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Abstract—

In this paper, we propose a framework for multipath
routing in mobile ad hoc networks (MANETSs) and
provide its analytical evaluation. The instability of the
topology (e.g., failure of links) in this type of networks,
due to nodal mobility and changes in wireless propaga-
tion conditions, makes transmission of time-sensitive
information a challenging problem. To combat this
inherent unreliability of these networks, we propose
a routing scheme that uses multiple paths simultane-
ously by splitting the information among the multi-
tude of paths, so as to increase the probability that
the essential portion of the information is received at
the destination without incurring excessive delay.

Our scheme works by adding an overhead to each
packet, which is calculated as a linear function of the
original packet bits. The resulting packet (informa-
tion and overhead) is fragmented into smaller blocks
and distributed over the available paths. Our goal
is, given the failure probabilities of the paths, to find
the optimal way to fragment and then distribute the
blocks to the paths, so that the probability of recon-
structing the original information at the destination is
maximized. Our algorithm has low time-complexity,
which is crucial since the path failure characteristics
vary with time and the optimal block distribution has
to be recalculated in real-time.

Keywords—Ad hoc network, diversity coding, multi-
path routing, network fault tolerance

I. INTRODUCTION

In this paper we consider the problem of routing
data over multiple disjoint paths in an ad hoc net-
work. The first approach to multipath routing was
Dispersity Routing [1]. In [2], another multipath scheme
is proposed, Diversity Coding, in order to achieve self-
healing and fault tolerance in digital communication
networks. In [3], a per-packet allocation granularity
for multipath source routing schemes was shown to
perform better than a per-connection allocation. An
exhaustive simulation of the various tradeoffs associ-
ated with dispersity routing was presented in [4]. The
inherent capability of this routing method to provide
a large variety of services was pointed out.

The application of multipath techniques in mobile
ad hoc networks seems natural, as multipath routing
allows to diminish the effect of unreliable wireless links

and the constantly changing topology. The On-Demand
Multipath Routing scheme is presented in [5] as a mul-
tipath extension of Dynamic Source Routing (DSR) [6],
in which alternate routes are maintained, so that they
can be utilized when the primary one fails. In AODV-
BR [7], an extension of AODYV [8], multiple routes are
maintained and utilized only when the primary root
fails. Moreover, traffic is not distributed to more
than one path. Multiple Source Routing (MSR) [9], pro-
poses a weighted-round-robin heuristic-based schedul-
ing strategy among multiple paths in order to dis-
tribute load, but provides no analytical modeling of
its performance. The Split Multipath Routing (SMR),
proposed in [10], focuses on building and maintain-
ing maximally disjoint paths, however, the load is dis-
tributed only in two roots per session. In [11], the
positive effect of Alternate Path Routing (APR) on load
balancing and end-to-end delay in mobile ad hoc net-
works has been explored. In an interesting applica-
tion [12], Multipath Path Transport (MPT) is combined
with Multiple Description Coding (MDC) in order to send
video and image information in a multihop mobile ra-
dio network.

In our paper, we propose a multipath scheme for
mobile ad hoc networks based on Diversity Coding [2].
Data load is distributed over multiple paths in order
to minimize the packet drop rate, achieve load bal-
ancing, and improve end-to-end-delay. The routing
paradigm is depicted in figure 1, where three differ-
ent paths are utilized at the same time in order to
send data from a source to a destination node. As we
explain in the next section, each data packet is split
into multiple pieces, which are distributed among the
available paths. We evaluate our scheme by calculat-
ing the probability that a transmission from the source
results in successful packet reception at the destina-
tion. The probability function of successful reception
is analytically derived and data is split over multiple
paths in such a way, that the function is maximized.

The model we are using in order to evaluate our
scheme is developed under the assumption that the
mean time of packet transmission is much smaller than
the mean time between variations in network topol-
ogy. If this assumption holds, then we can assume
that the probability that one or more path links fail
is constant during the transmission of a packet. In
other words, one can assume that the topology of the
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network will not change significantly while a packet is
being transmitted.

Our paper is organized as follows: Section II pro-
vides a description of the proposed scheme and the
definition of the successful transmission probability
function Pgycc, the function used for the evaluation
of the scheme. In section III we derive an analytical
formula for Psy,c.c and its approximation. Finally, in
section IV we conclude the work and set some goals
for our research in the future.

II. DESCRIPTION OF OUR SCHEME

In this section, we describe how our scheme exploits
the multitude of paths, in order to offer increased pro-
tection against path failures. Data packets are sent
from source to destination over these paths, making
use of Diversity Coding [2], which we explain later in
this section.

In our network model, we assume that n,,, paths
are available for the transmission of data packets from
a source to a destination node. All paths are mutu-
ally disjoint, i.e., they have no nodes in common. Each
path, indexed as %, i = 1..nmpqq, is assigned a probabil-
ity of failure p;, which is the probability that path ¢ is
down at the time that the source attempts to trans-
mit. In addition, each path is treated as a pure erasure
channel: either no information reaches the destination
through path i (with probability p;), or all the infor-
mation is received correctly (with probability 1 — p;).
Since there are no common nodes among the paths,
they are considered independent in the sense that suc-
cess or failure of one path cannot imply success or
failure of another.

‘Without loss of generality, the failure probabilities
of the available paths are organized in the probability
vector p = [p;],i = l..Nmaz, in such a way that p; <
Pi+1, i-e., the paths are ordered from the “best” one
to the “worst” one. Given p we also define ¢ = [¢;],¢; =
1 —piyi = l..Nmaz, which is the vector of the success
probabilities. Throughout the paper we use p and ¢
interchangeably. - B

The failure probability vector p reflects the network
topology and the quality of the available routes, no
matter what the node mobility pattern is. There ex-
ist various protocols, such as Associativity-Based Routing
(ABR, [13]), that quantify the stability of the routes
in a network using various criteria, based on network
measurements. Our goal is to develop a method for
the fast calculation of the optimal solution defined
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later in this section, so that our scheme can respond
(i.e., recalculate the optimal solution) to rapid changes
in p, i.e. changes in the network topology.

Let’s suppose that the proposed scheme has to send
a packet of X information bits utilizing the set of avail-
able independent paths in such a way as to maximize
the probability that these bits are successfully commu-
nicated to the destination. This probability is denoted
as Psyce. In order to achieve this goal, we employ a
coding scheme in which Y extra bits are added as over-
head. The resulting B bits (B = X +Y) are treated
as one network-layer packet. The extra bits are cal-
culated as a function of the information bits in such a
way that, when splitting the B-bit packet into multi-
ple equal-size non-overlapping blocks, the initial X-bit
packet can be reconstructed given any subset of these
blocks with a total size of X or more bits. First, we
define the overhead factor r:

r=2=2, &)

where b and z take integer values and the fraction b/z
cannot be further simplified, i.e., the greatest common
divisor of b and z is 1.

The key decision that we have to make is how the B
bits will be distributed over the available paths. For
this reason, we define the vector v = [v;], where v; is
the number of equal-size blocks that is allocated to
path i. Clearly, some of the paths may demonstrate
such a poor performance that there is no point in using
them at all. This means that we might require to use
only some of the available paths. If n is the number of
the paths we have to use in order to maximize Pjycc,
it would be preferable to define the block allocation
vector v, as a vector with a variable size n, instead of
fixing its size to the number of available paths (i.e.,
Nmaz)- Given the fact that the probability vector is
ordered from the best path to the worst one, a decision
to use n paths implies that these paths will be the first
n ones. Based on these observations, the allocation
vector v has the following form:

v = (v1,v2,...,Un), 1 < Nmaz-

If the block size is w then:

n
w-Zw:B:'rX.
i=1



Therefore the total number of blocks that the B-bit
packet is fragmented to is:

n
rX
a= Zvi = (2)
i=1

From p; < p;41 follows that v; > v;,1, because a path
with higher failure probability cannot be assigned less
blocks than a path with a lower failure probability. As
a convention, we also set v, to 1, i.e., the last path we
use receives 1 block.

In figure 2 we can see the B-bit packet and its rela-
tion to the original X-bit packet (gray area). We also
show how the B-bit packet is fragmented into equal-
size non-overlapping blocks of size w. The original X-
bit packet is fragmented into N w-size blocks, di,...,dy,
and the Y-bit overhead packet into M w-size blocks,
c1,...,¢cpr- Path 1 will be assigned the first v; blocks
of the B-bit sequence, path two will receive the next
vz blocks and so on. Thus path 7 will be assigned v;
blocks, each block of size w.

‘We can derive the expressions for N and M from
figure 2:

N:_:_a (3)

r—1
a

(4)

This is a typical case where M-for-N Diversity Coding
can be applied. In [2], Ayanoglu et al. have proved
that if M or less blocks are lost, out of the N + M
total data and overhead blocks, the original N infor-
mation blocks can be recovered using appropriate lin-
ear transformations. The overhead blocks ¢;,7 = 1..M,
are also calculated as a linear transformation of the
information blocks d;,i = 1..N.

The optimization algorithm we developed is used
to determine the optimal number of paths and the
optimal allocation vector, given the path probability
vector p and the overhead factor r. The details of this
algorithm are explained in our paper [14] and will be
omitted here because of space limitations. The opti-
mization process involves the maximization of Psycc,
the definition of which we give shortly.

If v; is the number of blocks we send over path 1,
and z; the number of blocks that actually reach the
destination through path i, then:

o Pr{z;=wv} =q

o Pr{z; =0} =p;

because we assume that if a path fails, then all the
blocks sent over the path are lost (recall the pure
erasure channel assumption). M-for-N Diversity Coding
can reconstruct the original X-bit information packet,
provided that at least N blocks reach the destination.
Therefore, we can define P;y.. in terms of the number
of paths that are actually used and the corresponding
allocation vector:

Y
M:—:(T—I)N:
w

n

a
Psucc(nag) = Pr ZZ’L > =0, (5)

r
i=1

where we expressed N as a function of ¢ and r, using
equation (3).

ITI. EVALUATION OF THE FUNCTION Pgyce

In section ITI-A below, we use the definition in equa-
tion (5) in order to provide an analytical formula for
Psyee and to estimate its complexity. In section III-
B, we present a formula that approximates Pgycc, and
based on that formula, we explain how an optimal al-
location of blocks to the paths can be obtained. In
section III-C, we present the evaluation results.

A. Formula and complezity of Psyce

In this section we present a formula for the calcu-
lation of the probability of success Pgycc, given the
probability vector p, the overhead factor r, and the
allocation vector v.” We also give an estimation of the
complexity of this function in terms of the number of
the multiplications involved in its calculations.

According to our network model, each one of the n
paths used by our scheme is subject to two distinct
events:

e the event of failure to transmit the assigned packets
(probability p;)

o the event of successful attempt to transmit the pack-
ets (probability ¢;)

We define an n-dimensional vector s, which reflects
the state of the n paths:

o s; =0, if path 1 failed

e s5; =1, if path 7 succeeded

The associated probabilities are:

o Pr{s;=0}=p;

o Pr{si=1}=q¢i=1—p;

The probability i(s) of the n paths being in state s is
easily calculated as:

n

us) = [[ it~ as 6)

i=1

Each different state corresponds to a different set of
paths succeeding in transmitting packets. All possi-
ble states describe all combinations of such sets, thus
covering the whole space of events (2" events in to-
tal). Since a transmission is successful, when at least
N blocks arrive at the destination, each term ¢(s), de-
fined in equation (6), can contribute to Psycc only if
the number of blocks sent over the set of paths de-
scribed by s is more than or equal to N. By making
this observation and by replacing N using equation
(3), we can write Pgyec as !

Psucc(nay) = Z t(§) . u(§ N

L

where s-v is the inner product of vectors s and v, and
equals the total number of successfully received blocks
allocated to the subset of paths described by the state
vector s. The function u(-) in equation (7) is the unit
step function defined as:

u(z) = {

Given the probability vector p and the overhead fac-
tor r as parameters, we are looking for the optimal

0,z <0
1,z>0

1The reader is reminded that a = E?zl v;



bits assigned to path i

number n* of paths to use (out of the nn.; available
ones) as well as the optimal allocation vector b* over
the n* paths, so that Pgy.. is maximized.

Equation (7) is a complex formula, which makes it
impossible to apply analytical maximizing techniques
such as Lagrange multipliers, primarily because of the
presence of the unit step function. Let us estimate the
cost of exhaustively testing all combinations of the al-
location vector v, in order to find the maximum of
Psyce- The number of possible allocations of B bits to
n paths is (B:ffl
tions of calculating Psycc using equation (7) is n-2", and
thus exponential, because the total number of states
is 2" and each term is a product of n terms. Therefore

). The cost in multiplication opera-

(v, blocks of size w ) w
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Fig. 2. Information and overhead packet fragmentation.
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the total cost is:

Nmaz
255

n=1

B+n—1
n—1

n2" (8)

)-

It is clear that the cost of brute force optimization of
Psyce is exponential. Even for a small number of paths
(e.g., 10 paths), testing all the valid combinations will
take unacceptably long time, making the optimization
of Psycc impossible to implement in real-time. Even if
programming techniques such as dynamic program-
ming are employed, the size of the search space re-
mains exponential with respect to n. Moreover, the
computation of Pgy.. itself requires exponential time,
therefore, even if we knew the optimal solution, it
would take a long time to calculate the value of Pgycc
for that solution. The reader is reminded that in a mo-
bile ad hoc network the probability vector p will not
be constant with time and therefore the optimization
process of Pgy.c must be repeated when the network
topology changes.

In figure 3 we give a numerical example in the case
where r = 3/2 and nmer = 6 paths. The probability
vector is ¢ = [¢1,0.8,0.8,0.8,0.8,0.8], where 0.8 < ¢; < 1.
We plot the probability of success for four allocation
vectors, as shown in the legend of the graph. We
can see that for ¢; < 0.92, the optimal allocation is
v = [1,1,1,1,1,1], whereas for g1 > 0.92 it is v [1].
If only 3 paths are available, then for ¢; < 0.83, the
optimal allocation is v = [1,1, 1], whereas for ¢; > 0.83 it
is v = [1]. We also verify that the vector v = [3,1,1,1,1]
can never be the optimal.

0.7
0.8

L L L L
0.88 . 0. 0.94 0.96 0.98 1

.
0.86 0.9 92
q, - path success probability

L L
0.82 0.84

Fig. 3. Comparing different allocation vectors.

B. Approzimation of Psyce

From the analysis presented in the previous section
it is evident that neither the optimal number of paths,
nor the optimal allocation vector can be calculated in
the general case where the probability vector is non-
uniform. The main problem is the complexity of Pgycc
in terms of continuity and the required computation
time. Since Pgycc is not continuous because of the pres-
ence of unit-step functions in its formula, its derivative
is not defined everywhere. Moreover, the time re-
quired to calculate Pgy.. is exponential, which means
that real-time computation is impossible to achieve.

To address the above problem of Pg,.. evaluation,
we will present an approximation of P;y.. based on the
following observations:

e the binomial distribution can be approximated by
the normal distribution, and

e the sum of n independent normally distributed ran-
dom variables follows the normal distribution.

‘We assume n paths with the path probability vector
p and the block allocation vector v = [v;]. Vector p
follows an ascending order and, therefore, v; > viy1,
because a path with higher failure probability (p;+1 >
pi) cannot receive more blocks than the blocks sent to
path with a lower failure probability. Also, without
loss of generality, we assume that v, = 1. Psycc can be



approximated by the following equation, as shown in
[14]:

Pa(y,n) = 5 +

1
2

N =

o(v)V2

cerf (M(E) DR +1/2) )

where:

n

u(w) = Zviqi,a(y) =

i=1

For a discussion on the validity of the approximation
see [14]. Also, for more details on the normal ap-
proximation to the binomial distribution and the con-
dition under which this approximation is satisfactory
see [15].

Our goal is to maximize P, with respect to v and n.
First, we observe that the expression inside the Ceil-
ing Function in equation 9) must take on an integer
value. If the latter is not true, then the effective over-
head ratio 7’ (i.e., the number of total blocks sent,
divided by the minimum required number of blocks
that must be received, so that the original signal can
be reconstructed) would be less than the overhead ra-
tio r employed by the scheme:

r_ Dy < D1 Vi -
|—% Z?:l Ui-‘ % E?:l Vi

The allocation vectors v for which r’ = r, represent the
points at which P, has its local maxima.

In this paper, due to limited space, we only present
the calculation of the optimal number of paths n*,
assuming a uniform allocation of one block per path,
i.e.,, v; = 1, for i = 1.n*. The local maxima in this
special case are found at n = k- b, where b is defined
in 1. An optimization technique for both v and n is
developed in [14]. If one block is sent per path, P, can
be simplified to:

r

S g —[n/r] +1/2

V2D pigi

The function erf(-) (i.e., the Error Function) is a
monotonically ascending function, so, in order to max-
imize P,, it is sufficient to maximize the expression
that this function takes as its argument. Therefore,
the optimal number of paths is given by the following
expression:

(10)

1 1
P{(n) =5+ 5 erf

?:1 ¢ — [n/r]+1/2
V 22?:1 Pigi

In the next section, we show some interesting evalua-
tion results of the derivations presented here.

(11)

C. Results and graphs

In this section, we present some results for the case
in which one block is allocated to each path. In figure
4 we have drawn P, and its derivative, for ¢; = 0.8,1 <

derivative
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Fig. 4. P, and derivative for = 3/2 and ¢ = 0.8.

— Thresholdq,
Approximation

q,(7) - probability threshold

041

02k

0.1
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Threshold g4+ and its approximation.

i < 20, and r = 3/2. The left vertical axis holds the
values for P, and the right axis holds the values for
the derivative. As expected, the derivative is zero at
the value of n that minimizes P,.

Interesting results are obtained when the probabil-
ity vector is uniform, i.e., all paths exhibit the same
probability of success ¢; = ¢,% = 1..nmaq- In this case,
there is a threshold value ¢4 (r) beyond which Py is
increasing as the number of used paths increases. This
threshold is approximated by the following equation:

1 1
a+(r) = m+;

(12)
In figure 5 we can compare ¢4 and its approximation
described by equation (12).

The main conclusions are:
o If ¢ > g4 (r), then P, is ascending for n > b and there-
fore the optimal number of paths is the number of
available paths (all paths should be used). However,
we have to take into account that P;,.. encounters
local maxima at positions kb, where k > 1, so if the
number of available paths is nmyg, then the optimal
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Fig. 6. Behavior of Pgyc. for different values of q.

number of paths is:

e If ¢ < 1/r, then P, is descending with respect to n
and so is the set of local maxima of Psyc.. The optimal
number of paths for this case is:

n*(r)==%

o If 1/r < ¢ < g4(r), then P, has a minimum at:

1
no(r,q) = W

These conclusions can be verified from figure 6, in
which we plot Pgyc. (overhead factor r = 2) against the
number of paths n = k- b,k = 1..20, for different values
of the path success probability. Incidentally, we note
that ¢4 (2) ~ 0.7, whereas from equation (12) we find
the exact value: ¢4(2) = 0.67.

For the general case where the probability vector is
arbitrary, we note that if ¢; > 1/r:

lim  Psyce (n) =1
n——+oo

and therefore it is advantageous to use a large number
of paths, so as to achieve a probability of success close
to 100%.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new scheme for mul-
tipath routing in mobile ad hoc networks. Our goal
was to apply multipath techniques in an environment
that has continuously changing topology and no infras-
tructure, so that the typical problems associated with
nodal mobility and wireless links (unreliable trans-
missions, fading, etc.) will be alleviated. We argued
that, if the mean time of packet transmission is much
smaller than the mean time between variations in net-
work topology, we can fairly assume that the probabil-
ity that one or more path links fail is constant during
the transmission of a packet.

Under these assumptions, we considered the general
case of multipath transmission, in which nq4, disjoint
paths are available for a packet transmission. Each
path is treated as a pure erasure channel and it is as-
sociated with some failure probability p;, which was
defined as the probability that, at transmission at-
tempt time, the path is down. Based on the work done
in [2], we used M-for-N Diversity Coding. This scheme
splits the original packet into N blocks, adds M blocks
of overhead (calculated using linear transformations
from the original N blocks), and, finally, allocates one
block to each one of N+ M paths. M-for-N Diversity Cod-
ing offers protection against at most M lost blocks out
of the total N + M blocks. In our scheme, rather than
allocating one block per path, we assume an allocation
of v; blocks to path ¢,i = 1..nymez. Thus, we show what
the optimal distribution of these blocks to the n;qz
disjoint paths should be, so that Pg,.. is maximized.

Given the path failure probabilities, the overhead
factor, and the allocation of the original and overhead
blocks to the n;q; paths, we developed an analyti-
cal formula for the probability function Psyc., namely,
the probability that no more than M blocks are lost.
This is the probability that the original N blocks can
be reconstructed at the destination, and, as a con-
sequence, the transmission is successful. We showed
how to maximize Psyc. (in terms of the block alloca-
tion) fast enough (section III-B), so that the require-
ment for a real-time recalculation of the optimal solu-
tion, due to topology changes, could be met.

Our scheme proposed here offers increased protec-
tion against route failures. Under some constraints
on the path failure probabilities, it was found that
the probability of a successful communication of pack-
ets between source and destination increases with the
number of used paths. Moreover, this would effec-
tively reduce transmission delay and traffic congestion
through load balancing.

The proposed scheme can also be used to enforce
error rate QoS requirements, whenever the character-
istics of the offered paths make it possible. In that
case, we do not have to maximize Psycc, but, instead,
simply set it to the required probability (indicated by
the QoS requirements) and then find the number of
paths and the block allocation that satisfies it. This
could make real-time data transmission feasible in an
environment that is hostile to such type of communi-
cation. Moreover, by keeping track of the probabil-
ity of success and by constantly comparing it with the
QoS requirement, we obtain a metric that may be used
in order to trigger new route discoveries, for example
if Psycc tends to drop below the requirements. By ex-
tending the definition of the path failure probabilities,
we could enforce different classes of QoS requirements,
such as maximum delay requirements. This can be
done, by simply defining the path failure probability,
as the probability that a packet will not arrive on time,
i.e., within the maximum delay time, and, as a result,
we assume it is lost.

Our goals for future research include:

o evaluation of the proposed scheme when used for
achieving load balancing and satisfying delay con-
straints,

o development of algorithms in order to estimate the
probability vector p on a real-time basis,

¢ derivation and optimization of Py in the case of



correlated paths, and

¢ implementation of our scheme on top of existing
routing protocols and comparative performance eval-
uation.
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