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ABSTRACT
Data scientists seeking a good supervised learning model on a
dataset have many choices to make: they must preprocess the data,
select features, possibly reduce the dimension, select an estimation
algorithm, and choose hyperparameters for each of these pipeline
components. With new pipeline components comes a combinato-
rial explosion in the number of choices! In this work, we design
a new AutoML system TensorOboe to address this challenge: an
automated system to design a supervised learning pipeline. Ten-
sorOboe uses low rank tensor decomposition as a surrogate model
for efficient pipeline search. We also develop a new greedy experi-
ment design protocol to gather information about a new dataset
efficiently. Experiments on large corpora of real-world classification
problems demonstrate the effectiveness of our approach.
As of 12/17/2020, this version corrects the errors in the version in
the ACM Digital Library.
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1 INTRODUCTION
A machine learning pipeline is a directed graph of learning com-
ponents including imputation, encoding, standardization, dimen-
sionality reduction, and estimation, that together define a function
mapping input data to output predictions. Each component may
also include hyperparameters, such as the output dimension of PCA,
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Figure 1: An example pipeline.
or the number of trees in a random forest. Simple pipelines may con-
sist of sequences of these components; more complex pipelines may
combine inputs to form pipelines with more complex topologies.
An example pipeline is shown as Figure 1.

The job of a data scientist facing a new supervised learning prob-
lem is to choose the pipeline that yields a low out-of-sample error
from among all possible pipelines. This task is challenging. First,
no component dominates all others: there is “no free lunch” [46].
Rather, each performs well on certain data distributions. For ex-
ample, the PCA dimensionality reducer works well on data points
in Rd that roughly lie in a low rank subspace Rk with k < d ; the
feature selector that keeps features with large variances works well
on datasets if such features are more informative; the Gaussian
naive Bayes classifier works well on features with normally dis-
tributed values in each class. However, it is difficult to check these
distributional assumptions without running the component on the
data: an expensive proposition! The second is the dependence of
these choices: for example, standardizing the data may help some
estimators, and harm others. Moreover, as the number of possible
machine learning components grows, the number of possibilities
grows exponentially, defying enumeration. Automating the selec-
tion of a pipeline is thus an important problem, which has received
attention both from academia and industry [8, 11, 27, 30].

Human experts tackle this difficulty by choosing the right com-
bination according to their domain knowledge. However, finding
the right combination takes substantial expertise, and still requires
several model fits to find the right combination of components
and hyperparameters. An automated pipeline construction system,
like a human expert, first forms a surrogate model to predict which
pipelines are likely to work well. Surrogate models are meta-models
that map dataset and machine learning model properties to quanti-
ties that characterize performance or informativeness.

A good surrogate model enables efficient search through the
pipeline space. “All models are wrong, but some are useful [2]”:
a good surrogate model makes predictions that guide the search
for pipelines without the need for many model fits. Auto-sklearn
[11] and Alpine Meadow [36] use meta-learning [1, 25, 39, 41] to
choose promising pipelines from those that perform the best on
neighboring datasets, and use Bayesian optimization to fine-tune

https://doi.org/10.1145/3394486.3403197
https://doi.org/10.1145/3394486.3403197


hyperparameters. TPOT [30] uses genetic programming to search
over pipeline topologies. Alpine Meadow [36] uses multi-armed
bandit to balance the exploration and exploitation of pipeline struc-
tures. In this paper, we use a low multilinear rank tensor as our
surrogate model. This model makes explicit use of the combinato-
rial structure of the problem: as a result, the number of pipeline
evaluations required to fit the surrogate model on a new dataset is
modest, and independent of the number of pipeline components.

Our system learns the surrogate model for a new dataset by
fitting a few pipelines on it. The problem of which pipelines to eval-
uate first, in order to predict the effectiveness of others, is called the
cold-start problem in the literature on recommender systems. This
problem is also of great interest to the AutoML community. Prox-
imity in meta-features, “simple, statistical or landmarking metrics
to characterize datasets [47]”, are used by many AutoML systems
[11, 12, 14, 33, 36] to select models that work well on neighboring
datasets, with the belief that models perform similarly on datasets
with similar characteristics. Probabilistic matrix factorization has
been used to extract dataset latent representations from pipeline
performance [14]. Other dataset and pipeline embeddings have also
been proposed that use pipeline performance or even textual dataset
or algorithm descriptions to build surrogate models [9, 44, 47].

In this work, we build pipeline embeddings by fitting a tensor
decomposition to the (incompletely observed) tensor of pipeline
performance on a set of training datasets. The tensor model is easy
to extend to a new dataset by fitting a constant number of pipelines
on it. We describe a simple rule to select which pipelines to observe
by solving a constrained version of the classical experiment design
[3, 22, 34, 43] problem using a greedy heuristic [28].

We consider the following concrete challenge in this paper: se-
lect several pipelines that perform the best within a given time
limit for a new dataset, in the case that we already know or have
time to collect pipeline performance on some existing datasets. We
focus on small data and traditional supervised machine learning
pipelines in our experiments, although the methodology can be
generalized to a wider range of disciplines. Our main technical
contributions are: a new tensor model to exploit the combinatorial
pipeline performance structure, and a new pipeline search mecha-
nism that builds on ideas from greedy experiment design. Together,
these ideas yield a new state-of-the-art system for AutoML pipeline
selection. Since Oboe [47] is an AutoML system that selects ma-
chine learning models by matrix factorization, we name our system
in this paper TensorOboe: the AutoML system that uses tensor
decomposition to select pipelines.

This paper is organized as follows. Section 2 introduces notation
and terminology. Section 3 describes the main ideas used efficiently
search the pipeline space. Section 3.1 gives details on TensorOboe.
Section 4 shows experimental results.

2 NOTATION AND TERMINOLOGY
Meta-learning. Meta-learning, also called “learning to learn”, uses
results from past tasks to make predictions or decisions on a new
task. In our setting, we learn from a corpus of datasets called meta-
training datasets by fitting pipelines to these datasets in an offline
stage; the new dataset, which requires a fast recommendation for a
pipeline, is called the meta-test dataset.

Model. A model A is a specific combination of algorithm and
hyperparameter settings, e.g. k-nearest neighbors with k = 3.
Pipeline component. A pipeline component is a model or model
type. Examples include missing entry imputers, dimensionality
reducers, supervised learners, and data visualizers. We consider the
following components in this paper:

• Data imputer : A preprocessor that fills in missing entries.
• Encoder : A transformer that converts categorical features to
numerical codes. Here, we consider encoding categoricals as
integers or with a one-hot encoder.
• Standardizer : A standardizer centers and rescales data.
• Dimensionality reducer : A transformer that reduces the di-
mensionality of the dataset by either creating new features
(like PCA) or subsampling features.
• Estimator : The supervised learner. For the classification tasks
in this paper, estimators are classifiers.

Linear algebra. Our paper follows the notation of [47] and [24].
We define [n] = {1, . . . ,n} for n ∈ Z, and denote vector,matrix, and
tensor variables respectively by lowercase letters (x ), capital letters
(X ) and Euler script letters (X). The order of a tensor is the number
of dimensions; matrices are order-two tensors. Each dimension is
called amode. Throughout this paper, all vectors are column vectors.
To denote a part of matrix or tensor, we use a colon to denote the di-
mension that is not fixed: given a matrixA ∈ Rm×n ,Ai, : andA:, j (or
aj ) denote the ith row and jth column ofA, respectively. A fiber is a
one-dimensional section of a tensorX, defined by fixing every index
but one; for example, one fiber of the order-3 tensorX isX:jk . Fibers
of a tensor are analogous to rows and columns of a matrix. A slice is
an (N −1)-dimensional section of an order-N tensorX. The mode-n
matricization of X, denoted as X(n), is a matrix whose columns are
the mode-n fibers of X. X has multilinear rank (r1, r2, . . .) if rn is
the rank of X(n). For example, given an order-3 tensor X ∈ RI×J×K ,
we have X (1) ∈ RI×(J×K ), and X has multilinear rank (r1, r2, r3)
if X(n) has rank rn for n ∈ [3]. We denote the n-mode product of
a tensor X ∈ RI1×I2×···IN with a matrix U ∈ RJ×In by X ×n U ∈
RI1×···In−1×J×In+1×···IN ; the (i1, i2, . . . , in−1, j, in+1, . . . , iN )-th en-
try is ΣInin=1xi1i2 · · ·in−1in in+1 · · ·iN ujin . Given two tensors with the
same shape, we use ⊙ to denote their entrywise product. Given an
ordered set S = {s1, . . . , sk } where s1 < . . . < sk ∈ [n], we write
A:S = [A:,s1 ,A:,s2 , . . . ,A:,sk ]; given an ordinary set S , we use A:S
to denote A:S , in which S is the ordered version of set S .
Pipeline performance. The performance of a machine learning
pipeline is usually characterized by cross-validation error. Given a
datasetD and a pipeline P, we denote the error of P onD as P(D).
It is common practice to evaluate this error by cross-validating P
on D with a certain number of folds (often 3, 5 or 10) and a fixed
dataset partition. We use P(D) to denote the cross-validation error
we observe with a certain number of folds and a certain partition.
Error tensor and errormatrix. Pipeline errors on training datasets
form an error tensor, which we denote as E. In our experiments,
E is an order-6 tensor, with 6 modes corresponding to datasets,
imputers, encoders, standardizers, dimensionality reducers and es-
timators, respectively. The (i1, i2, . . . , i6)-th entry of E is the error
of the pipeline formed by composing the i2-th imputer, i3-th en-
coder, i4-th standardizer, i5-th dimensionality reducer, and i6-th
estimator and evaluating this pipeline on the i1-th dataset. If a
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Figure 2: A pipeline ensemble with 3 base learners.

pipeline-dataset combination has been evaluated, we say the corre-
sponding entry in the error tensor E is observed. The first unfolding
of the error tensor, E(1), is called the error matrix E, whose (i, j)-th
entry Ei j = Pj (Di ) is the error of pipeline j on dataset i .
Ensemble. An ensemble [4, 7, 35, 45] combines a finite set of indi-
vidual machine learning models into a single prediction model. For
simplicity, the combination method we use is majority voting for
classification. We define the candidate learner to be individual ma-
chine learning pipelines that we select from to create the ensemble,
and base learner to be pipelines that are included in the ensemble.
An ensemble of pipelines is itself a pipeline, but not a simple linear
pipeline. By creating ensembles of linear pipelines, TensorOboe
can perform better than any linear pipeline.

3 METHODOLOGY
3.1 Overview
TensorOboe has two phases. In the offline phase, we compute the
performance of pipelines on meta-training datasets to build a tensor
surrogate model. In the online phase, we run a small number of
pipelines on the new meta-test dataset to specialize the surrogate
model and identify promising pipelines.
Offline Stage. We collect a partially observed error tensor using
the approach described in Section 3.2 to limit the total runtime of
the offline phase. We complete and decompose the error tensor E
using the EM-Tucker algorithm, shown as Algorithm 1, with dataset
and estimator ranks empirically chosen to be the ones that give low
reconstruction error, described in Section 4.2.
Online Stage. Online, given a new datasetD with nD data points
and pD features, we first predict the running time of each pipeline
by a simple model: order-3 polynomial regression on nD and pD
and their logarithms. This simple model works well because the
time to fit the estimator dominates the time to fit the pipeline, and
the theoretical complexities of estimators we use have no higher
order terms [21, 47].

The initial dataset and estimator ranks are set to the number
of principal components that capture 97% of the energy in the
respective tensor matricizations. We double the runtime budget at
each iteration and increment the estimator rank if the performance
improves. In each iteration, we build ensembles whose base learners
are the 5 pipelines with the best cross-validation error. An ensemble
can improve on the performance of the best base pipeline. An
example is shown as Figure 2.

3.2 Tensor Collection for Meta-Training
In the meta-training phase of meta-learning, meta-training data
is generally assumed to be already available or cheap to collect.
Given the large number of possible pipeline combinations, though,
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Figure 3: Tucker decomposition on an order-3 tensor.

collecting meta-training data can be prohibitively expensive. As
an example, even if it takes one minute on average to evaluate
each pipeline on each dataset, evaluating 20, 000 pipelines on 200
meta-training datasets would take more than 7 years of CPU time.
This motivates us to use tensor completion to limit the time spent
on the collection of meta-training data, while preserving accuracy
of our surrogate model.

We collect pipeline performance in a biased way: using 3-fold
cross-validation, we only evaluate pipelines that complete within
120 seconds. This rule gives a missing ratio of 3.3%. Notice that the
entries are not missing uniformly at random: for example, some
datasets are large and expensive to evaluate; our training data
systematically lacks data from these large datasets. Nevertheless,
we will show how to infer these entries using tensor completion
in Section 3.3, and demonstrate in Section 4.2 that the method
performs well despite bias.

3.3 Tensor Decomposition and Rank
The meta-training phase constructs the error tensor E. In the meta-
test phase, we see a new dataset, corresponding to a new slice of
E. To learn about the slice efficiently, we use a low rank tensor
decomposition to predict all the entries in this slice from a subset
of its informative entries.

Unlike matrices, there are many incompatible notions of ten-
sor ranks and low rank tensor decompositions, including CANDE-
COMP/PARAFAC (CP) [5, 19], Tucker [40], and tensor-train [31].
Each emphasizes a different aspect of the tensor low rank property.
In this paper, we use Tucker decomposition; an illustration on an
order-3 tensor is shown as Figure 3. As a form of higher-order
PCA, Tucker decomposes a tensor into the product of a core tensor
and several factor matrices, one for each mode [24]. A tensor with
low multilinear rank has a low rank Tucker decomposition. In our
setting of order-6 tensors, Tucker decomposition of E is

E ≈ Ê = G ×1 U1 × · · · ×6 U6, (1)

with core tensor G ∈ Rr1×r2×···×r6 and column-orthonormal factor
matrices Ui ∈ Rni×ri , i ∈ {1, 2, . . . , 6}. Ê is linear in the factor
matrices. Each factor matrix can thus be viewed as embedding the
corresponding dataset or pipeline component, with pipeline embed-
dings as columns of Y = (G×2U2 × · · · ×6U6)(1) ∈ R

r1×(Π6
i=2ni ), the

mode-1 matricization of the product. We can use this observation
to approximately factor the error matrix E, using Equation 1, as

X⊤Y ≈ E ∈ Rn1×(Π
6
i=2ni ), (2)

in which X ∈ Rr1×n1 and Y ∈ Rr1×(Π
6
i=2ni ) are dataset and pipeline

embeddings, respectively.
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dataset and estimator dimensions. Here, training entries are
the ones with runtime less than 90 seconds; the test entries
are the ones with runtime between 90 and 120 seconds.

Figure 4 shows the low rank Tucker decomposition fits the error
tensor well.

3.4 Tensor Completion
To infer missing entries in the error tensor we collected, namely
the entries that take more than the time threshold to evaluate, we
use the expectation-maximization (EM) [6, 38] approach together
with Tucker decomposition in each step, which we call EM-Tucker
and present as Algorithm 1.

Algorithm 1 EM-Tucker algorithm for tensor completion
Input: order-n error tensor E with missing entries, target multi-

linear rank [r1, . . . , rn ]
Output: imputed error tensor E
1 Eobs ← E

2 Ω ← observed entries in Eobs
3 do
4 G, {Ui }ni=1← Tucker(E, ranks=[r1, . . . , rn ])
5 Epred ← G ×1 U1 × · · · ×n Un
6 E← Ω ⊙ Eobs + (1 − Ω) ⊙ Epred
7 while not converged

In Algorithm 1, Ω is a binary tensor that denotes whether each
entry of the error tensor E is observed or not. Ω has the same
shape as the original error tensor, with the corresponding entry
Ωi1,i2, ...,in = 1 if the (i1, i2, ..., in )-th entry of the error tensor
is observed, and 0 otherwise. The algorithm is regarded to have
converged when the decrease of relative error is less than 0.1%.

Why bother with tensor completion? To recover the missing
entries of a tensor, we can also perform matrix completion after
matricization or perform matrix completion on every slice sepa-
rately. Tensors are more constrained and so provide better fits to
sparse and noisy data. Consider a tensor X ∈ RI1×I2×···IN with
multilinear rank [r1, r2, . . . , rn ], where I1 = I2 = . . . = In = I and
r1 = r2 = . . . = rn = r . The number of degrees of freedom of
X, which is the minimum number of entries required to recover
X, is rn + n(rI − r2) =: m0. If we unfold X to X ∈ RI×I

n−1
, the

number of degrees of freedom of X is (I + In−1 − r )r =:m1. If we
treat every slice of X separately, the number of degrees of free-
dom is In−2(2rI − r2) =: m2. Therefore, when r < I , we have
m0 < m1 < m2, which means we need fewer parameters to deter-
mine X, compared to the matricization and union of slices. Thus,

tensor completion may outperform matrix completion on X with
the same number of observed entries.

3.5 Fast and Accurate Resource-Constrained
Active Learning

Given a new dataset, we first select a subset of pipelines to fit,
so that we may estimate the performance of other pipelines. We
use ideas from linear experiment design, which picks a subset of
low-cost statistical trials to minimize the variance of the resulting
estimator, to make this selection.

Concretely, we estimate the embedding x of the new dataset
by linear regression. Given the linear model as Equation 2, with
known performance eS of a subset S ⊆ [n] of pipelines on the new
dataset, we have

eS = (Y:S )
⊤x + ϵ, (3)

in which Y collects the latent embeddings of pipeline performance,
and ϵ is the error in this linear model. An example of the source of
error is themisspecification of target multilinear rank for the Tucker
decomposition. We estimate x by linear regression and denote the
result as x̂ . Then we estimate the performance of pipelines in [n]\S
by the corresponding entries in ê = Y⊤x̂ .

Now we consider which S to choose to accurately estimate x .
We will motivate the use of the experiment design model and its
greedy approach by first showing how to constrain the number
of pipelines sampled in Section 3.5.1, and then develop a time-
constrained version that we use in practice in Section 3.5.2.

3.5.1 Greedy method for size-constrained experiment design. Sup-
pose the error ϵ ∼ N(0,σ 2I ). Using the linear regression model,
Equation 3, we want to minimize the expected ℓ2 error Eϵ ∥x̂−x ∥2 =
Eϵ ∥x̂−Eϵ x̂ ∥

2+∥Eϵ x̂−x ∥2.Here, the second term is 0 since linear re-
gression is unbiased, and the first term is the covariance σ 2(YY⊤)−1

of the estimated embedding x̂ , which is straightforward to compute.
Imagine we have enough time to run at mostm pipelines (and all

pipelines run equally slowly). Given pipeline embeddings {yj }nj=1
(which we call design vectors or designs), in which each yj ∈ Rk , we
minimize a scalarization of the covariance to obtain the (number-
constrained) D-optimal experiment design problem

maximize log det
( ∑

j ∈S yjy
⊤
j

)
subject to |S | ≤ m

S ⊆ [n].

(4)

Here,
∑
j ∈S yjy

⊤
j , the inverse of (scaled) covariance matrix, is called

the Fisher information matrix.
Obtaining an exact solution for a mixed-integer nonlinear com-

binatorial optimization problem like Problem 4 is prohibitively
expensive. Convexification is commonly used to solve such a prob-
lem [3, 34, 47]. However, we have more than 20, 000 pipelines to
select from, making convex relaxations also too slow. Moreover, we
can find better solutions with the greedy heuristic we present next.

Greedy methods form another popular approach to combinato-
rial optimization problems like Problem 4. Importantly, the objective
function of Problem 4, f (S) = log det

( ∑
j ∈S yjy

⊤
j

)
, is submodu-

lar. (Recall a set function д : 2V → R defined on a subset of V is
submodular if for every A ⊆ B ⊆ V and every element s ∈ V \B,



we have д(A ∪ {s}) − д(A) ≥ д(B ∪ {s}) − д(B). This character-
izes a “diminishing return” property.) Given a size constraint, the
submodular function maximization problem

maximize д(S)
subject to S ⊆ V

|S | ≤ m
(5)

can be solved with a 1 − 1
e approximation ratio [29] by the greedy

approach: in every step, add the single design vector that maximizes
the increase in function value. In D-optimal experiment design, we
can compute this increase efficiently using Lemma 3.1.

Lemma 3.1 (Matrix Determinant Lemma [20, 28]). For any
invertible matrix A ∈ Rk×k and a,b ∈ Rk ,

det(A + ab⊤) = det(A)(1 + b⊤A−1a).

At the t-th step in our setting, with an already constructed Fisher
information matrix Xt =

∑
j ∈S yjy

⊤
j , we have

argmaxj ∈[n]\S det(Xt + yjy
⊤
j ) = argmaxj ∈[n]\Sy

⊤
j X
−1
t yj .

Here,y⊤j X
−1
t yj can be seen as the payoff for adding pipeline j . From

the t-th to the (t + 1)-th step, with the selected design vector at the
t-th step as yt , we update Xt to Xt+1 = Xt + yty

⊤
t by Lemma 3.2:

Lemma 3.2 (Sherman-Morrison formula [18, 37]). For any
invertible matrix A ∈ Rk×k and a,b ∈ Rk ,

(A + ab⊤)−1 = A−1 −
A−1ab⊤A−1

1 + b⊤A−1a
.

Pseudocode for the greedy algorithm to solve Problem 4 is shown
as Algorithm 2, with per-iteration time complexity O(k3 + nk2): it
takes O(k3) (for a naive matrix multiplication algorithm) to update
X−1t and O(nk2) to choose the best pipeline to add.

Algorithm 2 Greedy algorithm for size-constrained D-design

Input: design vectors {yj }nj=1, in which yj ∈ Rk ; maximum num-
ber of selected pipelinesm; initial set of designs S0 ⊆ [n], s.t.
X0 =

∑
j ∈S0 yjy

⊤
j is non-singular

Output: The selected set of designs S ⊆ [n]
1 function Greedy_ED_Number
2 S ← S0
3 do
4 i ← argmaxj ∈[n]\Sy⊤j X

−1
t yj

5 S ← S ∪ {i}
6 Xt+1 ← Xt + yiy

⊤
i

7 while |S | ≤ m
8 return S

There remains the problem of how to select an initial set of
designs S to start from, such that X0 =

∑
j ∈S yjy

⊤
j = Y:SY

⊤
:S is non-

singular. This is equivalent to the problem of finding a subset of
vectors in {yj }nj=1 that can span Rk . We select this sized-k subset S0
to be the first k pivot columns from QR factorization with column
pivoting [16, 17] on Y , with time complexity O((n + k)k2).

3.5.2 Greedy method for time-constrained experiment design. We
here move on to the realistic case in AutoML pipeline selection:
which pipelines should we select to gain an accurate estimate of
the entire pipeline space? In this setting, each pipeline is associated
with a different cost. We characterize the cost as running time, and
form the time-constrained version of experiment design as

maximize log det
( ∑

j ∈S yjy
⊤
j

)
subject to

∑
j ∈S t̂j ≤ τ

S ⊆ [n],

(6)

in which {t̂i }ni=1 are the estimated pipeline running times. The
payoff of adding design i in the t-th step can thus be formulated as
y⊤i X

−1
t yi
t̂i

, giving Algorithm 3 the greedy method to solve Problem 6.

Algorithm 3 Greedy algorithm for time-constrained D-design

Input: design vectors {yj }nj=1, in which yj ∈ R
k ; estimated run-

ning time of pipelines {t̂i }ni=1; maximum running time τ ; initial
set of designs S0 ⊆ [n], s.t. X0 =

∑
j ∈S0 yjy

⊤
j is non-singular

Output: The selected set of designs S ⊆ [n]
1 function Greedy_ED_Time
2 S ← S0
3 do
4 i ← argmaxj ∈[n]\S

y⊤j X
−1
t yj
t̂j

5 S ← S ∪ {i}
6 Xt+1 ← Xt + yiy

⊤
i

7 while
∑
i ∈S t̂i ≤ τ

8 return S

The initialization problem is solved similarly by the QR method.
Given runtime limit τ , we select among columns with correspond-
ing pipelines predicted to finish within τ

2k . Pseudocode for this
initialization algorithm is shown as Algorithm 4.

Algorithm 4 Initialization of the greedy algorithm for time-
constrained D-design, by QR factorization with column pivoting

Input: design vectors {yj }nj=1, in which yj ∈ Rk ; (predicted) run-
ning time of all pipelines {t̂i }ni=1; maximum running time τ

Output: A subset of designs S0 ⊆ [n] for Algorithm 3 initialization
1 function QR_Initialization
2 Svalid ← {i ∈ [n] : t̂i ≤ τ

2k }

3 S0 ← ∅, t̂sum ← 0
4 if |Svalid | < k then ▷ Case 1
5 do
6 i ← argminj ∈[n]\S t̂j
7 S0 ← S0 ∪ {i}
8 t̂sum ← t̂sum + t̂i
9 while t̂sum ≤ τ
10 else ▷ Case 2
11 S0 ← QR_with_column_pivoting(Y:Svalid )[: k]
12 return S0

A corner case of Algorithm 4, shown as Case 1, is that there are
not enough pipelines predicted to be able to finish within time limit.



This corresponds to the case that the runtime limit is relatively
small compared to the time of fitting pipelines on current dataset.
In this case we greedily select the fast pipelines and do not run
Algorithm 3 afterwards.

As a side note, the assumption that performance of different
pipelines are predicted with equal variance is not quite realistic,
especially when some components have much more pipelines than
others. If the variance is known (but unequal), we obtain a weighted
least squares problem. In the error matrix E, we can estimate the
variance of prediction error of each pipeline j ∈ [n] by the sam-
ple variance of ej − X⊤yj and select the promising pipelines with
the goal of minimizing the rescaled covariance. Practically, how-
ever, this rescaled method does not systematically improve on the
standard least squares approach in our experiments (shown in Ap-
pendix B), so we retrench to the simpler approach.

4 EXPERIMENTAL EVALUATIONS
Code for all experiments is in the GitHub repository at https:
//github.com/udellgroup/oboe. We use a Linux machine with 128
Intel® Xeon® E7-4850 v4 2.10GHz CPU cores and 1056GB mem-
ory. Offline, we collect cross-validated pipeline performance on
meta-training datasets: 215 OpenML [13, 42] classification datasets
with number of data points between 150 and 10,000, listed in Ap-
pendix A.1. The 215 datasets are chosen alphabetically. Pipelines
are combinations of the machine learning components shown in
Appendix A.3, Table 2, which lists 4 data imputers, 2 encoders, 2
standardizers, 8 dimensionality reducers and 183 estimators, result-
ing in 23,424 linear pipeline candidates in total.

4.1 Comparison with Time-Constrained
AutoML Pipeline Build Systems

In this section, we demonstrate the performance of TensorOboe
as an AutoML system for pipeline selection.

A naive approach for pipeline selection is to choose the one that
on average performs the best among all meta-training datasets,
which we call the baseline pipeline. Given the pipeline selection
problem, it is common for human practitioners to try out the best
pipeline at the very beginning. On our meta-training datasets, the
baseline pipeline is: impute missing entries with the mode, encode
categorical features as integers, standardize each feature, remove
features with 0 variance, and classify by gradient boosting with
learning rate 0.25 and maximum depth 3. The baseline pipeline has
an average ranking of 1568 among all 23,424 pipelines across all
215 meta-training datasets.

Human practitioners may also reduce the number of trials by
choosing certain pipeline components to be the type that performs
the best on average. Figure 5, however, shows that although some
estimator types (gradient boosting and multilayer perceptron) are
commonly seen among the best pipelines, no estimator type uni-
formly dominates the rest.

We compare TensorOboe with auto-sklearn [11], TPOT [30],
and the baseline pipeline in Figure 6. To ensure fair comparisons,
we use a single CPU core for each AutoML system. We allow each
to choose from the same primitives. We can see that:

gradient boosting - 38.60%

multilayer perceptron - 20.93%

kNN - 10.23%

adaboost - 8.84%

extra trees - 5.58%

logistic regression - 5.58%

decision tree - 3.72%

random forest - 3.26%

linear SVM - 1.86%

Gaussian naive Bayes - 1.40%

Figure 5: Which estimators work best? Distribution of esti-
mator types in best pipelines on meta-training datasets.
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Figure 6: Rankings of AutoML systems for pipeline search
in a time-constrained setting, vs the baseline pipeline. We
meta-train on OpenML classification datasets and meta-test
on UCI classification datasets [10]. Until the first time the
systems can produce a pipeline, we classify every data point
with the most common class label. Lower ranks are better.

1 All AutoML frameworks are able to construct pipelines that out-
perform the baseline on average once the method returns a pipeline
(for auto-sklearn, this takes 30 seconds).
2 TensorOboe on average outperforms the competing methods
and produces meaningful pipeline configurations fastest.
3 With the longer running time in Figure 6b, TensorOboe still
outperforms in most cases.
These results show that TensorOboe is able to accurately approx-
imate the hyperparameter landscape. We discuss these results in
greater detail in Section 4.5.

4.2 Tensor Completion vs Matrix Completion
for Error Tensor Completion

Given meta-training data {D,P,P(D)} on a subset of dataset-
pipeline combinations, a good surrogate model should accurately
predict the performance of new dataset-pipeline combinations.

Figure 7 shows that most pipelines run quickly on most datasets:
for example, over 90% finish in less than 20 seconds and over 95%
finish in less than 80 seconds.

Figure 8 compares relative errors of predictions by tensor andma-
trix surrogate models. For each runtime threshold, we treat pipeline-
dataset combinations with running time less than the threshold
as training data, and those that take longer than threshold and
less than 120 seconds as test. We compute relative errors on test
data, hence the name “runtime generalization”. To ensure a fair
comparison, we set the dataset and estimator ranks to be equal in

https://github.com/udellgroup/oboe
https://github.com/udellgroup/oboe
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(b) Tensor and matrix
completion errors when
runtime threshold = 90
seconds (3.3% of entries
in error tensor missing).
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colors mean smaller errors.

1 5 9 13 17 21 25 29 33 37

dataset and estimator ranks

0.0

0.1

0.2

0.3

re
la

ti
ve

er
ro

r

Runtime threshold: 90 seconds

tensor completion matrix completion

Figure 8: Tensor completion vs matrix completion for infer-
ring pipeline performance.

the tensor model, which is required for the matrix model, since
column rank equals row rank for a matrix. We can see that:
1 The tensor model outperforms the matrix model in nearly all
cases, demonstrating that the additional combinatorial structure
provided by the tensor model helps recover the combinatorial rela-
tionships among different pipeline components.
2 Figure 8b shows the U-shaped error curve as we increase the
dataset and estimator ranks for both matrix and tensor models,
moving from underfitting (decreasing error) to overfitting (increas-
ing error). Informed by these results, we select both ranks to be 20,
the rank in the middle, in the tensor surrogate model.

4.3 Cold-Start Performance by Greedy
Experiment Design

We compare the performance of different approaches to solve the
experiment design problem, so as to choose which pipelines we
should sample. Recall that there are two approaches:
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(b) ED runtime and selected es-
timators on small error matrix
(215×183) for estimator search.
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(c) Regret on the full error
matrix (215×23424) for
pipeline search (greedy
method only).
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(d) ED runtime and selected
pipelines on full error matrix
(215×23424) for pipeline search
(greedy method only).
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Figure 9: Comparison of time-constrained experiment de-
sign methods across meta-training datasets. The y-axes in
9a and 9c are regrets: the difference between minimum
pipeline error found by eachmethod and the trueminimum.
The x-axes are runtime limit ratios: ratios of the runtime
limit to the total runtime of all pipelines on each dataset.

• Convexification: Solve the relaxed problem (Equation 6
with vi ∈ [0, 1], ∀i ∈ [n]) with an SLSQP solver, sort the en-
tries in the optimal solutionv∗, and greedily add the pipeline
with large v∗i until the runtime limit is reached.
• Greedy: Solve the original integer programming problem
(Equation 6) by the greedy algorithm (Algorithm 3), initial-
ized by time-constrained QR (Algorithm 4).

For our problem, the greedy approach is superior, since the con-
vexification method is prohibitive on our large 215 × 23424 error
matrix. Hence we compare these methods on a subset of pipelines
that only differ by estimators, 183 in total. This setting matches an
experiment in [47]. Shown in Figure 9, we can see that:
1 The greedy method performs better for cold-start than convexifi-
cation (Figure 9a): it selects informative designs that better predict
the high-performing pipelines (Figure 9b).
2 The greedy method is more than 30× faster than convexification,
which allows TensorOboe to devote its runtime budget to fitting
pipelines instead of searching for the informative pipelines.
3 Shown in Figure 9d, the greedy algorithm still takes a fair amount
of time if the number of designs we select is large; however, the
dataset ranks we choose are less than 50, so it generally takes less
than 10 seconds to choose informative pipelines. This time can be
further reduced using Lemma 3.2.



Table 1: Runtime prediction accuracy on OpenML datasets

Pipeline estimator type Runtime prediction accuracy
within factor of 2 within factor of 4

Adaboost 73.6% 86.9%
Decision tree 62.7% 78.9%
Extra trees 71.0% 83.8%
Gradient boosting 53.4% 77.5%
Gaussian naive Bayes 67.3% 82.3%
kNN 68.7% 84.4%
Logistic regression 53.6% 76.1%
Multilayer perceptron 74.5% 88.9%
Perceptron 64.5% 82.2%
Random Forest 69.5% 84.9%
Linear SVM 56.8% 79.5%

4.4 Pipeline Runtime Prediction Performance
Runtime prediction accuracy is critical for the performance of our
time-constrained pipeline selection system. Recall that our pre-
dictions use order-3 polynomial regression on nD and pD , the
numbers of data points and features inD, and their logarithms. We
shown in Table 1 that this runtime predictor performs well.

4.5 Learning the Hyperparameter Landscapes
Hyperparameter landscapes plot pipeline performance with respect
to hyperparameter values. While parameter landscapes have been
extensively studied, especially in the deep learning context (for
example, [15, 23, 26]), hyperparameter landscapes are less studied.
The previous sections focus on how we can choose among different
pipeline component types. In this section, we show that our tensor
surrogate model is able to learn hyperparameter landscapes of dif-
ferent estimator types that exhibit qualitatively different behaviors.

Figure 10 shows some examples of both real and predicted hy-
perparameter landscapes after running our system for 135 seconds.
We can see that our predictions match the overall tendencies of the
curves. Larger plots (Figure 13 in Appendix C) show our predictions
also capture most of the small variations in these landscapes.

Note TensorOboe does not use a subroutine for hyperparameter
optimization: it chooses the hyperparameter for each estimator from
a predefined grid of values instead of optimizing hyperparameters
by, for example, Bayesian optimization. The hyperparameter land-
scapes visualized here give confidence that grid search effectively
samples performant hyperparameter settings within the range of
hyperparameters: a coarse grid suffices.

5 OVERFITTING ANALYSIS
Two types of overfitting are of concern in AutoML systems: tra-
ditional overfitting (overfitting of models on training folds) and
meta-overfitting (overfitting of AutoML surrogate models).

Traditional overfitting may happen in any machine learning
system, and is often mitigated by controlling model complexity,
cross validation on training set, etc. In TensorOboe, we always
evaluate pipelines by k-fold cross validation, and build an ensemble
since the pipeline with lowest cross-validation error may not be
the one with lowest test error.
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OpenML Dataset 1014 (797
points, 5 features)
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Dataset 799 (1000 points, 6
features)
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Figure 10: Hyperparameter landscape prediction examples.

Meta-overfitting happenswhenmeta-training datasets are biased
in some sense, and when the surrogate model is so complex that
it captures noise in addition to model performance. We mitigate
meta-overfitting in the following ways: The OpenML meta-training
datasets we collect have diverse topics ranging among multiple
science and sociology disciplines. The surrogate model we use is
low rank tensor decomposition, a model with low complexity. It
denoises cross-validated pipeline error, as discussed in Section 2.

Meta-overfitting still presents many perils. The surrogate model
may lack training instances. For example, the perceptron algorithm
never performs the best on any meta-training dataset, as shown in
Figure 5. Hence TensorOboe is unlikely ever to choose a percep-
tron pipeline. To mitigate this problem, we must collect pipeline
performance in a larger space, or consider if the perceptron algo-
rithm (for example) is truly dominated. Another possible source of
meta-overfitting is that our meta-training datasets have no more
than 10,000 points and smaller number of features. Order-3 polyno-
mial runtime predictors may not generalize well to larger problems.

6 SUMMARY
This papers develops TensorOboe, a new structured model based
on tensor decomposition for AutoML pipeline selection. The low
multilinear rank tensor surrogate model allows us to efficiently
learn about new datasets. The greedy experiment design method
selects informative pipelines to evaluate. Together, TensorOboe
tames the combinatorial complexity of the pipeline search space:
the time complexity scales linearly in the number of candidates for
each pipeline component. Empirically, TensorOboe relies on more
offline work than competing methods, but such work pays off to
improve on the state of the art in AutoML pipeline selection.



This paper is the first tensor method for pipeline selection. There
are many avenues for improvement and extensions. For example,
one could enlarge the pipeline search space, explore nonlinear sur-
rogate models, explore different mechanisms to initialize the greedy
method, develop an extension for neural architecture search, and
design task-oriented pipeline selection systems that have better
performance on domain-specific datasets. Further, the combinato-
rial space may be better handled by a method that dynamically
adapts to the results of finished pipeline runs, thus leveraging its
conditional structure.
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For reproducibility, refer to SectionA for datasets and the pipeline
search space. All the code is in the GitHub repository at https:
//github.com/udellgroup/oboe.

A REPRODUCIBILITY FOR META-TRAINING
A.1 Meta-training OpenML Datasets
Indices of the OpenML datasets we use for meta-training: 2, 3, 5, 7, 9, 11, 12, 13, 14, 15,
16, 18, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 48, 50, 53,
54, 59, 60, 181, 182, 183, 187, 285, 307, 313, 316, 329, 336, 337, 338, 375, 377, 389, 446,
450, 458, 463, 469, 475, 694, 715, 717, 718, 720, 721, 723, 725, 728, 730, 732, 733, 735, 737,
740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 763, 769, 773, 776, 778, 779, 788,
792, 794, 796, 797, 799, 803, 805, 806, 807, 813, 818, 819, 820, 824, 825, 826, 830, 832, 837,
838, 847, 853, 855, 863, 866, 869, 870, 871, 873, 877, 880, 884, 888, 896, 900, 903, 904, 906,
907, 908, 909, 910, 911, 912, 913, 915, 917, 920, 923, 925, 926, 933, 934, 935, 936, 937, 941,
943, 952, 953, 954, 955, 958, 962, 970, 971, 973, 976, 978, 979, 980, 983, 987, 991, 994, 995,
996, 997, 1005, 1011, 1012, 1014, 1016, 1020, 1021, 1022, 1025, 1026, 1038, 1039, 1041,
1042, 1048, 1049, 1050, 1054, 1056, 1063, 1065, 1067, 1068, 1069, 1071, 1073, 1100, 1115,
1116, 1121, 4134, 40966, 40971, 40975, 40978, 40979, 40981, 40982, 40983, 40984, 40994,
40997, 41000, 41004, 41005.

A.2 Meta-test UCI Datasets
banknote-authentication, blood-transfusion-service-center, breast-cancer-wisconsin-
diagnostic, breast-cancer-wisconsin-original, breast-cancer-wisconsin-prognostic, chess-
king-rook-vs-king-pawn, cnae-9, congressional-voting-records, connectionist-bench,
connectionist-bench-sonar, contraceptive-method-choice, cylinder-bands, haberman-
survival, heart-disease-cleveland, heart-disease-hungarian, heart-disease-va, hepatitis,
hill-valley, hill-valley-noise, horse-colic, image-segmentation, indian-liver-patient, iris,
libras-movement, mammographic-mass, monks-problems-2, ozone-level-detection-
eight, ozone-level-detection-one, parkinsons, pen-based-recognition-handwritten-
digits, planning-relax, qsar-biodegradation, seeds, seismic-bumps, statlog-project-
german-credit, statlog-project-landsat-satellite, thoracic-surgery, thyroid-disease-allbp,
thyroid-disease-allhyper, thyroid-disease-allhypo, thyroid-disease-allrep, thyroid-disease-
ann-thyroid, thyroid-disease-dis, thyroid-disease-new-thyroid, thyroid-disease-sick,
thyroid-disease-sick-euthyroid, thyroid-disease-thyroid-0387, wall-following-robot-
navigation-2, wall-following-robot-navigation-24, wall-following-robot-navigation-4.

A.3 Pipeline Search Space
We build pipelines using scikit-learn [32] primitives. The available
components are listed in Table 2. “null” denotes a pass-through.

B EXPERIMENT DESIGN FORWEIGHTED
LEAST SQUARES

When factorizing the error matrix by SVD, we approximate per-
formance of different pipelines to different accuracies. Different
accuracies can be characterized by different variances in the linear
regression model, thus the weighted least squares (WLS) model
that would theoretically give the best linear unbiased estimate to
the new dataset embedding may perform better.

In detail, recall that the constrained D-optimal experiment de-
sign formulation relies on the assumption that given a low rank
matrix multiplication model X⊤Y = E, the error term in linear
regression ϵ ∼ N(0,σ 2I ), which means each pipeline is predicted
to the same accuracy. In the WLS version of our pipeline perfor-
mance estimation setting, the pipeline performance vector of the
new dataset can be written as e = Y⊤x + ϵ , in which ϵ ∼ N(0, Σ).

Σ = diag(σ 2
1 ,σ

2
2 , . . . ,σ

2
n ) is a covariance matrix; diagonal in the

weighted least squares setting. For each pipeline j ∈ [n], we esti-
mate the variance by the sample variance of ej − X⊤yj , and show
a histogram in Figure 11.
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Figure 11: Standard deviation of prediction accuracy of each
pipeline, across meta-training datasets.

In this case, the time-constrained D-experiment design problem
to solve becomes

minimize log det
( ∑n

j=1vj
yjy⊤j
σ 2
j

)−1
subject to

n∑
j=1

vj t̂j ≤ τ

vj ∈ {0, 1},∀j ∈ [n].

(7)

The corresponding greedy approach, which we call weighted-
greedy, is shown as Algorithm 5. It differs from the ordinary greedy
approach in that each yj is scaled by 1/σj . Figure 12 shows its
performance compared to convexification and greedy. We can see
the weighted-greedy approach performs similarly to the ordinary
greedy approach in our experiments.

Algorithm 5 Greedy algorithm for time-constrained D-design in
WLS setting, with QR initialization

Input: design vectors {yj }nj=1, in which yj ∈ Rk ; pipeline estima-
tion variances {σ 2

j }
n
j=1, (predicted) running time of all pipelines

{t̂i }
n
i=1; maximum running time τ

Output: The selected set of designs S ⊆ [n]
1 yj ← yj/σj , ∀j ∈ [n]
2 S0 ← QR_initialization({yj }

n
j=1, {t̂i }

n
i=1,τ )

3 S ← Greedy_without_repetition({yj }
n
j=1, {t̂i }

n
i=1,τ , S0)

https://github.com/udellgroup/oboe
https://github.com/udellgroup/oboe


Table 2: Pipeline search space

Component Algorithm type Hyperparameter names (values)
Data imputer Simple imputer strategy (mean, median, most_frequent, constant)

Encoder null -
OneHotEncoder handle_unknown (ignore), sparse (0)

Standardizer null -
StandardScaler -

Dimensionality
reducer

null -
PCA n_components (25%, 50%, 75%)
VarianceThreshold -
SelectKBest k (25%, 50%, 75%)

Estimator

Adaboost n_estimators (50,100), learning_rate (1.0,1.5,2.0,2.5,3)
Decision tree min_samples_split (2,4,8,16,32,64,128,256,512,1024,0.01,0.001,1e-4,1e-5)
Extra trees min_samples_split (2,4,8,16,32,64,128,256,512,1024,0.01,0.001,1e-4,1e-5),

criterion (gini,entropy)
Gradient boosting learning_rate (0.001,0.01,0.025,0.05,0.1,0.25,0.5), max_depth (3, 6),

max_features (null,log2)
Gaussian naive Bayes -
Perceptron -
kNN n_neighbors (1,3,5,7,9,11,13,15), p (1,2)
Logistic regression C (0.25,0.5,0.75,1,1.5,2,3,4), solver (liblinear,saga), penalty (l1,l2)
Multilayer
perceptron

learning_rate_init (1e-4,0.001,0.01), learning_rate (adaptive), solver
(sgd,adam), alpha (1e-4, 0.01)

Random forest min_samples_split (2,4,8,16,32,64,128,256,512,1024,0.01,0.001,1e-4,1e-5),
criterion (gini,entropy)

Linear SVM C (0.125,0.25,0.5,0.75,1,2,4,8,16)
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(a) Regret on the subsampled
error matrix (215-by-183) for
estimator search, including
the weighted-greedy method.
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(b) Regret on the full error
matrix (215-by-23424) for
pipeline search, including the
weighted-greedy method.
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Figure 12: Comparison of time-constrained experiment de-
sign methods, including the weighted-greedy method.
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(a) Extra trees on Dataset 23
(1473 points, 10 features)
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(b) Decision tree on Dataset
1014 (797 points, 5 features)
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(c) kNN on Dataset 799 (1000
points, 6 features)
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(d) Logistic regression on
Dataset 40971 (1000 data
points, 24 features)
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Figure 13: Zoomed-in hyperparameter landscapes in Fig-
ure 10. The y-axes here do not start from 0.
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