2,3,4), solver

(liblinear,saga), penalty (l1,l2)

Multilayer
perceptron

learning rate init (1e-4,0.001,0.01),

learning rate (adaptive), solver (sgd,adam),

alpha (1e-4, 0.01)

Random forest min samples split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,1e-4,1e-5),

criterion (gini,entropy)

Linear SVM C (0.125,0.25,0.5,0.75,1,2,4,8,16)

by different variances in the linear regression model, thus the weighted least

squares (WLS) model that would theoretically give the best linear unbiased es-

timate to the new dataset embedding may perform better.

In detail, recall that the constrained D-optimal experiment design formula-

tion relies on the assumption that given a low rank matrix multiplication model

X⊤Y = E, the error term in linear regression ϵ ∼ N(0, σ2I), which means each

pipeline is predicted to the same accuracy. In the WLS version of our pipeline

performance estimation setting, the pipeline performance vector of the new

dataset can be written as e = Y⊤x+ϵ, in which ϵ ∼ N(0,Σ). Σ = diag(σ2
1, σ

2
2, ··· , σ

2
n)

107

0.8 1.0 1.2 1.4 1.6
Standard deviation of pipeline performance estimation

0

2000

4000

6000

8000

N
u

m
b

er
of

p
ip

el
in

es

Figure B.1: Standard deviation of prediction accuracy of each pipeline, across
meta-training datasets.

is a covariance matrix; diagonal in the weighted least squares setting. For each

pipeline j ∈ [n], we estimate the variance by the sample variance of e j−X⊤y j, and

show a histogram in Figure B.1. In this case, the time-constrained D-experiment

design problem to solve becomes

minimize log det
(∑n

j=1 v j
y jy⊤j
σ2

j

)−1

subject to
n∑

j=1
v jt̂ j ≤ τ

v j ∈ {0, 1},∀ j ∈ [n].

(B.1)

The corresponding greedy approach, which we call weighted-greedy, is shown

as Algorithm 8. It differs from the ordinary greedy approach in that each y j is

scaled by 1/σ j. Figure B.2 shows its performance compared to convexification

and greedy. We can see the weighted-greedy approach performs similarly to the

ordinary greedy approach in our experiments.

108

Algorithm 8 Greedy algorithm for time-constrained D-design in WLS setting,
with QR initialization

Input: design vectors {y j}
n
j=1, in which y j ∈ R

k; pipeline estimation variances
{σ2

j}
n
j=1, (predicted) running time of all pipelines {t̂i}

n
i=1; maximum running

time τ
Output: The selected set of designs S ⊆ [n]

1 y j ← y j/σ j, ∀ j ∈ [n]
2 S 0 ← QR initialization({y j}

n
j=1, {t̂i}

n
i=1, τ)

3 S ← Greedy without repetition({y j}
n
j=1, {t̂i}

n
i=1, τ, S 0)

1% 3% 5% 7% 9% 12
%

14
%

16
%

18
%

20
%

runtime limit ratio

0.01

0.02

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(a) Regret on the subsampled error matrix
(215-by-183) for estimator search, includ-
ing the weighted-greedy method.

0.
00

5%

0.
01

5%

0.
02

5%

0.
03

5%

0.
04

5%

runtime limit ratio

0.01

0.02

0.03

0.04

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(b) Regret on the full error matrix (215-by-
23424) for pipeline search, including the
weighted-greedy method.

1% 3% 5% 7% 9% 12
%

14
%

16
%

18
%

20
%

runtime limit ratio

0.01

0.02

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

convexification greedy weighted-greedy

Figure B.2: Comparison of time-constrained experiment design methods, in-
cluding the weighted-greedy method.

B.3 Zoomed-in hyperparameter landscapes

109

0 200 400 600 800 1000
min samples split

0.40
0.42
0.44
0.46
0.48
0.50

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(a) Extra trees on Dataset 23 (1473
points, 10 features)

0 200 400 600 800 1000
min samples split

0.49

0.50

0.51

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(b) Decision tree on Dataset 1014 (797
points, 5 features)

2 4 6 8 10 12 14
min samples split

0.28

0.30

0.32

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(c) kNN on Dataset 799 (1000 points, 6
features)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
min samples split

0.430

0.435

0.440

0.445

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

(d) Logistic regression on Dataset 40971
(1000 data points, 24 features)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
min samples split

0.430

0.435

0.440

0.445

p
ip

el
in

e
er

ro
r

(m
ea

n
±

st
an

d
ar

d
er

ro
r)

true error predicted error

Figure B.3: Zoomed-in hyperparameter landscapes in Figure 3.10. The y-axes
here do not start from 0.

110

APPENDIX C

APPENDIX FOR PEPPP

All the tables in this appendix are shown in the last page.

C.1 Datasets and low-precision formats

The 87 datasets chosen in our experiment are listed in Table C.1. Note that

the datasets contain images of two different resolutions: 32 denotes resolution

3 × 32 × 32, and 64 denotes 3 × 64 × 64. We list our choices of Format A and B

in Table C.2 and C.3, respectively. In each evaluation, the low-precision config-

uration is composed of one Format A (for the activations and weights) and one

Format B (for the optimizer), as detailed in Section 4.2.1. Therefore, the total

number of low-precision configurations used in our experiment is 99.

C.2 The SOFTIMPUTE algorithm

There are several versions of SOFTIMPUTE; [57] gives a nice overview. We use

the version in [91].

At a high level, SOFTIMPUTE iteratively applies a soft-thresholding operator

Sλ on the partially observed error matrix with a series of decreasing λ values.

Each Sλ replaces the singular values {σi} with {(σi − λ)+}. The regularization

parameter λ can be set in advance or ad hoc, by convergence dynamics.

The pseudocode for the general SOFTIMPUTE algorithm is shown as Algo-

rithm 9, in which PΩ(E) is a matrix with the same shape as E, and has the (i, j)-th

111

entry being Ei j if (i, j) ∈ Ω, and 0 otherwise. In our implementation, λi = λti for

each step i, and ti is the step size from TFOCS backtracking [9].

Algorithm 9 SOFTIMPUTE

Input: a partially observed matrix PΩ(E) ∈ Rn×d, number of iterations I, a series
of decreasing λ values {λi}

I
i=1

Output: an estimate Ê
1 for i = 1 to I do
2 Ẽ ← PΩ(E) + PΩC (Ê)
3 U,Σ,V ← svd(Ẽ)
4 Ê ← USλ(Σ)V⊤

5 end for

C.3 Algorithms for experiment design

As mentioned in Section 4.2.2, there are mainly two algorithms to solve Prob-

lem 4.1, the D-optimal experiment design problem: convexification and greedy.

The convexification approach relaxes the combinatorial optimization prob-

lem to the convex optimization problem

minimize log det
(∑d

j=1 v jy jy⊤j
)−1

subject to
d∑

j=1
v j ≤ l

v j ∈ [0, 1],∀ j ∈ [d]

(C.1)

that can be solved by a convex solver (like SLSQP). Then we sort the entries in

the optimal solution v∗ ∈ Rd and set the largest l entries to 1 and the rest to 0.

The greedy approach [90, 144] maximizes the submodular objective function

by first choosing an initial set of configurations by column-pivoted QR decom-

position, and then greedily adding new configuration to the solution set S in

each step until |S | = l. The greedy stepwise selection algorithm is shown as

112

Algorithm 10, in which the new configuration is chosen by the Matrix Deter-

minant Lemma1 [55], and X−1
t is updated by the close form from the Sherman-

Morrison Formula2 [113]. The column-pivoted QR decomposition selects top k

pivot columns of Y ∈ Rk×d to get the index set S 0, ensuring that X0 =
∑

j∈S 0
y jy⊤j is

non-singular.

Algorithm 10 Greedy algorithm for D-optimal experiment design

Input: design vectors {y j}
d
j=1, in which y j ∈ R

k; maximum number of selected
configurations l; initial set of configurations S 0 ⊆ [d], s.t. X0 =

∑
j∈S 0

y jy⊤j is
non-singular

Output: the selected set of designs S ⊆ [d]
1 S ← S 0

2 while |S | ≤ l do
3 i← argmax j∈[d]\S y⊤j X−1

t y j

4 S ← S ∪ {i}
5 Xt+1 ← Xt + yiy⊤i
6 end while

The convexification approach empirically works because most entries of the

optimal solution v∗ are close to either 0 or 1. The histogram in Figure C.1 shows

an example when we use rank k = 5 to factorize the entire error matrix and set

l = 20.

In terms of solution quality, the relative error plot in Figure C.1 shows

that the greedy approach consistently outperforms in terms of the relative ma-

trix completion error for each dataset in ED-MF solutions. Since the greedy

approach is also more than 10× faster than convexification (implemented by

scipy), we use the greedy approach throughout all experiments for the rest of

this work.
1The Matrix Determinant Lemma states that for any invertible matrix A ∈ Rk×k and a, b ∈ Rk,

det(A + ab⊤) = det(A)(1 + b⊤A−1a). Thus argmax j∈[d]\S det(Xt + y jy⊤j) = argmax j∈[d]\S y⊤j X−1
t y j.

2The Sherman-Morrison Formula states that for any invertible matrix A ∈ Rk×k and a, b ∈ Rk,
(A + ab⊤)−1 = A−1 − A−1ab⊤A−1

1+b⊤A−1a .

113

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

entry values of v∗

0

20

40

60

80

co
u

nt

(a) histogram of v∗ entries

5 10 15
l

0.06

0.08

0.1

re
la

ti
ve

er
ro

r
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

convexification

greedy

(b) relative error

Figure C.1: Convexification vs greedy for ED.

C.4 Information to hardware design

Among all 87 datasets (each has its own error-memory tradeoff), the promis-

ing configurations that we identify among all 99 configurations are as below

(number of sign bits - number of exponent bits -number of mantissa bits).

• Format A: 1-4-1, Format B: 1-6-7 (appears on 60 out of 87 Pareto frontiers)

• Format A: 1-4-1, Format B: 1-7-7 (appears on 33 out of 87 Pareto frontiers)

• Format A: 1-3-1, Format B: 1-7-7 (appears on 30 out of 87 Pareto frontiers)

• Format A: 1-4-2, Format B: 1-6-7 (appears on 24 out of 87 Pareto frontiers)

• Format A: 1-5-2, Format B: 1-6-7 (appears on 21 out of 87 Pareto frontiers)

C.5 More details on experiments

We first show the plot of explained variances of top principal components in

Figure C.2: how much variance in our data do the first several principal compo-

nents account for [16]. This quantity is computed by the ratio of sum of squares

114

0 10 20 30
first several singular values

99.0%

99.5%

100.0%

ex
p

la
in

ed
va

ri
an

ce

Figure C.2: Explained variance of the first several singular values in Fig-
ure 4.4(b).

of the first k singular values to that of all singular values. In Figure C.2, we

vary k from 1 to 30, corresponding to the decay of singular values shown in Fig-

ure 4.4(b). We can see the first singular value already accounts for 99.0% of the

total variance, and the first two singular values account for more than 99.5%.

This means we can pick a small rank for PCA in meta-training and still keep the

most information in our meta-training data.

We use the ratio of incorrectly classified images as our error metric. Fig-

ure C.3 shows histograms of error and memory values in our error and memory

matrices from evaluating 99 configurations on 87 datasets. The vertical dashed

lines show the respective medians: 0.78 for test error and 816MB for memory.

We can see both the test error and memory values span a wide range. The errors

come from training a wide range of low-precision configurations with optimiza-

tion hyperparameters not fine-tuned, and are thus larger than SOTA results. In

Section 4.4.3 of the main paper and Section C.5.4 here, we show that training for

a larger number of epochs and with some other optimization hyperparameters

yield the same error-memory tradeoff as Figure 4.1(a) in the main paper.

In meta-LOOCV settings with a meta-test memory cap at the median mem-

ory 816MB, Figure C.4 shows a histogram of number of feasible configurations

on each of the 87 datasets. There are “cheap” (resolution 32) datasets on which

115

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

test error

0

1000

2000

#
co

n
fig

u
ra

ti
on

s

20
0

40
0

60
0

80
0

10
00

memory (MB)

0

1000

2000

#
co

n
fig

u
ra

ti
on

s

Figure C.3: Histograms of error and mem-
ory. The dashed lines are the respective me-
dians.

30 40 50 60 70 80 90 100
configurations below median memory

0

10

20

30

40

50

#
d

at
as

et
s

Figure C.4: Histogram of datasets
by the number of configurations
that take memories less than the
overall median of 816MB.

each of the 99 configurations takes less than the cap, and “expensive” (resolu-

tion 64) datasets on which the feasible configurations are far less than 99.

C.5.1 Introduction to RANDOM-MF, QR-MF and BO

• Random selection with matrix factorization (RANDOM-MF). Same as ED-

MF, RANDOM-MF predicts the unevaluated configurations by linear re-

gression, except that it selects the configurations to evaluate by random

sampling.

• QR decomposition with column pivoting and matrix factorization (QR-

MF). QR-MF first selects the configurations to evaluate by QR decompo-

sition with column pivoting: EP = QR, in which the permutation matrix

P gives the most informative configurations. Then it predicts unevaluated

configurations in the same way as ED-MF and RANDOM-MF.

• Bayesian optimization (BO). Bayesian optimization is a sequential deci-

sion making framework that learns and optimizes a black-box function

by incrementally building surrogate models and choosing new measure-

ments [45]. It works best for black-box functions that are expensive to eval-

116

20% 40%
relative memory usage

0.0

0.2

0.4

0.6

re
la

ti
ve

er
ro

r

CIFAR-10

(a) relative error

20% 40%
relative memory usage

0.0

0.2

0.4

0.6

co
nv

er
ge

n
ce CIFAR-10

(b) convergence

20% 40%
relative memory usage

0.0

0.2

0.4

0.6

H
yp

er
D

iff CIFAR-10

(c) HyperDiff

Figure C.5: Pareto frontier estimation performance in PEPPP meta-training with
non-uniform sampling of configurations. The violins and scatters have the same
meaning as Figure 4.7. The x axis measures the memory usage relative to ex-
haustive search.

uate and lack special structures or derivatives. We compare ED-MF with

two BO techniques. The first technique, BO-MF, applies BO to the function

f1 : Rk → R that maps low-dimensional configuration embeddings {Y:, j}
d
j=1

to the test errors of the configurations on the meta-test dataset {enew
j }

d
j=1 [46].

The embeddings come from the same low-rank factorization of the error

matrix E as in ED-MF. The second, BO-FULL, applies BO to the func-

tion f2 : Rn → R that directly maps columns of the error matrix {E:, j}
d
j=1

to {enew
j }

d
j=1. To learn either of these black-box functions, we start by evalu-

ating a subset of configurations S ⊆ [d] and then incrementally select new

configurations that maximize the expected improvement [94, 69].

C.5.2 Additional meta-training results: non-uniform sampling

In non-uniform sampling, we sample each entry of the error matrix E with prob-

abilities Pi j = σ(1/Wi j), in which σmaps {1/Wi j} into an interval [0, pmax] ⊆ [0, 1]

according to the cumulative distribution function of {1/Wi j}. By varying pmax,

we change how we aggressively sample the configurations, how different the

117

sampling probabilities are between large and small memory configurations, and

also the percentage of memory needed. In Figure C.5, we vary pmax from 0.1 to

1 and see that the quality of the estimated Pareto frontier improves with more

memory.

C.5.3 Additional meta-LOOCV results

In the main paper, we have shown the performance of Pareto frontier estimates

and configuration selection for Setting I and IV. For the rest of the settings in

Table 4.1, we conduct meta-LOOCV in the same way and show the results of

Pareto frontier estimates in Figure C.6.

Setting II. We have the 816MB memory cap for meta-test, and have the full

meta-training error matrix in each split.

Setting III. We have no memory cap for meta-test, and uniformly sample 20%

configurations for meta-training in each split.

Setting V. We have no memory cap for meta-test, and non-uniformly sample

20% configurations for meta-training in each split. The sampling method is the

same as in meta-training (Figure C.5).

Setting VI. We have the 816MB memory cap for meta-test, and non-uniformly

sample 20% meta-training configurations in the same way as Setting V above.

118

20% 40%
relative memory usage

0

0.05

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(a) Setting II conver-
gence

20% 40%
relative memory usage

0

0.05

H
yp

er
D

iff
(m

ea
n
±

se
)

(b) Setting II Hyper-
Diff

5% 10%
relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(c) Setting III conver-
gence

5% 10%
relative memory usage

0

0.1

H
yp

er
D

iff
(m

ea
n
±

se
)

(d) Setting III Hyper-
Diff

5% 10%
relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(e) Setting V conver-
gence

5% 10%
relative memory usage

0

0.1

H
yp

er
D

iff
(m

ea
n
±

se
)

(f) Setting V Hyper-
Diff

20% 40%
relative memory usage

0

0.05

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(g) Setting VI conver-
gence

20% 40%
relative memory usage

0

0.05

H
yp

er
D

iff
(m

ea
n
±

se
)

(h) Setting VI Hyper-
Diff5% 10%

relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

ED-MF (PEPPP) QR-MF BO-MF BO-full random-MF

Figure C.6: Pareto frontier estimates in meta-LOOCV Setting II (full meta-
training error matrix, a 816MB memory cap), Setting III (uniformly sample
20% meta-training measurements, no meta-test memory cap), Setting V (non-
uniformly sample 20% meta-training measurements, no meta-test memory cap),
and Setting VI (non-uniformly sample 20% meta-training measurements, an
816MB meta-test memory cap). Each error bar is the standard error across
datasets. ED-MF is among the best in every setting and under both metrics.

C.5.4 Tuning optimization hyperparameters

Number of epochs

The low-precision networks still underfit after 10 epochs of training. This situa-

tion is typical: underfitting due to budget constraints is unfortunately common

in deep learning. Luckily, meta-learning the best precision will succeed so long

as the validation errors are correctly ordered, even if they all overestimate the

error of the corresponding fully trained model. Indeed, our validation errors

correlate well with the errors achieved after further training: on CIFAR-10, the

Kendall tau correlation between ResNet-18 errors at 10 epochs and 100 epochs

is 0.73, shown in Figure C.7. The lowest error at 100 epochs is 9.7%, only ap-

119

0 1
10 epochs

0

1

10
0

ep
oc

h
s

Figure C.7: Errors of 99 configurations trained for different numbers of epochs.

150 200 250 300
memory (MB)

0.0

0.2

0.4

0.6

0.8

te
st

er
ro

r

(a) fixed learning rate

150 200 250 300
memory (MB)

0.0
0.2
0.4
0.6
0.8

te
st

er
ro

r
(b) tuned learning rate

150 200 250 300
memory (MB)

0.0

0.2

0.4

0.6

0.8

te
st

er
ro

r

dominated true non-dominated

Figure C.8: CIFAR-10 error-memory tradeoff. Figure (a) has learning rate
0.001 for all low-precision configurations. Figure (b) shows the tradeoff with
tuned learning rates: at each low-precision configuration, the lowest test error
achieved by learning rates {0.01, 0.001, 0.0001} is selected.

proximately 2% higher than SOTA [19].

Learning rate

Previously, we have shown that PEPPP can estimate the error-memory tradeoff

and select a promising configuration with other hyperparameters fixed. In prac-

tice, users may also want to tune hyperparameters like learning rate to achieve

the lowest error. Here, we tune learning rate in addition to precision, and show

that the methodology can be used in broader settings of hyperparameter tuning.

Figure C.8 shows that the error-memory tradeoff still exists with a fine-

120

0 5 10 15
index i

100

102

104

σ
i

Figure C.9: Singular value decay of the LR-tuned error matrix.

tuned learning rate for each configuration. With the learning rate tuned across

{0.01, 0.001, 0.0001}, the test errors are in general smaller, but high-memory con-

figurations still achieve lower errors in general. Thus the need to efficiently

select a low-precision configuration persists.

Our approach can naturally extend to efficiently selecting optimization

and low-precision hyperparameters. We perform the meta-training and meta-

LOOCV experiments on a subset of CIFAR-100 partitions with multiple learning

rates {0.01, 0.001, 0.0001}. The error and memory matrices we use here have 45

rows and 99 columns, respectively. Learning rate and low-precision configura-

tion are collapsed into the same dimension: each row corresponds to a combina-

tion of one CIFAR-100 subset and one of the learning rates {0.01, 0.001, 0.0001},

as shown in Table C.4. We say that these error and memory matrices are LR-

tuned. Figure C.9 shows the LR-tuned error matrix also has a fast singular value

decay. The other hyperparameters are the same as in LR-fixed experiments,

except that we use batch size 128 and train for 100 epochs. The meta-training

and meta-LOOCV results are consistent with those in Sections 4.4.1 and 4.4.2,

respectively:

• In meta-training, we first uniformly sample the error matrix and study

121

10% 30%
relative memory usage

0.0
0.1
0.2
0.3

re
la

ti
ve

er
ro

r

(a) relative error

10% 30%
relative memory usage

0.0

0.2

0.4

co
nv

er
ge

n
ce

(b) convergence

10% 30%
relative memory usage

0.0

0.1

0.2

0.3

H
yp

er
D

iff

(c) HyperDiff

0.
1

0.
3

sampling ratio

0.0

0.1

0.2

0.3

H
yp

er
D

iff CIFAR-100 (aquatic mammals) with learning rate 0.01

Figure C.10: The Pareto frontier estimation performance in meta-training, with
uniform sampling of configurations on the LR-tuned error and memory matri-
ces. Similar to Figure 4.7, the violins show the distribution of the performance
on individual datasets, and the error bars (blue) show the range. The red error
bars show the standard deviation of the error on CIFAR-100 aquatic mammals
and learning rate 0.01, across 100 random samples of the error matrix. Figure (a)
shows the matrix completion error for each dataset; Figure (b) and (c) show the
performance of the Pareto frontier estimates in convergence and HyperDiff.

the performance of matrix completion and Pareto frontier estimation. Fig-

ure C.10 shows the matrix completion error and Pareto frontier estimation

metrics. Then we do non-uniformly sampling and get Figure C.11, the

LR-tuned version of Figure C.5 in the main paper.

• In meta-test, we evaluate settings in Table 4.1 in the main paper. We get

the performance of Pareto frontier estimates in Figure C.12, the LR-tuned

version of Figure 4.9 in the main paper. ED-MF steadily outperforms.

C.5.5 Learning across architectures

We show that on 10 ImageNet partitions, PEPPP with ED-MF is able to es-

timate the error-memory tradeoff of the low-precision configurations on of

ResNet-34, VGG-11, VGG-13, VGG-16 and VGG-19. The 10 ImageNet partitions

have WordNet IDs {n02470899, n01482071, n02022684, n03546340, n07566340,

122

20% 40%
relative memory usage

0.0

0.2

0.4

0.6

re
la

ti
ve

er
ro

r

(a) relative error

20% 40%
relative memory usage

0.0

0.2

0.4

0.6

co
nv

er
ge

n
ce

(b) convergence

20% 40%
relative memory usage

0.0

0.1

0.2

0.3

H
yp

er
D

iff

(c) HyperDiff

0.
1

0.
3

sampling ratio

0.0

0.1

0.2

0.3

H
yp

er
D

iff CIFAR-100 (aquatic mammals) with learning rate 0.01

Figure C.11: The Pareto frontier estimation performance in meta-training, with
non-uniform sampling of configurations on the LR-tuned error and memory
matrices. The violins and scatters have the same meaning as Figure C.5 in the
main paper.

5% 10%
relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(a) Setting I conver-
gence

5% 10%
relative memory usage

0

0.1

H
yp

er
D

iff
(m

ea
n
±

se
)

(b) Setting I HyperDiff

10% 20% 30%
relative memory usage

0

0.07

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(c) Setting IV conver-
gence

10% 20% 30%
relative memory usage

0

0.07

H
yp

er
D

iff
(m

ea
n
±

se
)

(d) Setting IV Hyper-
Diff5% 10%

relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

ED-MF (PEPPP) QR-MF BO-MF BO-full random-MF

Figure C.12: Pareto frontier estimates in meta-LOOCV settings on the LR-tuned
error and memory matrices. Each error bar is the standard error across datasets.

n00019613, n01772222, n03915437, n02489589, n02127808} and are randomly

selected from the 50 ImageNet subsets on which we collected the error ma-

trix. On these ImageNet partitions, we use the performance of ResNet-18 as

meta-training data, and either the performance of ResNet-18 or VGG variants

as meta-test data. In Figure C.13, we can see that ED-MF is steadily among the

best in Pareto frontier estimation, and there is no statistical difference between

the estimation performance on ResNet-34 and VGG variants.

Next, we compare the performance of the following two cases:

i. Meta-learning across datasets with performance from the same architec-

123

5% 10%
relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(a) ResNet-34

5% 10%
relative memory usage

0

0.1

H
yp

er
D

iff
(m

ea
n
±

se
)

(b) ResNet-34

5% 10%
relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

(c) VGG variants

5% 10%
relative memory usage

0

0.1

H
yp

er
D

iff
(m

ea
n
±

se
)

(d) VGG variants5% 10%
relative memory usage

0

0.1

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

ED-MF (PEPPP) QR-MF BO-MF BO-full random-MF

Figure C.13: Pareto frontier estimates in meta-LOOCV Setting I when learn-
ing across architectures: from ResNet-18 to either ResNet-34, or to VGG vari-
ants. Each error bar is the standard error across datasets. The x axis measures
the memory usage relative to exhaustively searching the permissible configura-
tions. ED-MF consistently picks the configurations that give the best PF esti-
mates.

ture: For example, to learn the error-memory tradeoff of ResNet-18 on

n02470899, we only use the tradeoffs of ResNet-18 on 9 other ImageNet

partitions as the meta-training data.

ii. Meta-learning across datasets with performance from both the same and

other architectures: For example, the error-memory tradeoff of ResNet-

18 on n02470899, we not only use the tradeoffs of ResNet-18 on 9 other

ImageNet partitions, but also use those of ResNet-34, VGG-11, VGG-13,

VGG-16 and VGG-19 on the 9 partitions as the meta-training data.

Figure C.14 shows that Case ii outperforms Case i in better estimating the

error-memory tradeoffs on different architectures and datasets.

124

Table C.1: Datasets

indexdataset name resolution # points

1 CIFAR10 32 60000
2 CIFAR100 (aquatic mammals) 32 3000
3 CIFAR100 (fish) 32 3000
4 CIFAR100 (flowers) 32 3000
5 CIFAR100 (food containers) 32 3000
6 CIFAR100 (fruit and vegetables) 32 3000
7 CIFAR100 (household electrical devices) 32 3000
8 CIFAR100 (household furniture) 32 3000
9 CIFAR100 (insects) 32 3000
10 CIFAR100 (large carnivores) 32 3000
11 CIFAR100 (large man-made outdoor things) 32 3000
12 CIFAR100 (large natural outdoor scenes) 32 3000
13 CIFAR100 (large omnivores and herbivores) 32 3000
14 CIFAR100 (medium-sized mammals) 32 3000
15 CIFAR100 (non-insect invertebrates) 32 3000
16 CIFAR100 (people) 32 3000
17 CIFAR100 (reptiles) 32 3000
18 CIFAR100 (small mammals) 32 3000
19 CIFAR100 (trees) 32 3000
20 CIFAR100 (vehicles 1) 32 3000
21 CIFAR100 (vehicles 2) 32 3000
22 aircraft 64 6667
23 cub 64 10649
24 dtd 64 3760
25 isic 64 22802
26 merced 64 1890
27 scenes 64 14088
28 ucf101 64 12024
29 daimlerpedcls 64 29400
30 gtsrb 64 26640
31 kather 64 4000
32 omniglot 64 25968
33 svhn 64 73257
34 vgg-flowers 64 2040
35 bach 64 320
36 protein atlas 64 12113
37 minc 64 51750
38 ImageNet (bag) 64 6519
39 ImageNet (retriever) 64 6668
40 ImageNet (domestic cat) 64 6750
41 ImageNet (stick) 64 6750
42 ImageNet (turtle) 64 6750
43 ImageNet (finch) 64 6750
44 ImageNet (watchdog) 64 6404
45 ImageNet (footwear) 64 6587
46 ImageNet (salamander) 64 6750
47 ImageNet (anthropoid ape) 64 6750
48 ImageNet (elasmobranch) 64 6750
49 ImageNet (shorebird) 64 6750
50 ImageNet (housing) 64 6605

51 ImageNet (foodstuff) 64 6750
52 ImageNet (substance) 64 6643
53 ImageNet (spider) 64 8100
54 ImageNet (percussion instrument) 64 8082
55 ImageNet (New World monkey) 64 8100
56 ImageNet (big cat) 64 8100
57 ImageNet (box) 64 7829
58 ImageNet (fabric) 64 7862
59 ImageNet (kitchen appliance) 64 7773
60 ImageNet (mollusk) 64 8100
61 ImageNet (hand tool) 64 8054
62 ImageNet (butterfly) 64 8100
63 ImageNet (stringed instrument) 64 8100
64 ImageNet (boat) 64 8006
65 ImageNet (rodent) 64 8006
66 ImageNet (toiletry) 64 7522
67 ImageNet (computer) 64 7696
68 ImageNet (shop) 64 9400
69 ImageNet (musteline mammal) 64 9450
70 ImageNet (Old World monkey) 64 9450
71 ImageNet (bottle) 64 9205
72 ImageNet (fungus) 64 9450
73 ImageNet (truck) 64 9309
74 ImageNet (spaniel) 64 9119
75 ImageNet (sports equipment) 64 9450
76 ImageNet (game bird) 64 9450
77 ImageNet (seat) 64 9126
78 ImageNet (fruit) 64 9450
79 ImageNet (weapon) 64 9450
80 ImageNet (beetle) 64 10800
81 ImageNet (toy dog) 64 9832
82 ImageNet (decapod crustacean) 64 10800
83 ImageNet (fastener) 64 10675
84 ImageNet (timepiece) 64 10164
85 ImageNet (dish) 64 10556
86 ImageNet (mechanical device) 64 10617
87 ImageNet (colubrid snake) 64 12150

125

5% 10%
relative memory usage

0.02

0.05

co
nv

er
ge

n
ce

(m
ea

n
±

se
)

ED-MF (Case i)

ED-MF (Case ii)

Figure C.14: Benefit of meta-learning across architectures. Each error bar is
the standard error across architecture-dataset combinations (e.g., ResNet-18 +
n02470899 is a combination). The x axis measures the memory usage relative to
exhaustively searching the permissible configurations.

126

Table C.2: Format A
(for activations and weights)

index # exponent bits # mantissa Bits total bit width

1 3 1 5
2 3 2 6
3 3 3 7
4 3 4 8
5 4 1 6
6 4 2 7
7 4 3 8
8 4 4 9
9 5 1 7
10 5 2 8
11 5 3 9

Table C.3: Format B (for optimizer)

index # exponent bits # mantissa Bits total bit width

1 6 7 14
2 6 9 16
3 6 11 18
4 7 7 15
5 7 9 17
6 7 11 19
7 8 7 16
8 8 9 18
9 8 11 20

Table C.4: Datasets and learning rates
in Section 4.4.3

indexdataset name learning rate

1 CIFAR100 (aquatic mammals) 0.01
2 CIFAR100 (fish) 0.01
3 CIFAR100 (flowers) 0.01
4 CIFAR100 (food containers) 0.01
5 CIFAR100 (fruit and vegetables) 0.01
6 CIFAR100 (household electrical devices) 0.01
7 CIFAR100 (household furniture) 0.01
8 CIFAR100 (insects) 0.01
9 CIFAR100 (large carnivores) 0.01
10 CIFAR100 (large man-made outdoor things) 0.01
11 CIFAR100 (large natural outdoor scenes) 0.01
12 CIFAR100 (large omnivores and herbivores) 0.01
13 CIFAR100 (medium-sized mammals) 0.01
14 CIFAR100 (non-insect invertebrates) 0.01
15 CIFAR100 (people) 0.01
16 CIFAR100 (reptiles) 0.01
17 CIFAR100 (aquatic mammals) 0.001
18 CIFAR100 (fish) 0.001
19 CIFAR100 (flowers) 0.001
20 CIFAR100 (food containers) 0.001
21 CIFAR100 (fruit and vegetables) 0.001
22 CIFAR100 (household electrical devices) 0.001
23 CIFAR100 (household furniture) 0.001
24 CIFAR100 (insects) 0.001
25 CIFAR100 (large carnivores) 0.001
26 CIFAR100 (large man-made outdoor things) 0.001
27 CIFAR100 (large natural outdoor scenes) 0.001
28 CIFAR100 (large omnivores and herbivores) 0.001
29 CIFAR100 (medium-sized mammals) 0.001
30 CIFAR100 (non-insect invertebrates) 0.001
31 CIFAR100 (people) 0.001
32 CIFAR100 (reptiles) 0.001
33 CIFAR100 (aquatic mammals) 0.0001
34 CIFAR100 (fish) 0.0001
35 CIFAR100 (flowers) 0.0001
36 CIFAR100 (food containers) 0.0001
37 CIFAR100 (fruit and vegetables) 0.0001
38 CIFAR100 (household electrical devices) 0.0001
39 CIFAR100 (household furniture) 0.0001
40 CIFAR100 (insects) 0.0001
41 CIFAR100 (large carnivores) 0.0001
42 CIFAR100 (large man-made outdoor things) 0.0001
43 CIFAR100 (large natural outdoor scenes) 0.0001
44 CIFAR100 (large omnivores and herbivores) 0.0001
45 CIFAR100 (medium-sized mammals) 0.0001

127

APPENDIX D

APPENDIX FOR TABNAS

D.1 Algorithm pseudocode

We show psuedocode of the algorithms introduced in Section 4.2.

Algorithm 11 (Resource-Oblivious) One-Shot Training and REINFORCE

Input: search space S , weight learning rate α, RL learning rate η
Output: sampling probabilities {pi j}i∈[L], j∈[Ci]

1 initialize logits ℓi j ← 0, ∀i ∈ [L], j ∈ [Ci]
2 initialize quality reward moving average Q̄← 0
3 layer warmup
4 for iter = 1 to max iter do
5 pi j ← exp(ℓi j)/

∑
j∈[Ci] exp(ℓi j), ∀i ∈ [L], j ∈ [Ci]

6 ▷weight update
7 for i = 1 to L do
8 xi ← the i-th layer size sampled from {si j} j∈[Ci] with distribution
{pi j} j∈[Ci]

9 end for
10 loss(x)← the (training) loss of x = x1- ··· -xL on the training set
11 w← w − α∇loss(x), in which w is the weights of x ▷ can be replaced with

optimizers other than SGD
12 ▷ RL update
13 for i = 1 to L do
14 yi ← the i-th layer size sampled from {si j} j∈[Ci] with distribution
{pi j} j∈[Ci]

15 end for
16 Q(y)← 1− loss(y), the quality reward of y = y1- ··· -yL on the validation set
17 RL reward r(y)← Q(y) ▷ can be replaced with resource-aware rewards

introduced in Section 5.3.3
18 J(y)← stop grad(r(y) − Q̄) logP(y) ▷ can be replaced with

Algorithm 12 when resource-constrained
19 ℓi j ← ℓi j + η∇J(y), ∀i ∈ [L], j ∈ [Ci] ▷ can be replaced with optimizers

other than SGD
20 Q̄← γ∗Q̄+(1−γ)∗Q(y)

γ∗Q̄+1−γ ▷ update moving average with γ = 0.9
21 end for

128

Algorithm 12 Rejection with Monte-Carlo (MC) Sampling

1 Input: number of MC samples N, feasible set V , MC proposal distribution
q, quality reward moving average Q̄, sampled architecture for RL in the
current step y = y1-y2- ··· -yL, current layer size distribution over {si j} j∈[Ci] with
probability {pi j} j∈[Ci]

2 Output: J(y)
3 if y is feasible then
4 Q(y) = the quality reward of y
5 P(y) :=

∏
i∈[L]

P(Yi = yi)

6 for i = 1 to L do
7 {z(k)

i }k∈[N] ← N samples of the i-th layer size, sampled from {si j} j∈[Ci]

with distribution {pi j} j∈[Ci]

8 end for
9 p(k)

i := P(Zi = z(k)
i), ∀i ∈ [L], k ∈ [N]

10 p(k) :=
∏

i∈[L]
p(k)

i , ∀k ∈ [N]

11 P̂(V)← 1
N

∑
k∈[N],z(k)∈V

p(k)

q(k) , in which z(k) := z(k)
1 - ··· -z(k)

L

12 J(y)← stop grad(Q(y) − Q̄) log P(y)
P̂(V)

13 else
14 J(y)← 0
15 end if

search space S

feasible set V

Figure D.1: Illustration of the feasible set V within the search space S . Each
green diamond or orange dot denotes a feasible or infeasible architecture, re-
spectively.

129

Algorithm 13 Sample to Return the Final Architecture

1 Input: sampling probabilities {pi j}i∈[L], j∈[Ci] returned by Algorithm 11, num-
ber of desired architectures n, number of samples to draw m

2 Output: the set of n selected architectures A
3 for i = 1 to L do
4 {x(k)

i }k∈[m] ← m samples of the i-th layer size, sampled from {si j} j∈[Ci] with
distribution {pi j} j∈[Ci]

5 end for
6 F := {k ∈ [m] | x(k)

1 -x(k)
2 - ··· -x(k)

L ∈ V}
7 A← n unique architectures in F with largest numbers of parameters

Notice that in Algorithm 11, we show the weight and RL updates with the

stochastic gradient descent (SGD) algorithm; in our experiments on the toy ex-

ample and real datasets, we use Adam for both updates as in ProxylessNAS [20]

and TuNAS [11], since it synchronizes convergence across different layer size

choices, and slows down the learning which would otherwise converge too

rapidly.

D.2 Details of experiment setup

D.2.1 Toy example

We use the Adam optimizer with β1 = 0.9, β2 = 0.999 and ϵ = 0.001 to update

the logits. When we use the Abs Reward, the results are similar when η ≥ 0.05,

while the RL controller with η < 0.05 converges too slow or is hard to converge.

When we use the rejection-based reward, we use RL learning rate η = 0.1; other

η values with which RL converges give similar results.

130

D.2.2 Real datasets

Table D.1 shows the datasets we use. Datasets other than Criteo come from the

OpenML dataset repository [130]. For Criteo, we randomly split the labeled

part (45,840,617 points) into 90% training (41,258,185 points) and 10% valida-

tion (4,582,432 points); for the other datasets, we randomly split into 80% train-

ing and 20% validation1. The representations we use for Criteo are inspired by

DCN-V2 [134].

Table D.1: Dataset details

name # points # features # classes embedding we use for each feature

numerical categorical

Criteo 51,882,752 13 26 2 original values for each numerical,
39-dimensional for each categorical

Volkert 58,310 180 0 10 original values
Aloi 108,000 128 0 1,000 original values

Connect-4 67,557 0 42 3 2-dimensional for each categorical
Higgs 98,050 28 0 2 original values

Table D.2 shows the hyperparameters we use for stand-alone training and

NAS, found by grid search. With these hyperparameters, the best architecture

in each of our search spaces (introduced in Appendix D.2.2) has performance

that is within ±5% of the best performance in [70] Table 2, and we achieve these

scores with FFNs that only have 5% parameters of the ones there. The Adam

optimizer has hyperparameters β1 = 0.9, β2 = 0.999 and ϵ = 0.001. We use layer

normalization [5] for all datasets. We use balanced error (weighted average of

classification errors across classes) for all other datasets2 as in [70], except for

1The ranking of validation losses among architectures under such splits is almost the same
as that of test losses under 60%-20%-20% training-validation-test splits.

2The performance ranking of architectures under the balanced error metric is almost the
same as under logistic loss. Also, the balanced error metric is only for reporting the final vali-

131

Criteo, on which we use logistic loss as in [134].

Table D.2: Weight training hyperparameter details

name batch size learning
rate

learning rate
schedule

optimizer # training
epochs

metric

Criteo 512 0.002 cosine decay Adam 60 log loss
Volkert 32 0.01 constant SGD with

momentum 0.9
120 balanced error

Aloi 128 0.0005 constant Adam 50 balanced error
Connect-4 32 0.0005 cosine decay Adam 60 balanced error

Higgs 64 0.05 constant SGD 60 balanced error

We use constant RL learning rates for NAS. The Connect-43 and Higgs4

datasets are easy for both the Abs Reward and rejection-based reward, in the

sense that small FFNs with fewer than 5,000 parameters can achieve near-SOTA

results (±5% of the best accuracy scores listed in [70] Table 2, except that we

do 80%-20% training-validation splits and use original instead of standardized

features), and RL-based weight-sharing NAS with either reward can find archi-

tectures that match the Pareto-optimal reference architectures. The Aloi dataset5

needs more parameters (more than 100k), but the other observations are similar

to on Connect-4 and Higgs. Thus we omit the corresponding results.

The factorized search spaces we use for NAS are:

• Criteo: Each layer has 20 choices {8, 16, 24, 32, 48, 64, 80, 96, 112, 128, 144,

160, 176, 192, 208, 224, 240, 256, 384, 512}.

• Volkert, 4-layer networks: Each layer has 20 choices {8, 16, 24, 32, 48, 64, 80,

96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 384, 512}.

dation losses; both weight and RL updates use logistic loss.
3https://www.openml.org/d/40668
4https://www.openml.org/d/23512
5https://www.openml.org/d/42396

132

• Volkert, 9-layer networks: Each layer has 12 choices {8, 16, 24, 32, 48, 64, 80,

96, 112, 128, 144, 160}. This search space has fewer choices for each hidden

layer than the 4-layer counterpart, but the size of the search space is over

3 × 104 times larger.

More Details on the Tradeoff Plot (Figure 5.3)

Each search space we use for exhaustive search and NAS has a fixed number

of hidden layers. Resource-constrained NAS in a search space with varying

number of hidden layers is an interesting problem for future studies. On each

dataset, we randomly sample, train and evaluate architectures in the search

space with the number of parameters fall within a range, in which there is a

clear tradeoff between loss and number of parameters. These ranges are:

• Criteo: 0 – 200,000

• Volkert, 4-layer networks: 15,000 – 50,000

• Volkert, 9-layer networks: 40,000 – 100,000

Figure D.2 shows the tradeoffs between loss and number of parameters in

these search spaces. When training each architecture 5 times, the standard devi-

ation (std) across different runs is 0.0002 for Criteo and 0.004 for Volkert, mean-

ing that the architectures whose performance difference is larger than 2× std are

qualitatively different with high probability. We use Pareto-optimal architec-

tures as the reference of resource-constrained NAS: we want an architecture that

both matches (or even beats6) the performance of the reference architecture and
6Note that the Pareto optimality of the reference architecture is determined by only one

round of random search. Thus because of the randomness across multiple training runs, the
other architectures are likely to beat the reference architecture: a “regression toward the mean”.

133

0.0 0.5 1.0 1.5 2.0
parameters

1e5

0.442

0.446

0.450

0.454

lo
g

lo
ss 48-128-16-112

 (reference architecture)
other architectures
parameters
 58,000 to 60,000

(a) Tradeoff on Criteo, in 4 layer search
space

0.0 0.5 1.0 1.5 2.0
parameters

1e5

0.442

0.446

0.450

0.454

lo
g

lo
ss 48-240-24-256-8

 (reference architecture)
other architectures
parameters
 74,000 to 76,000

(b) Tradeoff on Criteo, in 5 layer search
space

1.5 3.0 4.5
parameters

1e4
0.3

0.4

ba
la

nc
ed

 e
rro

r

48-160-32-144
 (reference architecture)
other architectures
parameters
 27,000 to 27,900

(c) Tradeoff on Volkert, in 4 layer search
space

0.4 0.7 1.0
parameters

1e5

0.3

0.4

ba
la

nc
ed

 e
rro

r

144-128-112-16-16-48-144-24-160
 (reference architecture)
other architectures
parameters
 77,000 to 79,000

(d) Tradeoff on Volkert, in 9 layer search
space

Figure D.2: Tradeoffs between validation loss and number of parameters in four
search spaces.

has no more parameters than the reference. Most Pareto-optimal architectures

in Figure D.2 have the bottleneck structure; Table D.3 shows some examples.

More Details on TPU Implementation

When we run one-shot NAS on a TPU that has multiple TPU cores (for example,

each Cloud TPU-v2 we use has 8 cores), each core samples an architectures inde-

pendently, and we use the average loss and reward for weight and RL updates,

respectively. This means our algorithm actually samples multiple architectures

in each iteration and uses the tensorflow.tpu.cross replica sum()

method to compute their average effect on the gradient. Since only a frac-

tion of architectures are feasible in each search space, we set the losses and

rewards given by the infeasible architectures to 0 before averaging, so that we

are equivalently only averaging across the sampled architectures that are fea-

134

Table D.3: Some Pareto-optimal architectures in Figure D.2. All architectures
shown here and almost all other Pareto-optimal architectures have the bottle-
neck structure.

search space Pareto-optimal architecture number of parameters loss

Figure D.2(a) Criteo 4-layer 32-144-24-112 44,041 0.4454
Figure D.2(a) Criteo 4-layer 48-112-8-80 56,537 0.4448
Figure D.2(a) Criteo 4-layer 48-384-16-176 77,489 0.4441
Figure D.2(a) Criteo 4-layer 96-144-32-240 125,457 0.4433
Figure D.2(a) Criteo 4-layer 96-384-48-16 155,217 0.4430

Figure D.2(b) Criteo 5-layer 32-240-16-8-96 45,769 0.4451
Figure D.2(b) Criteo 5-layer 48-128-64-16-128 67,217 0.4446
Figure D.2(b) Criteo 5-layer 48-256-16-8-384 69,977 0.4443
Figure D.2(b) Criteo 5-layer 64-144-48-96-160 102,497 0.4437
Figure D.2(b) Criteo 5-layer 96-512-24-256-48 179,449 0.4430

Figure D.2(c) Volkert 4-layer 48-112-16-24 16,642 0.3314
Figure D.2(c) Volkert 4-layer 32-112-24-224 20,050 0.3269
Figure D.2(c) Volkert 4-layer 48-160-32-144 27,882 0.3149
Figure D.2(c) Volkert 4-layer 48-256-24-112 31,330 0.3097
Figure D.2(c) Volkert 4-layer 80-208-32-64 40,778 0.3054

Figure D.2(d) Volkert 9-layer 64-64-160-48-16-144-16-8-48 40,482 0.3250
Figure D.2(d) Volkert 9-layer 80-144-32-112-32-8-128-8-144 43,290 0.3238
Figure D.2(d) Volkert 9-layer 112-144-32-32-24-24-24-128-32 51,890 0.3128
Figure D.2(d) Volkert 9-layer 144-128-112-16-16-48-144-24-160 78,114 0.3019
Figure D.2(d) Volkert 9-layer 160-144-144-32-112-32-48-32-144 94,330 0.3010

sible. We then reweight the average loss or reward with number of cores /

number of feasible architectures to obtain an unbiased estimate.

More Details on the NAS Method Comparison Plot (Figure 5.2)

For each architecture below, we report its number of parameters and mean ±

std logistic loss across 5 stand-alone training runs in brackets.

We have the reference architecture 32-144-24 (41,153 parameters, 0.4454 ±

0.0003) for NAS methods to match. In the search space with 203 = 8000 candi-

date architectures:

135

• TabNAS trials with no fewer than 2,048 Monte-Carlo samples and the RL

learning rate η among {0.001, 0.005, 0.01} consistently finds either the ref-

erence architecture itself, or an architectures that is qualitatively the same

as the reference, like 32-112-32 (40,241 parameters, 0.4456 ± 0.0003).

• NAS with the Abs Reward: After grid search over RL learning rate η

(among {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05,

0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0}) and

β (among {-0.0005, -0.001, -0.005, -0.01, -0.05, -0.1, -0.5, -0.75, -1.0, -1.25, -

1.5, -2.0, -3.0}), the RL controller finds 32-64-96 (41,345 parameters, 0.4461

± 0.0003) or 32-80-64 (40,785 parameters, 0.4459 ± 0.0002) among over 90%

trials that eventually find an architecture within ±5% of the target number

of parameters 41,153.

D.2.3 Difficulty in using the MnasNet reward

With the MnasNet reward, only fewer than 1% NAS trials in our hyperparame-

ter grid search (the ones with a medium β) can find an architecture whose num-

ber of parameters is within ±5% of the reference, and among which none or

only one (out of tens) can match the reference performance. In contrast, TuNAS

with the Abs Reward finds an architecture with number of parameters within

±5% of the reference among over 50% of the grid search trials described in Ap-

pendix D.2.2, and TabNAS with the rejection-based reward consistently finds

such architectures at medium RL learning rates η and decently large numbers

of MC samples N. This means it is significantly more difficult to use the Mnas-

Net reward than competing approaches in the practice of resource-constrained

tabular NAS.

136

D.3 More failure cases of the Abs Reward

For each architecture below, we report its number of parameters and mean ± std

loss across 5 stand-alone training runs (logistic loss for Criteo, balanced error for

the others) in brackets.

On Criteo, in the 4-layer search space. We have the reference architecture 48-

128-16-112 (59,697 parameters, 0.4451 ± 0.0002) for NAS to match in the search

space (shown as Figure D.2(a)). Similar to Figure 5.2, we show similar results

on NAS with rejection-based reward (TabNAS) and NAS with the Abs Reward

(TuNAS) in Figure D.3(a). In the search space with 204 = 1.6 × 105 candidate

architectures:

• TabNAS with 32,768 Monte-Carlo samples and RL learning rate η among

{0.001, 0.005, 0.01} consistently finds architectures qualitatively the same

as the reference. Example results include 48-128-24-32 (59,545 parameters,

0.4449 ± 0.0002), 48-144-16-48 (59,585 parameters, 0.4448 ± 0.0001), 48-112-

16-144 (59,233 parameters, 0.4448 ± 0.0002) and the reference architecture

itself.

• NAS with the Abs Reward successfully finds the reference architecture

48-128-16-112 in 3 out of 338 hyperparameter settings on a β-η grid.

Other found architectures include 48-80-32-112 (59,665 parameters, 0.4452

± 0.0002), 32-128-80-144 (59,249 parameters, 0.4453 ± 0.0003) and 48-160-

8-48 (58,953 parameters, 0.4448 ± 0.0003), among which the first two are

inferior to the TabNAS-found counterparts.

On Criteo, in the 5-layer search space. We have the reference architecture 48-

240-24-256-8 (75,353 parameters, 0.4448 ± 0.0002) for NAS methods to match in

137

the search space (shown as Figure D.2(b)). Similar to Figure 5.2, we have similar

results on the comparison among random sampling, NAS with rejection-based

reward (TabNAS), and NAS with the Abs Reward as Figure D.3(b). In the search

space with 205 = 3.2 × 106 candidate architectures:

• TabNAS with 32,768 Monte-Carlo samples and the RL learning rate η =

0.005 consistently finds architectures qualitatively the same as the refer-

ence. Example results include 48-176-64-16-256 (74,945 parameters, 0.4445

± 0.0002), 48-208-48-48-64 (75,121 parameters, 0.4444 ± 0.0001), 48-256-32-

80-24 (74,721 parameters, 0.4446 ± 0.0003) and 48-176-80-16-96 (75,153 pa-

rameters, 0.4445 ± 0.0002).

• NAS with the Abs Reward finds 64-80-48-8-8 (75,353 parameters, 0.4448 ±

0.0001), 64-80-24-16-112 (75,353 parameters, 0.4447 ± 0.0001), 48-144-96-16-

192 (75,329 parameters, 0.4446 ± 0.0001) and 64-96-8-32-64 (75,273 param-

eters, 0.4445 ± 0.0001) that are mostly inferior to the TabNAS-found archi-

tectures.

On Volkert, in the 4-layer search space. We have the reference architecture 48-

160-32-144 (27,882 parameters, 0.3244 ± 0.0040) for NAS to match in the search

space (shown as Figure D.2(c)). Similar to Figure 5.2, we draw the comparison

plot among random sampling, NAS with rejection-based reward (TabNAS), and

NAS with the Abs Reward as Figure D.3(c). In the search space with 1.6 × 105

candidate architectures:

• TabNAS with 1 × 104 Monte-Carlo samples and the RL learning rate η ∈

{0.001, 0.005, 0.01, 0.05} consistently finds either the reference architecture

itself or other architectures qualitatively the same. Examples include 64-

128-48-16 (27,050 parameters, 0.3237 ± 0.0040), 80-48-112-32 (27,802 param-

138

0 2 4 6 8 10
time relative to stand-alone training

0.445

0.446

0.447

lo
ss

RL with rejection-based reward (num_parameters 59,697)
RL with Abs Reward (num_parameters target 59,697)
random sampling (num_parameters in [59000, 60000])

(a) Criteo, 4-layer search space

0 2 4 6 8 10
time relative to stand-alone training

0.445

0.446

0.447

lo
ss

RL with rejection-based reward (num_parameters 75,353)
RL with Abs Reward (num_parameters target 75,353)
random sampling (num_parameters in [74000, 76000])

(b) Criteo, 5-layer search space

0 2 4 6 8 10
time relative to stand-alone training

0.32

0.33

0.34

0.35

lo
ss

RL with rejection-based reward (num_parameters 27,882)
RL with Abs Reward (num_parameters target 27,882)
random sampling (num_parameters in [27000, 27900])

(c) Volkert, 4-layer search space

0 2 4 6 8 10
time relative to stand-alone training

0.31

0.32

0.33

lo
ss

RL with rejection-based reward (num_parameters 78,114)
RL with Abs Reward (num_parameters target 78,114)
random sampling (num_parameters in [77000, 78114])

(d) Volkert, 9-layer search space

Figure D.3: Rejection-based reward distributionally outperforms random search
and resource-aware Abs Reward in a number of search spaces. The points
and error bars have the same meaning as in Figure 5.2. The time taken for
each stand-alone training run (the unit length for x axes) is 2.5 hours on Criteo
(Figure 5.2, D.3(a) and D.3(b)), 10 minutes on Volkert with 4-layer FFNs (Fig-
ure D.3(c)), and 22-25 minutes on Volkert with 9-layer FFNs (Figure D.3(d)).

eters, 0.3274 ± 0.0037), 64-96-80-24 (27,778 parameters, 0.3279 ± 0.0005), and

64-144-32-48 (27,658 parameters, 0.3204 ± 0.0038).

• NAS with the Abs Reward finds 96-64-32-48 (27,738 parameters, 0.3302

± 0.0042), 96-48-32-96 (27,738 parameters, 0.3305 ± 0.0047), 96-80-16-48

(27,738 parameters, 0.3302 ± 0.0050), 112-48-24-24 (27,722 parameters,

0.3301 ± 0.0034) and 80-80-48-48 (27,690 parameters, 0.3309 ± 0.0022) that

are inferior.

On Volkert, in the 9-layer search space. We further do NAS on Volkert in the 9-

layer search space to test the ability of TabNAS in searching among significantly

139

deeper FFNs. The tradeoff between loss and number of parameters in the search

space is shown in Figure D.2(d). We have the reference architecture 144-128-112-

16-16-48-144-24-160 (78,114 parameters, 0.3126 ± 0.0050) for NAS to match. We

compare random sampling, NAS with rejection-based reward (TabNAS), and

NAS with the Abs Reward in Figure D.3(d). In the search space with 5.2 × 109

candidate architectures (which is nearly impossible for exhaustive search):

• TabNAS with 5 × 106 Monte-Carlo samples and the RL learning rate η ∈

{0.002, 0.005} consistently finds architectures that are qualitatively the same

as the reference. These architectures are found when the RL controller is far

from converged and when P(V) slightly decreases after RL starts. Example

results include 144-144-112-64-24-16-128-8-128 (78,026 parameters, 0.3120 ±

0.0049), 128-160-96-32-24-64-64-32-160 (77,890 parameters, 0.3127 ± 0.0040),

128-144-112-32-64-64-80-16-128 (77,834 parameters, 0.3094 ± 0.0012), 160-

128-96-32-48-64-48-24-112 (78,002 parameters, 0.3137 ± 0.0021), and 144-

112-160-24-112-16-16-128-48 (77,986 parameters, 0.3119 ± 0.0029).

• NAS with the Abs Reward finds 144-96-80-80-48-64-96-80-32 (78,170 pa-

rameters, 0.3094 ± 0.0039), 160-80-160-24-80-16-80-64-128 (78,114 param-

eters, 0.3158 ± 0.0020), 128-96-80-80-64-64-80-80-80 (78,106 parameters,

0.3128 ± 0.0020), and 144-128-80-16-16-16-96-160-24 (78,050 parameters,

0.3192 ± 0.0014). Interestingly, all architectures except 144-96-80-80-48-

64-96-80-32 are inferior to the TabNAS-found architectures despite having

slightly more parameters, and 144-96-80-80-48-64-96-80-32 does not have

an evident bottleneck structure like the other architectures found here.

As a side note, previous works like MnasNet and TuNAS (often or only

on vision tasks) do often have inverted bottleneck blocks [107] in their search

spaces. However, the search spaces used there have a hard-coded requirement

140

that certain layers must have bottlenecks. In contrast, our search spaces permit

the controller to automatically determine whether to use bottleneck structures

based on the task under consideration. This is important because networks with

bottlenecks do not always outperform others on all tasks. For example, the ref-

erence architecture 32-144-24 outperforms the TuNAS-found 32-64-96 on Criteo,

but the reference 64-192-48-32 (64,568 parameters, 0.0662 ± 0.0011) is on par with

the TuNAS-and-TabNAS-found 96-80-96-32 (64,024 parameters, 0.0669 ± 0.0013)

on Aloi.

D.4 Comparison with weight-sharing Bayesian optimization

and evolutionary search

Bayesian optimization (BO) and evolutionary search (ES) are popular stratigies

for NAS (see e.g., [67, 71, 136, 153]; [85, 4]). We are not aware of any work

that successfully applies BO or ES for weight-sharing NAS. Thus we design the

following (novel) methods of BO or ES for weight-sharing NAS: train the Su-

perNet for the same number of epochs as RL, and then do BO (by Gaussian

processes [105] with expected improvement [94, 69]) or ES in the set of feasi-

ble architectures with the SuperNet one-shot losses (evaluated from SuperNet

weights). These methods omit the extra forward passes for RL controller train-

ing, but need extra forward passes to evaluate child networks. We control the

number of passes for a fair comparison. On Criteo, the cost of forward passes

for RL is comparable to evaluating 405 child networks, and the search space

of 5-layer FFNs has 340,590 feasible architectures below the 75,353 parameters

limit in Figure 11(b). The corresponding reference architecture is 48-240-24-

141

Table D.4: Comparison of TabNAS, Bayesian optimization (BO) and evolution-
ary search (ES) with weight sharing. TabNAS finds the architecture with the
smallest loss.

method found architecture (number of parameters, mean ± std loss)

TabNAS (N=32,768) 48-176-64-16-256 (74,945 parameters, 0.4445 ± 0.0002)
BO (RBF kernel L=10) 64-80-8-16-16 (72,073 parameters, 0.4447 ± 0.0002)
BO (RBF kernel L=1) 48-80-48-96-96 (71,265 parameters, 0.4451 ± 0.0003)

ES (10 steps, population 100) 48-96-16-144-64 (67,393 parameters, 0.4450 ± 0.0002)
ES (60 steps, population 50) 48-48-80-80-64 (67,345 parameters, 0.4452 ± 0.0003)

256-8. The architectures found by BO and ES (under multiple hyperparameter

settings) are sensitive to initialization and are worse (see Table D.4). Thus RL

explores the search space more efficiently than BO and ES: it finds the global

optimum with fewer forward passes.

D.5 Difficulty of hyperparameter tuning

Hyperparameter tuning has always been a headache for machine learning. In

the design of NAS approaches, the hope is that the NAS hyperparameters are

much easier to tune than the architectures NAS search over. We denote the RL

learning rate and the number of MC samples by η and N, respectively. The

three resource-aware rewards (in MnasNet and TuNAS) have both η and β as

hyperparameters; our TabNAS with the rejection-based reward has η and N to

tune.

142

0 10
| |

0

1

pr
ob

ab
ilit

y
(a) Tuning β
in Abs Re-
ward

1 9
N

0

1

pr
ob

ab
ilit

y

(b) Tuning N
in rejection

0 10
| |

0

1

pr
ob

ab
ilit

y

finding a feasible
 architecture
finding the best
 in feasible set

Figure D.4: Tuning β and N on the toy ex-
ample (Figure 5.1): the number of MC sam-
ples N in rejection-based reward is easier to
tune than β in Abs Reward, and is easier to
succeed. The lines and shaded regions are
mean and standard deviation across 200 in-
dependent runs, respectively.

0 30 60 90 120
epochs

0.0

0.5

1.0

es
tim

at
ed

 v

al
id

 p
ro

b

N=256 (5.2 ms/iteration)
N=2048 (5.5 ms/iteration)
N=5120 (5.6 ms/iteration)

Figure D.5: Tuning N on Criteo:
the change of P̂(V) when the
number of Monte-Carlo sam-
ples N is 256, 2,048 or 5,120, and
the time taken for each itera-
tion. We show results with RL
learning rate η = 0.005; those
other η values have similar fail-
ure patterns.

D.5.1 Resource hyperparameter β

β is difficult to tune in experiments: the best value varies by dataset and lies

in the middle of its search space. Since β < 0, we discuss its absolute value.

In a NAS search space, the architecture that is feasible and can match the ref-

erence performance often has the number of parameters that is more than 98%

of the reference. A too small |β| is not powerful enough to enforce the resource

constraint, in which case NAS finds an architecture that is far from the target

number of parameters and makes the search nearly unconstrained (e.g., the Abs

Reward with |β| = 1 in the toy example, shown in Figure 5.1 and towards the

left end in Figure D.4(a)). A too large |β| severely penalizes the violation of

the resource constraint, in which case the RL controller would always give an

architecture close to the reference, with much bias (e.g., the Abs Reward with

|β| = 2 in Figure 5.1, and towards the right end in Figure D.4(a)). Thus practi-

tioners seek a medium |β| in hyperparameter tuning to both obey the resource

constraint and achieve a better result. In our experiments, such “appropriate”

medium values vary largely across datasets: 1 on Criteo with the 32-144-24 ref-

143

erence architecture (41,153 parameters), 2 on Volkert with the 48-160-32-144 ref-

erence architecture (27,882 parameters), and 25 on Aloi with the 64-192-48-32

reference architecture (64,568 parameters).

D.5.2 RL learning rate η

The RL learning rate η is easier to tune and more generalizable across datasets

than β. With a large η, the RL controller quickly converges right after the first

25% epochs of layer warmup; with a small η, the RL controller converges slowly

or may not converge, although there may still be enough signal from the layer-

wise probabilities to get the final result. It is thus straightforward to tune η by

observing the convergence behavior of sampling probabilities. In our experi-

ments, the appropriate value of η does not significantly vary across tasks: a con-

stant η ∈ [0.001, 0.01] is appropriate for all datasets and all number of parameter

limits.

D.5.3 Number of MC samples N

The number of MC samples N is also easier to tune than β. Resource permitting,

N is the larger, the better (Figure D.4(b)), so that P(V) can be better estimated.

When N is too small, the MC sampling has a high chance of missing the valid

architectures in the search space, and thus incurs large bias and variance for the

estimate of ∇ log[P(y |y ∈ V)]. In such cases, P̂(V) may miss all valid architectures

at the beginning of RL and quickly converge to 0. P̂(V) being equal or close to

0 is a bad case for our rejection-based algorithm: the single-step RL objective

144

J(y) that has a − log(P̂(V)) term grows extremely large and gives an explosive

gradient to stuck the RL controller in the current choice. Consequently, the cri-

terion for choosing N is to choose the largest that can afford, and hopefully, at

least choose the smallest that can make P̂(V) steadily increase during RL. Fig-

ure D.5 shows the changes of P̂(V) on Criteo with the 32-144-24 reference in the

search space of 8,000 architectures at three N values. The NAS succeeds when

N ≥ 2048, same as the threshold that makes P̂(V) increase.

Overall, the RL controller with our rejection-based reward has hyperparam-

eters that are easier to tune than with resource-aware rewards in MnasNet and

TuNAS.

D.6 More on ablation with a non-differentiable P(V) (or P̂(V))

As discussed in Section 5.4.3, the found architectures are significantly worse

when P(V) is omitted from J(y). Below are our experimental findings:

• In the case that we do not skip infeasible architectures in weight updates,

the largest hidden layer sizes may gain and maintain the largest sampling

probabilities soon after RL starts. This is because most architectures in

the 3-layer Criteo search space are above the number of parameters limit

41,153. When RL starts, the sampled feasible architectures underperform

the moving average, thus their logits are severely penalized, making the

logits of the infeasible architectures (which often have wide hidden lay-

ers) quickly dominate (Figure D.6(a)). Accordingly, the (estimated) valid

probability P(V) (or P̂(V)) quickly decrease to 0 (Figure D.6(b)), and the RL

controller gets stuck (as described in Appendix D.5.3) in these large choices

145

for hidden layer sizes.

• In the case that we skip infeasible architectures in both weight and RL up-

dates, the RL controller eventually picks feasible architectures with bottle-

neck structures, but the found architectures are almost always suboptimal:

when RL starts, the controller severely boosts the logits of the sampled

feasible architectures without much exploration in the search space, and

quickly gets stuck there. For example, the search in Figure D.6(c)) finds 24-

384-16 (40,449 parameters) that is feasible but suboptimal; P(V) and P̂(V)

quickly increase to 1 after RL starts (Figure D.6(d)).

0 37 150
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 2

0

1

pr
ob

ab
ilit

y

(a) Layer 2, not
skipping infeasible
in training

0 37 150
epochs

0

1

va
lid

 p
ro

b

estimated
 (N=2048)
true

(b) Valid probabil-
ities, not skipping
infeasible in train-
ing

0 37 150
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 2

0

1

pr
ob

ab
ilit

y

(c) Layer 2, skip-
ping infeasible in
training

0 37 150
epochs

0

1

va
lid

 p
ro

b

estimated
 (N=2048)
true

(d) Valid proba-
bilities, skipping
infeasible in training

Figure D.6: Failure cases in ablation when P̂(V) is non-differentiable. We
show results with RL learning rate η = 0.005; those under other η values are
similar.

D.7 Proofs

D.7.1 P̂(V) is an unbiased and consistent estimate of P(V)

Within the search space S , recall the definitions of P(V) and P̂(V):

• P(V) =
∑

z(i)∈S
p(i)1(z(i) ∈ V)

146

• P̂(V) = 1
N

∑
k∈[N],z(k)∈V

p(k)

q(k) =
1
N

∑
k∈[N]

p(k)

q(k)1(z(k) ∈ V)

Unbiasedness. With N architectures sampled from the proposal distribution q,

we take the expectation with respect to N sampled architectures:

E[P̂(V)] =
1
N
E

[∑
k∈[N],z(k)∈V

p(k)

q(k)

]

=
1
N
E

[∑
k∈[N]

p(k)

q(k)1(z(k) ∈ V)
]

=
1
N

∑
k∈[N]

E

[
p(k)

q(k)1(z(k) ∈ V)
]
,

in which each summand

E

[
p(k)

q(k)1(z(k) ∈ V)
]
=
∑

z(k)∈S

q(k) p(k)

q(k)1(z(k) ∈ V)

= P(V),

Thus E[P̂(V)] = P(V).

Consistency. We first show the variance of P(V) converges to 0 as the number

of MC samples N → ∞. Because of independence among samples,

Var[P̂(V)] =
1
N

∑
k∈[N]

Var
[

p(k)

q(k)1(z(k) ∈ V)
]
,

in which each summand

Var
[

p(k)

q(k)1(z(k) ∈ V)
]
= E
[p(k)

q(k)1(z(k) ∈ V) − P(V)
]

=
∑

z(k)<V

q(k)P(V)2 +
∑

z(k)∈V

q(k)
[p(k)

q(k) − P(V)
]2

= −P(V)2 +
∑

z(k)∈V

(p(k))2

q(k) ,

(D.1)

thus the variance

Var[P̂(V)] =
1
N

∑
k∈[N]

Var
[p(k)

q(k)1(z(k) ∈ V)
]

1
N

[
− P(V)2 +

∑
z(k)∈V

(p(k))2

q(k)

]
,

147

which goes to 0 as N → ∞. It worths noting that when we set q = stop grad(p),

the single-summand variance (Equation D.1) becomesP(V)−P(V)2, which is the

variance of a Bernoulli distribution with mean P(V).

The Chebyshev’s Inequality states that for a random variable X with expec-

tation µ, for any a > 0, P(|X − µ| > a) ≤ Var(X)
a2 . Thus lim

N→∞
Var(X) = 0 implies that

lim
N→∞

P(|X − µ| > a) = 0 for any a > 0, indicating consistency.

D.7.2 ∇ log[P(y)/P̂(V)] is a consistent estimate of ∇ log[P(y | y ∈

V)]

Since P(y | y ∈ V) = P(y)
P(V) , we show plim

N→∞
∇ log P̂(V) = ∇ logP(V) below to prove

consistency, in which plim
N→∞

denotes convergence in probability.

Recall p(i) is the probability of sampling the i-th architecture z(i) within the

search space S , and the definitions of P(V) and P̂(V) are:

• P(V) =
∑

z(i)∈S
p(i)1(z(i) ∈ V),

• P̂(V) = 1
N

∑
k∈[N],z(k)∈V

p(k)

q(k) =
1
N

∑
k∈[N]

p(k)

q(k)1(z(k) ∈ V), in which each p(k) is differen-

tiable with respect to all logits {ℓi j}i∈[L], j∈[Ci].

Thus we have

plim
N→∞

P̂(V) = plim
N→∞

1
N

∑
k∈[N]

p(k)

q(k)1(z(k) ∈ V)

=
1
N

∑
z(k)∈S

p(k)

q(k)1(z(k) ∈ V)Nq(k)

=
∑

z(k)∈S

p(k)1(z(k) ∈ V) = P(V),

148

and

plim
N→∞
∇P̂(V) = plim

N→∞

1
N

∑
k∈[N]

∇p(k)

q(k) 1(z(k) ∈ V)

=
1
N

∑
z(k)∈S

∇p(k)

q(k) 1(z(k) ∈ V)Nq(k)

=
∑

z(k)∈S

∇p(k)1(z(k) ∈ V) = ∇P(V).

Together with the condition that P(V) > 0 (the search space contains at

least one feasible architecture), we have the desired result for consistency as

plim
N→∞
∇ log P̂(V) = plim

N→∞

∇P̂(V)
P̂(V)

=
plim
N→∞

∇P̂(V)

plim
N→∞

P̂(V)
=
∇P(V)
P(V) = ∇ logP(V), in which the equali-

ties hold due to the properties of convergence in probability.

149

BIBLIOGRAPHY

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoff-
man, David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Fre-
itas. Learning to learn by gradient descent by gradient descent. Advances
in neural information processing systems, 29, 2016.

[3] Charles Audet, Jean Bigeon, Dominique Cartier, Sébastien Le Digabel,
and Ludovic Salomon. Performance indicators in multiobjective opti-
mization. European journal of operational research, 2020.

[4] Noor Awad, Neeratyoy Mallik, and Frank Hutter. Differential evolution
for neural architecture search. arXiv preprint arXiv:2012.06400, 2020.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normal-
ization. arXiv preprint arXiv:1607.06450, 2016.

[6] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Gen-
eralization in portfolio-based algorithm selection. arXiv preprint
arXiv:2012.13315, 2020.

[7] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. Col-
laborative hyperparameter tuning. In International conference on machine
learning, pages 199–207. PMLR, 2013.

[8] Thomas Bartz-Beielstein and Sandor Markon. Tuning search algorithms
for real-world applications: A regression tree based approach. In Congress
on Evolutionary Computation, volume 1, pages 1111–1118. IEEE, 2004.

150

[9] Stephen R Becker, Emmanuel J Candès, and Michael C Grant. Templates
for convex cone problems with applications to sparse signal recovery.
Mathematical programming computation, 3(3):165, 2011.

[10] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan,
and Quoc Le. Understanding and simplifying one-shot architecture
search. In International Conference on Machine Learning, pages 550–559.
PMLR, 2018.

[11] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng,
Pieter-Jan Kindermans, and Quoc V Le. Can weight sharing outperform
random architecture search? An investigation with TuNAS. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14323–14332, 2020.

[12] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural
computation, 12(8):1889–1900, 2000.

[13] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for hyper-parameter optimization. Advances in neural information
processing systems, 24, 2011.

[14] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of machine learning research, 13(2), 2012.

[15] Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas,
and Michel Lang. mlrMBO: A modular framework for model-
based optimization of expensive black-box functions. arXiv preprint
arXiv:1703.03373, 2017.

[16] C.M. Bishop. Pattern Recognition and Machine Learning. Information Sci-
ence and Statistics. Springer, 2006.

[17] George EP Box. Science and statistics. Journal of the American Statistical
Association, 71(356):791–799, 1976.

[18] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[19] Leon Bungert, Tim Roith, Daniel Tenbrinck, and Martin Burger. A breg-
man learning framework for sparse neural networks. arXiv preprint
arXiv:2105.04319, 2021.

151

[20] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architec-
ture search on target task and hardware. arXiv preprint arXiv:1812.00332,
2018.

[21] Zhaowei Cai and Nuno Vasconcelos. Rethinking differentiable search for
mixed-precision neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 2349–2358, 2020.

[22] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition. Psychometrika, 35(3):283–319, 1970.

[23] Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. Getting the
most out of ensemble selection. In ICDM, pages 828–833. IEEE, 2006.

[24] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes.
Ensemble selection from libraries of models. In ICML, page 18. ACM,
2004.

[25] Boyuan Chen, Harvey Wu, Warren Mo, Ishanu Chattopadhyay, and Hod
Lipson. Autostacker: A compositional evolutionary learning system. In
Proceedings of the genetic and evolutionary computation conference, pages 402–
409, 2018.

[26] Pei-Hung Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh.
Drone: Data-aware low-rank compression for large nlp models. Advances
in Neural Information Processing Systems, 34, 2021.

[27] Carlos A Coello Coello and Margarita Reyes Sierra. Multiobjective evo-
lutionary algorithms: classifications, analyses, and new innovations. In
Evolutionary Computation. Citeseer, 1999.

[28] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training
deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024, 2014.

[29] Tiago Cunha, Carlos Soares, and André C. P. L. F. de Carvalho. Cf4cf:
Recommending collaborative filtering algorithms using collaborative fil-
tering. In Proceedings of the 12th ACM Conference on Recommender Systems,
RecSys ’18, pages 357–361, New York, NY, USA, 2018. ACM.

[30] Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev,

152

Christopher R Aberger, Kunle Olukotun, and Christopher Ré. High-
accuracy low-precision training. arXiv preprint arXiv:1803.03383, 2018.

[31] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transac-
tions on Evolutionary Computation, 6(2):182–197, 2002.

[32] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum like-
lihood from incomplete data via the em algorithm. Journal of the Royal
Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255. IEEE, 2009.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[35] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of repro-
ducible neural architecture search. arXiv preprint arXiv:2001.00326, 2020.

[36] Iddo Drori, Yamuna Krishnamurthy, Remi Rampin, Raoni Lourenço,
J One, Kyunghyun Cho, Claudio Silva, and Juliana Freire. Alphad3m:
Machine learning pipeline synthesis. In AutoML Workshop at ICML, 2018.

[37] Iddo Drori, Yamuna Krishnamurthy, Remi Rampin, Raoni de Paula
Lourenco, Jorge Piazentin Ono, Kyunghyun Cho, Claudio Silva, and Ju-
liana Freire. Alphad3m: Machine learning pipeline synthesis. arXiv
preprint arXiv:2111.02508, 2021.

[38] Iddo Drori, Lu Liu, Yi Nian, Sharath C Koorathota, Jie S Li, Antonio Khalil
Moretti, Juliana Freire, and Madeleine Udell. AutoML using metadata
language embeddings. arXiv preprint arXiv:1910.03698, 2019.

[39] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[40] Romain Egele, Prasanna Balaprakash, Isabelle Guyon, Venkatram Vish-
wanath, Fangfang Xia, Rick Stevens, and Zhengying Liu. Agebo-tabular:
joint neural architecture and hyperparameter search with autotuned data-
parallel training for tabular data. In Proceedings of the International Con-

153

ference for High Performance Computing, Networking, Storage and Analysis,
pages 1–14, 2021.

[41] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro
Larroy, Mu Li, and Alexander Smola. Autogluon-tabular: Robust and ac-
curate AutoML for structured data. arXiv preprint arXiv:2003.06505, 2020.

[42] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine
learning. Advances in neural information processing systems, 28, 2015.

[43] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Using
meta-learning to initialize bayesian optimization of hyperparameters. In
MetaSel@ ECAI, pages 3–10. Citeseer, 2014.

[44] Matthias Feurer, Jan N van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy
Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren, and Frank
Hutter. Openml-python: an extensible python api for openml. arXiv
preprint arXiv:1911.02490, 2019.

[45] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018.

[46] Nicolo Fusi, Rishit Sheth, and Melih Elibol. Probabilistic matrix factor-
ization for automated machine learning. Advances in neural information
processing systems, 31, 2018.

[47] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov,
and Andrew G Wilson. Loss surfaces, mode connectivity, and fast ensem-
bling of dnns. In Advances in Neural Information Processing Systems, pages
8789–8798, 2018.

[48] P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren. An
Open Source AutoML Benchmark. arXiv preprint arXiv:1907.00909 [cs.LG],
2019. Accepted at AutoML Workshop at ICML 2019.

[49] Gene H Golub and Charles F Van Loan. Matrix computations. JHU Press,
2012.

[50] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko.
Revisiting deep learning models for tabular data. arXiv preprint
arXiv:2106.11959, 2021.

154

[51] Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a
strong rank-revealing qr factorization. SIAM Journal on Scientific Comput-
ing, 17(4):848–869, 1996.

[52] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In Inter-
national conference on machine learning, pages 1737–1746. PMLR, 2015.

[53] William W Hager. Updating the inverse of a matrix. SIAM review,
31(2):221–239, 1989.

[54] Richard A Harshman et al. Foundations of the parafac procedure: Models
and conditions for an” explanatory” multimodal factor analysis. 1970.

[55] David A Harville. Matrix algebra from a statistician’s perspective, 1998.

[56] Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, R Iris Bahar, and
Sherief Reda. Understanding the impact of precision quantization on the
accuracy and energy of neural networks. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, pages 1474–1479. IEEE, 2017.

[57] Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix
completion and low-rank svd via fast alternating least squares. The Journal
of Machine Learning Research, 16(1):3367–3402, 2015.

[58] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimiza-
tion: a spectral approach. In ICLR, 2018.

[59] Ralf Herbrich, Neil D Lawrence, and Matthias Seeger. Fast sparse Gaus-
sian process methods: The informative vector machine. In Advances in
Neural Information Processing Systems, pages 625–632, 2003.

[60] Sara Hooker. The hardware lottery. arXiv preprint arXiv:2009.06489, 2020.

[61] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos
Storkey. Meta-learning in neural networks: A survey. arXiv preprint
arXiv:2004.05439, 2020.

[62] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasude-
van, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1314–1324, 2019.

155

[63] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and
Mayur Naik. Predicting execution time of computer programs using
sparse polynomial regression. In Advances in Neural Information Process-
ing Systems, pages 883–891, 2010.

[64] Frank Hutter, Youssef Hamadi, Holger H Hoos, and Kevin Leyton-Brown.
Performance prediction and automated tuning of randomized and para-
metric algorithms. In International Conference on Principles and Practice of
Constraint Programming, pages 213–228. Springer, 2006.

[65] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential
Model-Based Optimization for General Algorithm Configuration. LION,
5:507–523, 2011.

[66] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algo-
rithm runtime prediction: Methods & evaluation. Artificial Intelligence,
206:79–111, 2014.

[67] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural
architecture search system. In Proceedings of the 25th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, pages 1946–1956,
2019.

[68] RC St John and Norman R Draper. D-optimality for regression designs: a
review. Technometrics, 17(1):15–23, 1975.

[69] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global
optimization of expensive black-box functions. Journal of Global optimiza-
tion, 13(4):455–492, 1998.

[70] Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-
tuned simple nets excel on tabular datasets. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

[71] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas
Poczos, and Eric P Xing. Neural architecture search with bayesian op-
timisation and optimal transport. Advances in neural information processing
systems, 31, 2018.

[72] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep
learning: Generalization gap and sharp minima. 2017.

156

[73] Farhan Khawar, Xu Hang, Ruiming Tang, Bin Liu, Zhenguo Li, and Xi-
uqiang He. Autofeature: Searching for feature interactions and their ar-
chitectures for click-through rate prediction. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management,
pages 625–634, 2020.

[74] Mikhail Khodak, Neil A. Tenenholtz, Lester Mackey, and Nicolò Fusi. Ini-
talization and regularization of factorized neural layers. In Proceedings of
the 10th International Conference on Learning Representations, 2021.

[75] Tamara G Kolda and Brett W Bader. Tensor decompositions and applica-
tions. SIAM review, 51(3):455–500, 2009.

[76] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor
placements in Gaussian processes: Theory, efficient algorithms and em-
pirical studies. Journal of Machine Learning Research, 9(Feb):235–284, 2008.

[77] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of fea-
tures from tiny images. 2009.

[78] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J
Gershman. Building machines that learn and think like people. Behavioral
and brain sciences, 40, 2017.

[79] Hamed F Langroudi, Zachariah Carmichael, David Pastuch, and Dhiree-
sha Kudithipudi. Cheetah: Mixed low-precision hardware & software co-
design framework for dnns on the edge. arXiv preprint arXiv:1908.02386,
2019.

[80] Rui Leite, Pavel Brazdil, and Joaquin Vanschoren. Selecting classification
algorithms with active testing. In International Workshop on Machine Learn-
ing and Data Mining in Pattern Recognition, pages 117–131. Springer, 2012.

[81] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: a
survey of trends and technologies. Artificial Intelligence Review, 44(1):117–
130, 2015.

[82] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Visualizing the loss landscape of neural nets. In Advances in Neural Infor-
mation Processing Systems, pages 6389–6399, 2018.

[83] Miqing Li, Shengxiang Yang, and Xiaohui Liu. Diversity comparison of

157

Pareto front approximations in many-objective optimization. IEEE Trans-
actions on Cybernetics, 44(12):2568–2584, 2014.

[84] Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang,
Xiuqiang He, Zhenguo Li, and Yong Yu. Autofis: Automatic feature inter-
action selection in factorization models for click-through rate prediction.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2636–2645, 2020.

[85] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua,
Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Pro-
gressive neural architecture search. In Proceedings of the European conference
on computer vision (ECCV), pages 19–34, 2018.

[86] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[87] Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gre-
gory Bramble, Horst Samulowitz, Dakuo Wang, Andrew Conn, and
Alexander Gray. An ADMM Based Framework for AutoML Pipeline Con-
figuration. arXiv preprint arXiv:1905.00424, 2019.

[88] Wei Ma and George H Chen. Missing not at random in matrix comple-
tion: The effectiveness of estimating missingness probabilities under a
low nuclear norm assumption. In Advances in Neural Information Process-
ing Systems, volume 32, pages 14900–14909, 2019.

[89] David JC MacKay. Information-based objective functions for active data
selection. Neural Computation, 4(4):590–604, 1992.

[90] Vivek Madan, Mohit Singh, Uthaipon Tantipongpipat, and Weijun Xie.
Combinatorial algorithms for optimal design. In Conference on Learning
Theory, pages 2210–2258, 2019.

[91] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regular-
ization algorithms for learning large incomplete matrices. The Journal of
Machine Learning Research, 11:2287–2322, 2010.

[92] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos,
Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

158

[93] Mustafa Mısır and Michèle Sebag. Alors: An algorithm recommender
system. Artificial Intelligence, 244:291–314, 2017.

[94] Jonas Močkus. On Bayesian methods for seeking the extremum. In Opti-
mization techniques IFIP technical conference, pages 400–404. Springer, 1975.

[95] Alexander M Mood et al. On Hotelling’s weighing problem. The Annals
of Mathematical Statistics, 17(4):432–446, 1946.

[96] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An
analysis of approximations for maximizing submodular set functions—i.
Mathematical programming, 14(1):265–294, 1978.

[97] Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimiza-
tion tool for automating machine learning. In Automated Machine Learning,
pages 151–160. Springer, 2019.

[98] Randal S Olson, Ryan J Urbanowicz, Peter C Andrews, Nicole A Laven-
der, La Creis Kidd, and Jason H Moore. Automating biomedical data sci-
ence through tree-based pipeline optimization. In European conference on
the applications of evolutionary computation, pages 123–137. Springer, 2016.

[99] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33(5):2295–2317, 2011.

[100] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-performance deep learn-
ing library. Advances in neural information processing systems, 32:8026–8037,
2019.

[101] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[102] Bernhard Pfahringer, Hilan Bensusan, and Christophe G Giraud-Carrier.
Meta-learning by landmarking various learning algorithms. In ICML,
pages 743–750, 2000.

[103] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Effi-

159

cient neural architecture search via parameters sharing. In International
Conference on Machine Learning, pages 4095–4104. PMLR, 2018.

[104] Friedrich Pukelsheim. Optimal design of experiments, volume 50. SIAM,
1993.

[105] Carl Edward Rasmussen. Gaussian processes in machine learning. In
Summer school on machine learning, pages 63–71. Springer, 2003.

[106] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes
for machine learning. the MIT Press, 2006.

[107] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

[108] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions
on neural networks, 20(1):61–80, 2008.

[109] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai.
arXiv preprint arXiv:1907.10597, 2019.

[110] Paola Sebastiani and Henry P Wynn. Maximum entropy sampling and
optimal Bayesian experimental design. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 62(1):145–157, 2000.

[111] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Koss-
mann, Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and
Tim Kraska. Democratizing data science through interactive curation of
ml pipelines. In Proceedings of the 2019 International Conference on Manage-
ment of Data, pages 1171–1188, 2019.

[112] Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models:
A concise overview. arXiv preprint arXiv:2004.08900, 2020.

[113] Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix. The Annals of
Mathematical Statistics, 21(1):124–127, 1950.

160

[114] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[115] Kate Smith-Miles and Jano van Hemert. Discovering the suitability of
optimisation algorithms by learning from evolved instances. Annals of
Mathematics and Artificial Intelligence, 61(2):87–104, 2011.

[116] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian op-
timization of machine learning algorithms. Advances in neural information
processing systems, 25, 2012.

[117] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski,
Jian Zhang, and Christopher Ré. Low-memory neural network training:
A technical report. arXiv preprint arXiv:1904.10631, 2019.

[118] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski,
Jian Zhang, and Christopher Ré. Low-memory neural network training:
A technical report, 2019.

[119] Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu. Tensor com-
pletion algorithms in big data analytics. ACM Transactions on Knowledge
Discovery from Data (TKDD), 13(1):1–48, 2019.

[120] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger.
Gaussian Process Optimization in the Bandit Setting: No Regret and Ex-
perimental Design. In ICML, pages 1015–1022, 2010.

[121] David H Stern, Horst Samulowitz, Ralf Herbrich, Thore Graepel, Luca
Pulina, and Armando Tacchella. Collaborative Expert Portfolio Manage-
ment. In AAAI, pages 179–184, 2010.

[122] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath
Venkataramani, Vijayalakshmi (Viji) Srinivasan, Xiaodong Cui, Wei
Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point (hfp8)
training and inference for deep neural networks. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

[123] Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xi-
aodong Cui, Swagath Venkataramani, Kaoutar El Maghraoui, Vijayalak-
shmi Viji Srinivasan, and Kailash Gopalakrishnan. Ultra-low precision
4-bit training of deep neural networks. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

161

[124] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,
Andrew Howard, and Quoc V Le. Mnasnet: Platform-aware neural ar-
chitecture search for mobile. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[125] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
Auto-weka: Combined selection and hyperparameter optimization of
classification algorithms. In Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 847–855,
2013.

[126] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science &
Business Media, 2012.

[127] Ledyard R Tucker. Some mathematical notes on three-mode factor analy-
sis. Psychometrika, 31(3):279–311, 1966.

[128] Madeleine Udell and Alex Townsend. Why are big data matrices approx-
imately low rank? SIAM Mathematics of Data Science (SIMODS), to appear,
2018.

[129] Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint
arXiv:1810.03548, 2018.

[130] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
Openml: Networked science in machine learning. SIGKDD Explorations,
15(2):49–60, 2013.

[131] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30, 2017.

[132] Abraham Wald. On the efficient design of statistical investigations. The
Annals of Mathematical Statistics, 14(2):134–140, 1943.

[133] Bram Wallace and Bharath Hariharan. Extending and analyzing self-
supervised learning across domains. In European Conference on Computer
Vision, pages 717–734. Springer, 2020.

[134] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin,
Lichan Hong, and Ed Chi. Dcn v2: Improved deep & cross network and

162

practical lessons for web-scale learning to rank systems. In Proceedings of
the Web Conference 2021, pages 1785–1797, 2021.

[135] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan
Kindermans. Neural predictor for neural architecture search. In European
Conference on Computer Vision, pages 660–676. Springer, 2020.

[136] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian op-
timization with neural architectures for neural architecture search. arXiv
preprint arXiv:1910.11858, 1(2):4, 2019.

[137] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Learning
hyperparameter optimization initializations. In 2015 IEEE international
conference on data science and advanced analytics (DSAA), pages 1–10. IEEE,
2015.

[138] David H Wolpert and William G Macready. No free lunch theorems for
optimization. IEEE transactions on evolutionary computation, 1(1):67–82,
1997.

[139] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda,
and Kurt Keutzer. Mixed precision quantization of convnets via differen-
tiable neural architecture search. arXiv preprint arXiv:1812.00090, 2018.

[140] Jin Wu and Shapour Azarm. Metrics for quality assessment of a multiob-
jective design optimization solution set. J. Mech. Des., 123(1):18–25, 2001.

[141] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell.
OBOE: Collaborative filtering for AutoML model selection. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1173–1183, 2019.

[142] Chengrun Yang, Gabriel Bender, Hanxiao Liu, Pieter-Jan Kindermans,
Madeleine Udell, Yifeng Lu, Quoc Le, and Da Huang. Resource-
constrained neural architecture search on tabular datasets. arXiv preprint
arXiv:2204.07615, 2022.

[143] Chengrun Yang, Lijun Ding, Ziyang Wu, and Madeleine Udell. TenIPS:
Inverse Propensity Sampling for Tensor Completion. In International Con-
ference on Artificial Intelligence and Statistics, pages 3160–3168. PMLR, 2021.

[144] Chengrun Yang, Jicong Fan, Ziyang Wu, and Madeleine Udell. AutoML

163

pipeline selection: Efficiently navigating the combinatorial space. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 1446–1456, 2020.

[145] Chengrun Yang, Ziyang Wu, Jerry Chee, Christopher De Sa, and
Madeleine Udell. How low can we go: Trading memory for error in low-
precision training. arXiv preprint arXiv:2106.09686, 2021.

[146] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping
in gradient descent learning. Constructive Approximation, 26(2):289–315,
2007.

[147] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy,
and Frank Hutter. Nas-bench-101: Towards reproducible neural architec-
ture search. In International Conference on Machine Learning, pages 7105–
7114. PMLR, 2019.

[148] Dani Yogatama and Gideon Mann. Efficient transfer learning method for
automatic hyperparameter tuning. In Artificial Intelligence and Statistics,
pages 1077–1085, 2014.

[149] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks
for neural architecture search. arXiv preprint arXiv:1810.05749, 2018.

[150] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang.
The zipml framework for training models with end-to-end low precision:
The cans, the cannots, and a little bit of deep learning. arXiv preprint
arXiv:1611.05402, 2016.

[151] Tianyi Zhang, Zhiqiu Lin, Guandao Yang, and Christopher De Sa. QPy-
Torch: A low-precision arithmetic simulation framework, 2019.

[152] Yuyu Zhang, Mohammad Taha Bahadori, Hang Su, and Jimeng Sun.
FLASH: fast Bayesian optimization for data analytic pipelines. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2065–2074. ACM, 2016.

[153] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A
bayesian approach for neural architecture search. In International confer-
ence on machine learning, pages 7603–7613. PMLR, 2019.

[154] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng

164

Zou. Dorefa-net: Training low bitwidth convolutional neural networks
with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[155] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evo-
lutionary algorithms—a comparative case study. In International conference
on parallel problem solving from nature, pages 292–301. Springer, 1998.

[156] Barret Zoph and Quoc V Le. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

165

