
 1

Bluenet II −−−− A Detailed Realization of the Algorithm and Performance Analysis

Zhifang Wang, Zygmunt J. Haas, Robert J. Thomas
ECE Cornell University, Ithaca, NY 14850

{ zfwang, haas} @ece.cornell.edu, rjt1@cornell.edu

Abstract

The recent interest in ad hoc networks, in general,
and in the Bluetooth technology, in particular, has
stimulated much research in algorithms for topology
control of such networks. In particular, the issue of
scatternet formation has been addressed by a number of
papers in the technical literature. In [1] , we have
proposed the scheme of one such algorithm, the Bluenet
algorithm, which allows efficient formation of
scatternets.

In this paper, we further investigate the realization
and properties of the Bluenets algorithm. The
performance indices of resulting scatternets, such as,
piconet density, usage of potential links, deviation of
node degrees, average shortest path length, and
maximum traffic flows are also studied. From the
analysis, it is showed that the choice of 0p , the initial

probability for each node to enter page state, is very
important. Since each performance index only reflects
one side of the scatternet performance, we need to make
trade offs when selecting 0p to build Bluenets.

I. Introduction

Our previous paper [1] proposed the Bluenet scheme
based on the following rules:

Rule-1. Avoid forming further piconets inside a
piconet;

Rule-2. For a bridge node, avoid setting up more than
one connections to the same piconet;

Rule-3. Inside a piconet, the master tries to acquire
some specific number of slaves; i.e. not too
many and not too few while maintaining a
connection only to active slave nodes if
possible.

In the real world it is possibly very difficult to
maintain rule-3. Therefore we only set the limitation
about the largest number of slave nodes in a piconet.
However in some extreme conditions, even this

limitation has to be sacrificed in order to keep the
connectivity of resulting scatternets.

 According to our previous suggestion, the Bluenet
scheme starts from a visibility graph. That is, through the
“Inquiry” process of Bluetooth [2][3], each node has gotten
to know the existence of its neighbors, including their
Bluetooth addresses and clocks. At this time, all the
Bluetooth nodes have no master or slave roles. Therefore
we call them as void nodes, or phase-0 nodes. The
scheme can be roughly organized into three phases:

• Phase1: Original piconets formed, and possibly
some separate Bluetooth nodes may be left.

• Phase2: Separate Bluetooth nodes get
connected to initial piconets.

• Phase3: Original piconets get connected
through inter-piconet links to form a scatternet.

Original piconets are those piconets all of whose
member nodes, i.e. master node as well as slave nodes
were void nodes just before the time of joining the
piconet. Namely, the original piconets are the fist bunch
of piconets formed in the system. On the other side, the
piconets formed later through phase-2 or phase-3 are
called cross- piconets since all the member nodes, or all
the slave nodes, in the piconet already belonged to some
other piconet(s) before joining this one. For a slave node,
though it may be a slave to multiple master nodes, its
original master node is its first master. For a master in an
original piconet, its original master is itself.

Once a node joins some original piconet, it is
restricted from joining other piconets until its original
master node instructs it to do so. After phase-1, the
whole Bluetooth system is covered by original piconets.
Possibly some nodes are left isolated because all of their
neighbors are already associated with some original
piconets. In this case, phase-2 is necessary. Otherwise,
phase-2 is over passed.

It can be seen that [1] only provides a very rough
scheme to build scatternets, with no details about the
realization of the algorithm. For example, at the very
beginning, how do the void nodes determine to enter
page or scan state? How does a Bluetooth know when to
switch its phases from phase-1 to phase-3? How does an
isolated void node become aware of its situation? And

 2

how does an original piconet set up inter-piconet links to
get connected with its neighboring original piconets?

In the following parts of the paper, we will answer all
of these protocol questions (in Section II) and discuss the
performance indices (in Section III). Finally, conclusion
is presented in Section IV.

II. Realization of Bluenet Algorithm

Just like mentioned in the introduction part, a
Bluenet Scatternet could be formed through three phases.
In our detailed realization of the algorithm, it can be
illustrated as in Fig.1. Condition B represents “ Is that
possible to form an original piconet?” If yes, B=1,
otherwise, B=0.

Fig .1. Phase transition for Bluetooth nodes in
the Bluenet Algorithm

The realization of the algorithm requires each node

to keep some local data records. Without loss of
generality, we take node-k for example.

1. ngbr _st at – r ecor d t he st at us f or

nei ghbor s. ngbr _st at (k, : , 1) cont ai ns
t he node I D’ s of al l of node- k ’ s
nei ghbor s ngbr _st at (k, : , 2) cont ai ns t he
or i gi nal mast er I D’ s f or each nei ghbor ;
and ngbr _st at (k, : , 3) r ecor ds how many
t i mes t hat node- k has paged t he
cor r espondi ng nei ghbor s.

2. nd_st at – keep r ecor d of t he node’ s own
st at us. nd_st at (k, 1) cont ai ns node- k ’ s
or i gi nal mast er I D, nd_st at (k, 2)
cont ai ns node- k ’ s phase number .

3. mst er s – i f node- k i s a mast er ,
mst er s(k, :) cont ai ns t he node I D’ s of
i t s sl aves, ot her wi se, i t i s empt y.

4. sl aves – i f node- k i s a sl ave t o some
mast er node(s) , sl aves(k, :) cont ai ns
t he node I D(’ s) of al l i t s mast er
nodes. Ot her wi se i t i s empt y.

5. mst er s_p2 – onl y f or phase- 2 nodes.
mst er s_p2(k, :) cont ai ns al l t he page-
abl e nei ghbor s of node- k .

6. mst esr _p3 – onl y f or phase- 3 mast er
nodes. mst er s_p3(k, :) cont ai ns al l t he

s l aves i n node_k’ s pi conet t hat ar e
el i gi bl e t o per f or m page act i on, i . e. ,
whose ngbr s_p3 st i l l cont ai ns page- abl e
nei ghbor s.

7. ngbr s_p3 – onl y f or phase- 3 sl ave
nodes. ngbr s_p3(k, :) cont ai ns al l t he
page- abl e nei ghbor s f or node- k .

8. cr oss_scat t er s – Onl y f or or i gi nal
mast er nodes. Keep r ecor d of i nt er -
pi conet connect i ons. cr oss_scat t er s(k, :
) cont ai ns t he node I D’ s of t he
or i gi nal mast er nodes whose pi conet i s
connect ed wi t h node- k.
During the page/scan and match processes,

participating Bluetooth nodes make decisions, select
paged nodes (only for page nodes), exchange and update
information based on their local records. That is, node-k
only uses the parts associated with k in all above data
structures. A page node selects its paged nodes only from
a list of page-able nodes instead of from all its neighbors.
That is because, as time goes on, some of its neighbors
become unnecessary to be paged.

 Since our algorithm starts from the completion of
“ Inquiry” state, the scatternet is formed through Page or
Page Scan process of each node. We denote “page scan”
as “scan” for simplicity in the later parts of this paper.

II.1 Page/Scan Logic

At first all phase-0 nodes, according to phase-0
page/scan logic in Table.1, determine whether to enter
page or scan state. We assume that they do this randomly
by a pre-assigned probability of 0p . The selection of 0p ,

helps to limit the number of piconets in the resulting
scatternet. Without otherwise claim, all the following
processes take node-k for example.

Table.1 Page/Scan Logic for phase-0 nodes

A – the list of unknown neighbors,
||A|| – the number of unknown neighbors

i f (||A|| >0)
 % page/ scan by pr ob- p0,

x=r and() ;
i f (x<p0)

node- k ent er page;
gener at e page- l i s t
 f r om A;

el se
node- k ent er scan;

end

 el se % ||A|| ==0
% ent er phase- 2,
i ni t _p2(.)

 end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void

node

phase-1 phase-3

phase-2

finish B=1?

 3

For a phase-0 node, (and phase-1 nodes, too), node-
k, its page-able neighbors vector A is defined as all of its
neighbors whose original mater ID node-k doesn’ t know
yet, i.e.

}0)2,,(_:)1,,(_{ == jkstatngbrjkstatngbrA
Later if node-k decides to enter page state, it selects a
random list of nodes only from A to page. We define A
like that because if ngbr-j already joined some other
piconet, it will not be restricted by its master from
joining other piconet. Therefore we remove them in
advance to save the unnecessary page time.

It is worth to note here that the following two
statements are not equivalent:
(a) ngbr-j’s original master ID is unknown to node-k;
(b) ngbr-j has not got any original master ID.
It is possible that ngbr_j already joined some original
piconet while node-k doesn’ t know that and still thinks
that ngbr_j is page-able.

The function rand(.) chose x from a uniform
distribution on the interval)0.1,0(. Therefore node-k

will enter page state with probability of 0p and enter

scan state with probability of)1(0p− . And the scan

nodes keep listening and wait for some other nodes to
page it.

Obviously after several rounds of page and scan,
some page nodes successful invite some scan nodes to
become its slaves so that an original piconet results in.
Once a page node becomes a master to a slave node, both
of them enter phase-1 and keep that way until the master
itself instructs to change. The phase-1 master node then
takes over the control to determine the action for all the
members in its piconet according to phase-1 page/scan
logic in Table.2.

Table.2 Page/Scan logic for phase-1 piconets:
(a) f or mast er nodes – Page or scan accor di ng

t o t he f ol l owi ng l ogi c :

ns – the total number of slaves in its piconet,
||A|| – the number of unknown neighbors,
||up|| – the number of unpaged nodes among its unknown
neighbors.

(b) f or s l ave nodes –

When the phase-1 master node gets to know all

about its neighbors’ states, i.e., φ=A , all the member
nodes in its piconet enter phase-3. The master starts to
instruct all of its slaves to get ready for setting up inter-
piconet links. Function on line-13 init_p3(.) is to
initialize msters_p3, containing all the slaves, for the
master node and to initialize ngbrs_p3, containing all of
its neighbors, for each slave.

It is possible that some nodes will be left isolated
finally because all of its neighbors already joined some
piconet and refused to accept its page invitations. These
nodes would enter phase-2 state and try to get connected
with its neighbors that belong to different original
piconets and then go to finished state, according to below
phase-2 page/scan logic. Obviously if no phase-2 nodes
left at all, this part will be skipped automatically.

Table.3 Page/Scan logic for phase-2 nodes

mster_p2 – the neighbors that belongs to a different piconet than
those node-k has connected with.

ns_p2 – the total number of available neighbors in msters_p2

The init_p2(.) function is to initialize the local

record msters_p2, for the new phase-2 node, say, node-
k. Initially, msters_p2 contains all of node-k’ s neighbors.
Whenever a new slave node joins node-k’ s phase-2
piconet, node-k will update its msters_p2, through
function updat_p2(.), by removing those neighbors,
which belong to the same piconet as the new slave node.
When there is no page-able neighbor left in msters_p2,
the phase-2 node enters “ finish” state.

After initializations, the Bluetooth nodes in a phase-
3 piconet begin their page/scan process according to the
following phase-3 page/scan logic in Table.4.

Whenever the phase-3 slave, node-k, from original
piconet of master-m, gets response from a new node, say
node-j, from a new original piconet whose belonging
original piconet, say, piconet-n, has not been connected
with piconet-m, node-k will update its ngbrs_p3(k,:),

keep scanni ng onl y f or i nf or mat i on exchange,
unt i l ot her wi se i nst r uct ed by i t s mast er .

i f (ns_p2>0)
 keep pagi ng i t s page- abl e nei ghbor s;
 / / i f ns<Nmax
 / / t he page i s f or set up
 / / mast er - s l ave l i nk
 / / i f ns==Nmax
 / / t he page i s onl y f or
 / / i nf or mat i on exchage.
el se
 ent er “ f i ni sh” s t at e
end

1
2
3
4
5
6
7
8
9

10
11

i f (||A||>0)
 i f (ns<Nmax & ||up|| >0)
 keep pagi ng, chose paged nodes
 f r om i t s unpaged nei ghbor s, ” up” ;
 el se %i . e. ns==Nmax or ||up|| ==0

al t er nat e bet ween page/ scan
by pr ob- 0. 5, choose paged nodes
f r om A;

 end
el se
 node- k and al l i t s s l aves ent er
 phase- 3;
 i ni t _p3(.) ;
end

1
2
3
4
5
6
7
8
9

10
11
12
13
14

 4

through updat_p3(.), by removing some of its neighbors
that belong to the new original piconet-m. If there is no
page-able neighbors for node-k, i.e., ngbrs_p3(k,:) is
empty, then remove node-k from its master’s
msters_p3(m,:), i.e., it is no longer eligible to page for
phase-3. When there is no eligible slaves left in the
mster_p3(m,:), the whole piconet enter “ finish” state.
The same update will be done for node-j and piconet-n,
too.

Table.4 Page/scan logic for phase-3 nodes
(a) mast er nodes – keep scanni ng but onl y f or

exchange i nf or mat i on;
(b) s l ave nodes – ent er page/ scan accor di ng t o

t he l ogi c bel ow;

msters_p3- contains the slaves in the original piconet;
ngbrs_p3 – the list of available neighbors for each slave ;

II.2. Match process

During the page/scan process, if node-k pages nod-j
while node-j is in scan state and hears the page, the
following actions taken is called match process. First the
matching two nodes would set up a temporary master-
slave link, and then exchange the node-state information.
Finally they will determine whether to keep this link or
not. There are only four cases in which a master-slave
link will be kept finally, i.e.

a. A void node pages another void node;
b. A phase-1 master with less than maxN slaves

pages a void node;
c. A phase-2 node with less than maxN slaves

pages another node, which belongs to a different
piconet other than those already connected with
the phase-2 master;

d. A phase-3 slave node pages another phase-3
slave node. Only i f the former has less than

maxN slaves in its piconet and the two original
piconets, to which the two slaves belong, are not
connected yet.

For different cases, the information exchange and
update are different, too. Now we will explain them in
more details. We denote the page node, its original

master, its phase number, and the number of slaves in the
page node’s piconet as page_nd, pg_m, pg_p, and
pg_ns respectively. And the corresponding terms for
the scan nodes are denoted as scan_nd, sc_m, sc_p
and sc_m..

If scan_nd and page_nd both are void nodes, the
match process is like below:

Table.5 Match process for two void nodes

Line-2 is to finally set up the master-slave link
page_nd→scan_nd. Line-2 and 3 is to update the node
states. Line-5 is to exchange information for updating
each other’s ngbr_stat.

If page_nd is a phase-1 master and scan_nd is a void
node, the match process is as below:

Table.6 Match process for phase-1 masters

Line-2-3 shows that if page_nd has less than maxN
slaves, the final master-slave link is kept. The function
exchg_p1(.) on line-5 is the exchange of information for
phase-1 piconet when a new slave joins. The master will
provide the new slave information about all the other
members in the piconet and broadcast the new slave’s
information in the piconet so that the other member
nodes can update their ngbr_stat, too. Otherwise if the
page_nd’s piconet already has maxN slaves, the match

pair exchanges the information by the function
exchg_p1full(.) on line-7, i.e., only the scan_nd update its
ngbr_stat by collecting node state from page_nd’s
piconet. Since the scan_nd doesn’ t join page_nd’s
piconet, its status remains unchanged; there is no need
for the page_nd to broadcast scan_nd’s status in its own
piconet.

If page_nd is a phase-2 node, the match process
between the page/scan pair is depicted as in Table.7. The
function check_cross() in Line-2 is to check if page_nd
has connected with the piconet which scan_nd belongs
to. If yes, the function returns 0, means the following
action is unnecessary. Otherwise, the following action is

i f (ns_p3>0)
 i f (ns_p3>1)
 r andoml y sel ect one avai l abl e s l ave
 t o page, whi l e t he ot her s scan
 el se / / (i . e. ns_p3==1)
 al l s l aves r andoml y ent er page or
 scan by pr ob- 0. 5
 end
el se
 t he whol e pi conet ent er s “ f i ni sh” s t at e
end

1
2
3
4
5
6
7
8
9

10
11

i f (pg_p+sc_p==0) % bot h ar e voi d nodes
 appdsl ave (page_nd, scan_nd) ;
 nd_st at (page_nd, :) =[page_nd 1] ;
 nd_st at (scan_nd, :) =[page_nd 1] ;
 ngbr _st at =exchg_p0(page_nd, …
 scan_nd) ;

1
2
3
4
5
6

el sei f (pg_p==1 & sc_p==0)
 i f (pg_nsl >0 & pg_nsl <Nmax)
 appdsl ave(page_nd, scan_nd) ;
 nd_st at (scan_nd, :) =[page_nd 1] ;
 exchg_p1(page_nd, scan_nd) ;
 el se %(pg_nsl ==Nmax)
 exchg_p1f ul l (page_nd, scan_nd) ;
 end

1
2
3
4
5
6
7
8

 5

carried on. If page_nd’s piconet is not full yet, the
master-slave link will be kept and node state be changed
and the phase-2 node also expend its local record
cross_scatters(k,:) to append the new piconet it has
already connected. Otherwise, only update msters_p2 for
the phase-2 node and exchange neighbor status
information.

Table.7 Match process for phase-2 nodes

If the match process is going on between two phase-

3 slaves, their match process can be showed as:

Table.8 Match process for phase-3 nodes

Line-3 and 4 show that if page_nd’s piconet is not
full, page_nd will take scan_nd as its new slave.
Otherwise, if scan_nd’s piconet is not full, the opposite
master-slave link would be set up finally. Otherwise, if
both piconets are already full, the match pair only to
update each other’s ngbrs_p3, by removing the other
node from its local record of ngbr_p3, meaning that the
other node is no need to page later.

Table.9 Match process for other cases

For the other cases except all above, if belonging to

different piconets, they will only exchange the node
information about all the member nodes in each other’s
piconet, as in Table.9.

II.3. Back-off Algorithm to guarantee
connectivity

The only chances in the algorithm to cause isolation
for the scatternets are:

a. A master node can’ t have more than maxN

slaves in its piconet
b. Phase-3 masters don’ t set up inter-piconet

master-slave links with phase-3 slave or
masters.

In the realization of Bluenet Algorithm, we try to
decrease the probability of isolation as small as possible.
After the finished state, all the Bluetooth nodes need to
examine their neighbor state records, to check if any
neighbor, from a different original piconet than those
directly connects with its own, is left unconnected. If
yes, the node, say node-k, will inform its original master,
mster-m, and ask its master node to make sure the
questioned neighbor node, say, node-j, can be finally
connected. First the master node, master-m, contacts
with all of its neighboring original piconets from its
cross_scatters(m,:), to see node-j has potential to be
really unconnected. If node-j falls in any piconet that is
directly connected with master-m’s neighboring
piconets, it is fine. Otherwise, node-k has to set up a
master-slave link with node-j. They do it by entering
page or scan prob-0.5 independently each other and
finally can match each other. In fact, above cases occurs
very rarely. Mostly the process can be just omitted.

III. Performance Analysis

It is necessary to distinguish between efficient
scatternets and inefficient ones but it is uneasy to find
ways to make the evaluation. Based on recent literatures
[4][5], we decide to adopt following performance indices
to evaluate the quality of resulting scatternets.
a. Piconet Density – nmst bn=ξ ,

which is defined as the ratio between the number of
piconets over the number of Bluetooth nodes.
In some extent this index reflects the interferences level
among the piconets in a resulting scatternet. Because all
piconets share the common 79 Bluetooth channels, the
more piconets exist in the same neighborhood, the
heavier interference among them. Therefore, a too high
piconet density should be avoided.

el sei f (pg_p==3 & sc_p==3 & sc_m~=scan_nd)
 i f (check_cr oss(page_nd, scan_nd, nd_st at))
 t mp=[page_nd scan_nd] ;

i nd=f i nd([pg_nsl sc_nsl] <Nmax) ;
i f (~i sempt y(i nd))

 mst _nd=t mp(i nd(1)) ;
 s l v_nd=t mp(f i nd(t mp~=mst _nd)) ;
 appdsl ave(mst _nd, s l v_nd) ;
 expd_cr oss(pg_m, sc_m) ;
 updat e_p3(pg_m, sc_m) ;
 updat e_p3(sc_m, pg_m) ;
 el se
 updat e_p3f ul l (page_nd, scan_nd) ;
 end
 ngbr _st at =exchg_i nf o(page_nd, …
 scan_nd,) ;

 end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

el sei f (pg_p==2)
 i f (check_cr oss(page_nd, scan_nd, nd_st at))
 i f (pg_nsl <Nmax)
 appdsl ave(page_nd, scan_nd) ;
 nd_st at (page_nd, 1) =page_nd;
 pg_m=page_nd;
 expd_cr oss(pg_m, sc_m) ;
 end
 updat e_p2(pg_m, sc_m, nd_st at) ;
 exchg_p2(page_nd, scan_nd) ;
 end

1
2
3
4
5
6
7
8
9

10

 el sei f (pg_m~=sc_m)
 % onl y i f t he mat ch nodes comes f r om
 % di f f er ent or i g- pi conet
 ngbr _st at =exchg_i nf o(page_nd, …

scan_nd, ngbr _st at , nd_st at) ;
%exchage ngbr i nf o

 end

1
2
3
4
5
6
7

 6

b. Link coverage –)1(_ −= nL bNplink ,

Which is defined as the ratio between the number of
links LN in a scatternet and the smallest number of links

that is needed to form a connected network)1(−nb .

Obviously, a connected scatternet always has
1_ ≥plink . This index represents the usage of potential

links in a scatternet. In order to form an efficient
communication network, the resulting scatternet should
bear a decent of connectivity. Either extremity is
undesirable. Because too large a plink _ means wastes
of network resource since each active link costs some
node bandwidth to maintain. If plink _ is too small, it
may cause bottlenecks for multi-pair communications.

c. Degree Deviation –
�

=− ρ−ρ=σ n

n

b
i ib 11

1)(,

Node degree iρ is defined as the number of piconets that

the Bluetooth node-i joins in. σ and ρ are the standard
deviation and the mean of all node degrees.

A “good” scatternet may spread its network
resources as evenly as possible otherwise the bottlenecks
in the system may bring down the whole network’s
performance. Therefore the index of node deviation
should not become too large in the resulting scatternet.

d. Average Shortest Path Length – �−= ij ijbb dd

nn)1(
2 ,

ijd is the short path length (hop count) between node-i

and node-j in the resulting scatternet.
This index shows the routing efficiency of the

resulting scatternet. It provides us with an estimate of the
average routing delay in the resulting scatternet.

e. Max Traffic Flow – mMTF is defined as the average

max traffic flow that can be carried by the resulting
scatternet for all m-pairs of communication nodes. This
index reflects the information carrying capacity for the
resulting scatternets.

MATLAB simulations are carried on to analyze
performance of resulting Bluenet scatternets from the
realization process described in Section II. At first nb

Bluetooth nodes are uniformly distributed in a square

area with node density 10 [2/ mnodes]. 100 sample
scatternets (with different node distribution) are
generated each parameter of 0p , the initial probability for
nodes to enter page. The maximum number of slaves in a
piconet maxN is set to 5.

Fig.2. shows that the piconet density increases when

0p become larger. In order to limit the number of

piconets in a scatternet, we should choose 0p to be not

too large. Fig.3 ~5 shows the trends of plink _ , node
degree deviation, and average shortest path length when

0p increases. Clearly, plink _ and node degree deviation

increase when 0p goes up, while Average Shortest Path
Length becomes smaller. This is easy to understand.
Since when more links are used in the scatternet, there
are more possible paths between any two pair of nodes,
and the shortest path length between them can possibly
be decreased. Fig.6. presents the MTF performance with
different 0p for 40-node Bluetooth system with a

uniform node distribution. From Fig.6 we can see that
when 2.00 =p , the resulting scatternets have best

information carrying capacity. With the combination of
all performance indices above, we found that 2.00 =p is

an appropriate choice.

IV. Conclusion

This paper presents a detailed realization for the
Bluenet Algorithm first proposed in [1]. The realization
shows that the algorithm is applied in a distributed way,
i.e., each Bluetooth nodes carry on its page or scan
process based on the local knowledge about the network

Performance analysis is also performed to show the
effect of 0p on the performance indices such as piconet
density, link usage and node degree deviation, average
shortest path length and maximum traffic flow. Since
each index only reflects one side of the scatternet
performance, some trade off has to be made when
determine how to build a scatternet.

Reference

[1] Z. Wang, R. J. Thomas, and Z. Haas, “Bluenet -- a new
scatternet formation scheme” , in Proceedings of the 35th
Hawaii International Conference on System Science (HICSS-
35), Big Island, Hawaii, January 7-10 2002

[2] Bluetooth Special Interest Group, “ Specification of the
Bluetooth System, version 1.0B, http://www.bluetooth.com/

[3] B. A. Miller, and C. Bisdikian, Bluetooth Revealed, Prentice
Hall PTR, upper Saddle River, NJ 07458, 2001

[4] G. Miklos, A. R. Racz, Z. Turanyi, A. Valko, and P.
Johansson, “Performance Aspects of Bluetooth Scatternet
Formation”, MobiHoc 2000, pp147-148, Boston, Aug 2000

 7

[5] “ A Bluetooth Scatternet Formation Algorithm”, C. Law and
K.Y. Siu, Proceedings of the IEEE Symposium on Ad Hoc
Wireless Networks 2001, San Antonio, Texas, USA, November
2001

0.05 0.1 0.15 0.2 0.25 0.3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Piconet Density vs p0 for bn-node System

p0 - initial probability to page

pi
co

ne
t

de
ns

ity

bn=20
bn=40
bn=60
bn=80

Fig2. Piconet Density vs. 0p

0.05 0.1 0.15 0.2 0.25 0.3
1

1.5

2

2.5
Link-p vs p0 for bn-node System

p0 - initial probability to page

Li
nk

-p

bn=20
bn=40
bn=60
bn=80

Fig 3. Link-p vs. 0p

0.05 0.1 0.15 0.2 0.25 0.3
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Node Degree Deviation vs p0 for bn-node System

p0 - initial probability to page

N
od

e
D

eg
re

e
D

ev
ia

tio
n

bn=20
bn=40
bn=60
bn=80

Fig 4. Node Degree Deviation vs. 0p

0.05 0.1 0.15 0.2 0.25 0.3
2.6

2.8

3

3.2

3.4

3.6

3.8

4
Average Shortest Path Length vs p0 for bn-node System

p0 - initial probability to page

A
S

P
 (

ho
p

co
un

t)
bn=20
bn=40
bn=60
bn=80

Fig.5. Average Shortest Path Length vs. 0p

1 2 3 4 5 6 7 8 9 10
500

1000

1500

2000
MTF performance for 40-node System

Nss - communication pairs

M
T

F
 (

K
bp

s) p0=0.05
p0=0.1
p0=0.15
p0=0.2
p0=0.3

Fig.6. MTF performance for 40-node system

