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Abstract

Multicasting is an eflicient means of one to many com-
munication and is typically implemented by creating a
multicasting tree. Because of the severe battery power
and transmission bandwidth limitations in ad hoc net-
works, multicast routing can significantly improve the
performance of this type of network. However, due to
the frequent and hard-to-predict topological changes of
ad hoc networks, maintenance of a multicasting tree to
ensure its availability could be a difficult task. We bor-
row from the concept of Alternate Path routing, which
has been studied for providing QOS routing, effective
congestion control, security, and route failure protec-
tion, to propose a scheme in which a set of multicasting
trees is continuously maintained. In our scheme, a tree
is used until it fails, at which time it is replaced by an
alternative tree in the set, so that the time between
failure of a tree and resumption of multicast routing is
minimal. In this paper, we introduce the basic scheme,
termed ITAMAR, which is a framework for efficient
multicasting in ad hoc networks. We present a number
of heuristics that could be used in ITAMAR to com-
pute a set of alternate trees. The heuristics are then
compared in terms of transmission cost, improvement
in the average time between multicast failures and the
probability of usefulness. Simulations show significant
gains over a wide range of network operational condi-
tions. In particular, we show that using alternate trees
has the potential of improving mean time between in-
terruption by 100-600% in a 50 node network (for most
multicast group sizes) with small increase in the tree
cost and the route discovery overhead. We show that
by renewing the backup tree set, probability of inter-
ruptions can be kept at a minimum at all times and
that allowing some overlap among trees in the backup
set increases the mean time between interruptions.
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1 Introduction

An ad hoc network consists of a collection of mobile
routers, which are interconnected via wireless links and
are free to move about arbitrarily. This technology
has its roots in DARPA packet radio networks [1]. Re-
search on multi hop packet-switching radio networks
started in the 1970s, with its initial motivation for
military applications. Their attractiveness was (and
continues to be) based on the ease and speed of de-
ployment in hard-to-access environments [2]. In recent
years, interest in ad hoc networks has grown with im-
provements in laptop computer technology, including
greater computational power, longer battery life and
decreased weight. Advent of ubiquitous computing and
the proliferation of portable computing devices have
further increased the importance of efficient routing in
mobile networks.

One of the most pressing needs for enhanced commu-
nication protocols come from multi point applications,
which involve the one-to-many communication model
(i.e., multicasting operation). Such applications cover
a very wide spectrum, including software distribution,
replicated database update, command and control sys-
tems, audio/video conferencing, and distributed inter-
active simulation.

Multicasting is an efficient communication tool for
use in multi-point applications. Many of the proposed
multicast routing protocols, both for the Internet and
for ad hoc networks, construct trees over which infor-
mation is transmitted. Using trees is evidently more
efficient than the brute force approach of sending the
same information from the source individually to each
of the receivers. Another benefit of using trees is that
routing decisions at the intermediate nodes become
very simple : a router in a multicast tree that receives
a multicast packet over an “in-tree” interface forwards
the packet over the rest of its “in-tree” interfaces.

Multicast routing algorithms in the Internet [3] can
be classified into three broad categories : 1) Shortest



Path Tree algorithms [4], 2) Minimum Cost Tree algo-
rithms [5], [6] and 3) Constrained Tree algorithms [7],
[8]. In general, the two fundamental approaches used
in designing multicast routing are: to minimize the dis-
tance (or cost) from the sender to each receiver individ-
ually (shortest path tree algorithms) and to minimize
the overall (total) cost of the multicast tree. Prac-
tical considerations lead to a third category of algo-
rithms, which try to optimize both constraints using
some metric (minimum cost trees with constrained de-
lays). Majority of multicast routing protocols in the
Internet are based on shortest path trees, because of
their ease of implementation. Also, they provide mini-
mum delay from sender to receiver, which is desirable
for most real-life multicast applications. However, in
some more recent protocols, like PIM [9] and CBT [10],
an attempt is made to minimize the state stored in the
routers.

Multicasting in ad hoc networks is more challenging
than in the Internet, because of the need to optimize
the use of several resources simultaneously. Firstly,
nodes in ad hoc networks are battery-power limited.
Furthermore, data travels over the air and wireless re-
sources are scarce. Secondly, there is no centralized ac-
cess point or existing infrastructure (like in the cellular
network) to keep track of the node mobility. Thirdly,
the status of communication links between routers is
a function of their positions, transmission power lev-
els, etc. The mobility of routers and randomness of
other connectivity factors lead to a network with a po-
tentially unpredictable and rapidly changing topology.
This means that, by the time reasonable amount of
information about the topology of the network is col-
lected and a tree is computed, it may be only useful
for a very short duration, if at all.

Work on multicast routing in ad hoc networks gained
momentum in the mid 90s. Some early approaches to
provide multicast support in ad hoc networks consisted
of adapting the existing Internet multicasting proto-
cols; for example, the Shared Tree Wireless Network
Multicast [11] protocol. Other protocols have been
designed specifically for ad hoc networks; for exam-
ple ODMRP [13], AMRIS [14], CAMP [15], and oth-
ers [16], [17], [18], [19], [20], [21], [22], [23], and [24].
ODMRP is a mesh based, on-demand protocol that
uses soft state approach for maintenance of the mes-
sage transmission structure. It exploits robustness of
mesh structure to frequent route failure and gains sta-
bility at the expense of bandwidth. The Core Assisted
Mesh Protocol (CAMP) attempts to remedy this exces-
sive overhead, while still using a mesh by constructing
a core for route discovery. AMRIS constructs a shared
delivery tree rooted at a node, with ID-numbers in-
creasing as they radiate from the source. Local route

recovery is made possible due to this property of 1D
numbers, hence reducing the route recovery time and
confining route recovery traffic to the region of link
failures.

One common characteristic of most of these ap-
proaches is that they react to a link failure; i.e., they
act after a link has already failed, causing a significant
delay in route recovery. In our work, we have explored
the possibility of using a set of precalculated alter-
nate trees using the information (about network topol-
ogy) acquired to calculate the first tree. When a link
breaks, another tree, which does not include that link,
can be immediately utilized. This often leads to signif-
icantly reduced delay, whenever a viable backup tree
is available at the time of failure of the current tree.
In particular, and possibly most importantly, it allows
communication of real-time traffic. This approach is
inspired by Alternate Path Routing (APR), which has
been used in the Internet to alleviate congestion and
to improve QOS. Incidentally, performance gain that
can be obtained from use of APR in ad hoc networks
for unicast routing has been investigated recently [25].

When the network is reasonably stable, like the In-
ternet, the gain in efficiency due to multicasting (when
compared to flooding) more than offsets the cost of
route discovery and maintenance. However, as the av-
erage velocity of nodes increases, so does the cost of
route discovery and maintenance. This means that
for any mobility pattern, there is an average velocity
of nodes beyond which multicasting is no longer effi-
cient when compared to flooding. This velocity is much
higher for our scheme, when compared to other tree-
based schemes, because our use of the backup trees. We
optimize the cost of the multicast tree along with min-
imizing the mutual correlation of failure times of each
pair of trees under the constraints of partial knowledge
of the network.

2 (Goals and essential ideas

The goal of this work is to improve multicasting per-
formance in ad hoc networks through efficient use of
the available knowledge of the network. The basic idea
is that if we are able to compute multiple backup mul-
ticast trees with minimal overlap, we could use them
one after another to reduce the number of service in-
terruptions. This would also improve the mean time
between route discovery cycles for a given interruption
rate and hence reduce the control overhead and the
rate of data loss. At the same time, we want to keep
the cost of transmission low (see Section 5 for a defini-
tion of cost). The mobility of ad hoc networks requires



that we use very little time for tree computation and
hence it is important for the algorithms to be of low
complexity.

2.1 Dependence of a set of trees

This method of using one tree after another will be
effective if the trees to be used as backup last for a
significant amount of time after the previous trees fail.
This means that the failure times of the trees should be
independent of one another. If we assume that nodes
move independently of one another, then having no
common nodes (and hence no common edges) would
make the trees fail independently of one another.

However, in the case of ad hoc networks, where the
average degree of a node is not high, we expect not
to find completely independent trees in many cases.
Hence the schemes we develop should concentrate on
minimizing the dependence between the failure times.
The dependence of a pair of trees is defined as the
correlation of the failure times of the two trees. Given
a pair of trees, their dependence relies on the structure
of each of the trees, apart from the number of common
nodes and edges.

Dependence of a pair of trees is a complicated func-
tion of the mobility pattern of the nodes. Hence a prac-
tical way to compute independent enough trees would
be to discourage common edges and nodes among the
trees. Intuition suggests that having a common edge
is much worse (causes more dependence in a pair of
trees) than having a common node. It is important to
understand how much dependence is caused by a com-
mon node, when compared to a common edge. This is
done here by a probabilistic analysis to find the correla-
tion of the failure times of two edges sharing a common
node. For the sake of this analysis, we use the following
assumptions about the network in question:

¢ nodes are distributed uniformly over the area of
the network;

¢ direction of motion of each node is uniformly dis-
tributed across all angles, is independent of other
nodes, and does not change after initial selection;
and

¢ the velocity is distributed uniformly between 0 and
an upper limit (say V) and does not change after
initial selection.

The details of the analysis are given in Appendix A.
The following are the main conclusions of the analysis:

¢ If all the nodes move with the same constant ve-
locity, as we would expect when most users are

walking or driving along roads or highways, hav-
ing a common node does not cause any dependence
between two trees.

¢ If the nodes’ velocity is uniformly distributed over
[0,15m/s]! and the range of transmission is 76.5m
2. we find that the correlation between the failure
times of two adjacent links is 0.172. Hence, under
this kind of mobility pattern, it is important to
minimize common nodes between trees in addition
to minimizing common edges, in order to keep the
failure times as independent as possible.

2.2 Dependence vs. the lifetime of the

trees’ set

As stated before, the goal is to compute trees in such
a manner as to maximize the time until the last tree
fails. The total time for which a system lasts depends
on the individual failure times of the trees used and
their independence. If a tree has greater number of
links, it is likely to fail faster. On the other hand, if
trees have to be maximally independent, they might be
less efficient and contain more links, as compared with
the case in which some overlap is allowed. Hence the
trees that we compute should not be so independent,
as to make them fail very fast and hence reduce the
total system time. This is an important tradeoff and
is discussed in Section 6.4.

2.3 Mechanism to replace trees

Once we compute a set of backup trees and start mul-
ticasting, we need to replenish the backup tree set in
such a way as to maintain some quality of service, i.e.,
to maintain the probability of interruptions below some
threshold. This means that we need to compute new
trees by the time the probability of failure of the cur-
rent set of trees rises above a given threshold. If the
sender has an estimate of the time when this will hap-
pen, it could initiate the route discovery process at such
a time, T', as to allow for the route discovery and tree
computation to be completed in time. In what follows,
we propose one way to estimate T given the mobility
pattern of the nodes.

It is possible to estimate the probability of interrup-
tion occurring before given time or after failure of the
first n trees, if we have knowledge of the mobility pat-
tern of the nodes. This estimation is illustrated (via

1Roughly, the speed of 35 mph
2Roughly, the range of a wireless LAN interface



simulations) in Section 6.5. If the estimation for prob-
ability is too high, the scheme will resemble a link state
multicast protocol, incurring extraneous cost, while if
it is too low it, will be too reactive, leading to inter-
ruption of the multicasting service.

Let average time for route discovery be Trp and let
the average time for computing the set of n trees for
a multicast group size m be Ty, . Let Fy ., (p) be the
time, since failure of first n trees, at which probabil-
ity that all remaining trees will fail increases above p
(finding this function is illustrated in Section 6.5). Let
Pr be the threshold below which we desire to keep
probability of failure at all times.

Initially, set the estimate of T' = Fy ,, (Pr) — Trp —
Tpnn. At the time when nt? tree fails, update estimate
Of T = Fn,m(PT) - TRD bt Tm,n

At time T after the most recent tree failure (or pre-
vious route Discovery, if no tree has failed since then),
another cycle of route discovery should be started. If
at the time of failure of the nt® tree, T is estimated
to be negative, new route discovery cycle should be
started immediately. Thus the probability of interrup-
tion to multicast communication is not allowed to rise
above Pp, hence maintaining desired level of quality of
service.

2.4 Incorporating ITAMAR into an ex-

isting routing protocols

ITAMAR is a way of computing a set of trees, such
that they are independent. Hence it can be easily used
on top of a suitable unicast layer, which provides route
discovery. For example, consider the Dynamic Source
Routing (DSR) protocol, a unicast protocol for ad hoc
networks. In this protocol, in response to a single route
discovery as well as through routing information from
other packets overheard, a node may learn and cache
multiple routes to any destination. This way, when one
of the paths fails, the sender uses another cached route.
Knowledge of network obtained from route discovery
can be increased by using “Diversity Injection” [27].
Also, once the sender discovers paths to all receivers,
one of the algorithms we propose can be used to com-
pute and maintain several multicast backup trees. As
a matter of fact, the mechanism required to switch be-
tween trees in the event of link failure is already avail-
able in DSR.

3 Network model

The ad hoc network is represented via a graph (V, E),
where V is the set of nodes and FE is the set of edges.
The network is assumed to be two dimensional and the
mobile hosts are represented by nodes of the graph.
An edge between any two nodes is present whenever
the two nodes are able to communicate directly with
one another. Such nodes are sometimes referred to as
neighbors. The total number of edges in the graph is
denoted by L, i.e., L = ||E|| and the sender node is
denoted by O (signifying that the node is the origin
of the data). V1 (V1 C V) is the set of nodes in the
multicast receiver group.

We assume that O has some knowledge of the graph
topology from route discovery. E2 is the set of all edges
in the graph that exist according to O’s current view of
the network, and thus (V 2, E2) are the nodes and edges
that belong to all these paths. The goal of this study
is to find methods of computing a set of trees T'1, T2,
T3 .. from O to V1 in this graph G = (V2, E2), while
minimizing the dependence of their failure times. As
is usually the case with multicast trees, T'1 and T2 are
directed (though the links of the graph are assumed
to be bi-directional); i.e., associated with each link 4
there is a node at which the link begins O; and a node
at which it ends D; - the origin and the destination of
the link.

In the schemes described below, the set of all edges
in the graph along with a quantity called cost of each
edge is called the cost function of the graph. We ex-
tensively use Dijkstra SPF algorithm, which takes the
cost function and incidence matrix of the graph as in-
put and computes the shortest path tree from a given
source to the given set of receivers.

4 Schemes for computing maxi-

mally independent trees

As explained before, the goal of this study is to de-
velop schemes to efficiently compute a set of trees,
whose failure times are minimally correlated. Under
the assumption that mobility of a node is independent
of other nodes, this condition translates to the trees
having minimum number of common nodes and edges;
with common edges being more undesirable than com-
mon nodes (from analysis in Appendix A).

There are two ways of using the backup tree set in
the event of a link failure : 1) replace the whole tree
being used currently by a backup tree, if available, or



2) determine which of the receivers are disconnected
because of this link failure and replace or augment the
paths to those nodes by backup paths.

4.1 Computing backup trees

Three ways of finding sets of disjoint multicasting trees
from a sender to a group of receivers have been studied
in our work. The trees to be found are referred to as
T1, T2, and so on. T'1 is intended to be used at the
start and the others are to be used as backup.

4.1.1 Matroid Intersection Algorithm (MIA)

The Matroid Intersection Algorithm (MIA) [28], [29],
[30] can be used to find two maximally independent
spanning trees on any given graph (i.e., spanning trees
with minimum possible number of common edges),
such that total cost of the two spanning trees is mini-
mized. The two obtained spanning trees are called J1
and J2. Given a sender, call it the source node, and a
set of receivers, two multicasting trees T1 and T2 are
obtained on graphs J1 and J2, respectively, using the
Dijkstra SPF algorithm.

Matroids and Spanning Trees

Let E be a finite set and I be a family of subsets of
E, called “Independent” sets. A subset system M =
(E,I) (the finite set E together with the collection I of
subsets of E) is called a matroid if the following axioms
are satisfied:

1.0el
2.ifJCJel, thenJ €1

3. for every A C E, every maximal independent sub-
set of A has the same cardinality.

Example 1: Let E be the set of all edges in a graph
G and let I be the family of subsets of E satisfying the
condition that none of them contains a circuit of the
graph. Hence independent subsets of this graph are all
subsets of trees in this graph.

Example 2: Let E be the set of all edges in graphs
G and G’ (Figure 1), where G’ is a copy of G (edge €}
is a copy of e1, and so on). Two matroids, which can
be defined on this set, are:

1. My = (E, L), where an “independent” set is a
union of subsets of trees of G and G’. For example,
an independent set in the collection I; could be
{e1,€3,e3,€4,€5, €5, €%, e5} and a set which would
not belong to I> would be {e1,eq,e7,e5} since it
has a circuit in it.

2. M, = (E, ), where an “independent” set is one
which does not have both copies of any of the
edges. An example of an independent set in Iy
would be {ej,e},e;} and a set which would not
belong to I> would be {e1, e}, €] } since it contains
both copies of e;.

Hence if a subset of E belongs to both matroids de-
fined above, it will have to be a union of 2 trees, one
in G and the other in G’. Moreover, the copy of an
edge that belongs to the tree in G should not belong
to the tree in G’. This observation indicates that when
two edge disjoint trees are possible in a graph G, the
set belonging to both the collections I; and I and hav-
ing the maximum possible cardinality will be the union
of two disjoint spanning trees. Hence the problem of
finding two independent forests in the graph can be
thought of as finding a maximum cardinality common
independent set of the two matroids defined above.

The Matroid Intersection Algorithm (MIA)

In this algorithm, we start off with a set J which
belongs to both I; and Iy, say the empty set (Refer to
Example 2 above for the definition of I; and I).

Then we repeatedly increase the size of J with
the help of an auxiliary directed graph G =
G(M1,M2, J,w',w?) constructed using some rules.
The variable w! and w? determine the weight splitting.
These are obtained from the weight splitting variables
of the previous step in the algorithm, using the rules of
the algorithm and initially starting with w' = w and
w? = 0.

G has a node set EU {r, s} and arcs:

e es for every e € E \ J such that JU {e} € I1;

e re for every e € E'\ J such that JU{e} € I5;

ef forevery e € E\ J, f € J such that JU {e} ¢
L, (Ju{eh\{f} € I;

fe for every e € E\ J, f € J such that JU {e} ¢
L, (JU{eh \ {f} € I;

The costs of arcs of G, pyy, are defined by (cig de-
notes maz{w! : e ¢ J,JU {e} € I;})

e p.s = wj —w! for each M1 arc es with e ¢ J
e p.s = wi — w? for each M2 arc re with e ¢ J

® pes = —wy + w} for each M1 arc ef with e ¢ J
and feJ

 pes = —w; + w} for each M2 arc ef with e ¢ J
and feJ



If there exists an (r,s) dipath in G, then J is not
maximum; in fact, if r, el, fI, ..., em, fm, em+1, s
is the node sequence of a chordless (r, s)-dipath, then
JA{el, f1,...,em, fm,em+1}in I[; NI;. If there exists
no (r, s) dipath in G, then J is maximum (see [29] for
aproof). JA{el, f1,...,em, fm,em+ 1} is defined as
JUu{a N\ At \{fm} Uemsr

Weighted Matroid Intersection Algorithm
Set k= 0;
Set Jp = 0;
Let w! = w,w? =0;
While Ji, is neither M 1-basis nor an M 2-basis

{

Construct G(M1, M2, Jy,w',w?);

Find least weight directed path from r to v
in G of cost d, for each v

For all v € E, let o, = min(d,,ds) and

replace wl by wl — o,, w2 by w2 — o,

Construct G(M1, M2, Jy,w',w?);

If there is an (r, s)-dipath in G

{

Find a least weight (r, s) dipath P having
as few arcs as possible;

Augment Ji, on P to obtain Jgy1

Replace k by £+ 1

}

else
{ Choose J = J, and stop }

}

In the above algorithm, Dijkstra’s SPF algorithm
could be used to find the minimum weight paths.

Maximal vs. Maximum: When it is not possible
to have two completely edge-disjoint spanning trees,
the above algorithm gives two trees edge disjoint trees
with maximal cardinality (These might not be span-
ning trees, as adding any more edges might require
overlap between the two trees). Hence now to com-
plete each tree, we arrange the links in the other tree
in ascending order of their costs and keep adding links
to the first tree (omitting the ones that would form
circuits) until the first tree is complete and vice versa.
Note that multicast trees generated in this way may
not have minimum possible number of common edges,
though the spanning trees do have this property. Also,
note that this scheme can be used only to obtain one
backup tree, because the problem of finding intersec-
tion of 3 matroids is NP-Hard [31].

Figure 2: A portion of the sample Auxiliary Digraph

Example

Consider the graph G in Figure 1. The problem is
to find two disjoint spanning trees. Firstly we need to
verify that this is possible. This is easily done by try-
ing different combinations of 4 edges each; we need four
edges to form a tree for a graph with 4 nodes. One ex-
ample would be the two following trees: {e1,es,es,e7}
and {eg, €4, €5,€3}.

The effectiveness of arriving at a pair of disjoint
trees using the Matroid Intersection Algorithm can
be seen by going through the process for this simple
graph. Suppose we start by building just a tree T}
first and then removing links of 77 from the set of

e 8 g g
8 g

8§ 8 g | €
8 . €

& ) G g
G G

Figure 3: Non-maximal trees obtained by simple enu-

meration (non-maximal J)
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Figure 4: Calculated spanning trees (maximal J)

edges and then trying to build another tree T5. We
would get the following two sets (Figure 3).

Tl = {61762763764}
T2 = {65766767}

Adding e; to T will create a circuit and hence is
not acceptable. Now we would like to move some edges
from T3 to T3 and add some new ones to 17, so that it
still remains a tree.

Constructing an auxiliary digraph G (See Figure 2)
helps us to find the edges which are to be removed
and those which are to be added. In the terminology
used above:

E={e,..,es,€,..,e5}
Current J = {e1, e2,€3,€4,€5,€5,€4}
G has the node set EU {r,s}. e€ S\ Jand f € J.

Its edges are:

e from rule 1, edges of the form es : e|s,e}s, ess
since e, e}, and ej combined with T3 form a tree;
i.e., JU {e} € I1

e from rule 2, edges of the form re : reg,resg; J U

{G}GIQ

o from rule 3, edges of the form ef
€5€4,€5€1,€5€2, €6€1, €6€3, €6€4, €7€1, €7€2,
esen, €ge3, €4€%, €467, eger, €5eg;

Julet ¢ I, (Ju{eh\{f} e h

o from rule 4, edges of the form fe

! ) ) 1) ! ! ! .
€1€1,€2€9,€3€3,€4€,4,€5€5, €5€6, €767,

JU{et ¢ I, (JU{eh\{f} € I

Now we need to find an (r,s) dipath in this graph.
One of the pathsis P = {r, e}, €, e5, e1,€1 }. Doing JA
P we obtain the new J as {es,e3, e4,€5,€5,€, €1, €4},

which is a set of two disjoint spanning trees (Fig-
ure 4) and hence we are done. (As mentioned be-
fore J A {el,f1,...,em, fm,em + 1} is defined as

JU{a N\ {fi}-\MFm} Uemir.)

4.1.2 Shortest Path Heuristic (SPTH)

Ag described in Section 3, the set of all edges in the
graph along with a quantity called cost of each edge is
called the cost function of the graph. The Dijkstra SPF
algorithm takes the cost function and incidence matrix
of the graph as inputs and computes the shortest path
tree from a given source to the given set of receivers.

In the Shortest Path Heuristic (SPTH) scheme, the
first tree, T'1, is obtained using the Dijkstra SPF algo-
rithm; i.e., T'1 is the shortest path tree from the source
to the set of receivers. The cost function of the graph
is modified after computing the first tree in the follow-
ing manner: the costs associated with edges which are
present in T'1 are now increased by an amount called
the Link Weight and the costs associated with edges
which share a common node with T'1 are now increased
by an amount called the Node Weight. T2 is computed
using the original incidence matrix of the graph and
this new costs. Since Dijkstra SPF algorithm tries to
use edges of the lowest cost, this way of modifying the
costs discourages use of the edges already used in T'1
or the edges with a common node with T'1 (the extent
of the discouragement depends on the values of the
parameters Link Weight and Node Weight). Computa-
tion of subsequent backup trees is carried out in a man-
ner similar to the computation of the second tree, by
discouraging the use of links and nodes already used in
previous trees by further modification of costs. Hence
use of nodes present in both trees is discouraged more
than nodes used in just one of them.

Shortest Path Heuristic (SPTH) Algorithm

T1 = Dijkstra_Algorithm(G, Cost, Source, Receivers)

Initialize Costl to be equal to Cost for all edges in
G

For each edge i in T'1
{ Costl; = Cost; + LinkWeight }
For each node in T'1
{
For each link in G which is incident on this
node in 71
{ Costl; = Cost; + NodeWeight }

}

T2 = Dijkstraalgorithm(G, Costl, Source, Receivers)



4.1.3 Low Cost Heuristic (LCH)

The Low Cost Heuristic (LCH) algorithm is designed
to reduce the total number of transmissions in the mul-
ticast trees. The idea is that a single channel wireless
network is a broadcast medium, i.e., when a node trans-
mits a packet, all of its neighboring nodes can receive
it. Hence to minimize resources used, we should reduce
the total number of transmissions required to send data,
over the multicast tree. To achieve this objective, in
Low Cost Heuristic each of the trees are constructed
path by path. Computation of a tree given an initial
cost function is done in the following way: A path to a
node is computed, the cost function is modified, a path
to next node is computed and added to the partial tree
already constructed, and so on. The modification of
cost function in between computing paths to each re-
ceiver is done in such a way as to encourage use of
minimum number of additional transmissions; i.e., if a
link already carries the multicast data , its transmis-
sion cost is decreased to a very small value. There will
be several links outside the current partial tree with
this property, because of the broadcast nature of ad
hoc networks.

The cost function taken at the beginning of compu-
tation of second tree is a modified version of the orig-
inal cost function of the tree. This is done in order to
discourage use of links and nodes already used in prior
trees; for details of modification look at description in
Shortest Path Heuristic. Computation of subsequent
backup trees is carried out by discouraging use of links
and nodes already used in previous trees by modifica-
tion of the cost function.

Low Cost Heuristic Algorithm

Initialize Cost’ to Cost
For each receiver j
{
P; = Dijkstraalgorithm(G,Cost', Source, j)
For each edge in P1® --- ® P;
{Cost, =0}
For each node in P1® --- @ P;

For each link in G which is incident on
this node in P1® --- ® F;

{Cost, =€}
}
}

TI=P P& ---& Py
Initialize Costl to Cost
For each edge i in T'1
{ Costl; = Cost; + LinkWeight }
For each node in T'1

For each link in G which is incident on this

node in T'1
{ cl; = ¢; + NodeWeight }
}

Initialize Cost’' to Costl
For each receiver j
{
P} = Dijkstraalgorithm(G, Cost', Source, j)
For each edgein P'1®--- @ P]
{Costl; =0}
For each node in P'1®--- @ P]f
{
For each link in G which is incident on
this nodein P11 @ --- @P;

{cli:e}
}
}

T2=P ®P,@--- ®P}

4.2 Computing backup paths

The Independent Path Algorithm (IPA) computes trees
such that paths to each receiver in these trees are dis-
joint, while allowing paths to different receivers to over-
lap within trees. A lot of work has been done on uti-
lizing path independent trees (trees in which paths to
each receiver are independent of one another) in the
context of Alternate Path Routing. Using the Inde-
pendent Path Algorithm we investigate the usefulness
of this concept in ad hoc network multicasting.

The problem with using trees as backup is that even
if just one link in the tree fails, we need to replace the
whole tree by another, when most of the first tree may,
in fact, be still intact. Instead, in the Independent
Path Algorithm, we start off with a tree and then for
each receiver, have a set of backup paths, which are
maximally disjoint from one another and from the path
to the receiver in the first tree.

The first tree can be computed using either Dijkstra
SPF algorithm or using the Low Cost Heuristic (if cost
is critical). For each receiver, a path independent of
the original path to the node in the first tree is com-
puted by modifying the cost function (as is done in the
Shortest Path Heuristic) in order to discourage use of
already used nodes and edges.

This method differs from the backup tree methods
not only in that it replaces only the damaged part of
the tree (local repair), but also in that the backup path
to any given receiver can overlap with the rest of the
first tree (apart from what is being used to transmit
data to that receiver). It is more likely to find paths
independent from a given path rather than one inde-
pendent from a given tree. As in the previous two
methods, computation of subsequent backup trees is



carried out (similar to what is done in the case of the
second tree) by discouraging the use of links and nodes
already used in previous trees through modifying the
cost function.

Independent Path Algorithm

T1 = Dijkstraalgorithm(G, Cost, Source, Receivers)

Initialize Costl to equal Cost
For receiver node k

{

For link ¢ in path (in 7'1) node &
{ Costl; = Cost; + LinkWeight }
For each node in path (in 7'1) node k

{

For each link in G which is incident on
this node in T'1
{ cl; = ¢; + NodeWeight }

}
Backup Path to k is
Dijkstraalgorithm(G, Costl, Source, k)

}

5 Performance comparison crit-

era

5.1 Cost

A number, Cost ¢;, is associated with each link 7 in the
graph. As in traditional networks, it could be chosen
to be inversely proportional to the link capacity, pro-
portional to the current load on the link, the delay of
the link, etc, or some combination of these parameters.
Hence it changes with the changes in the network, such
as congestion. For example, the Cost of a failed link is
infinite. The choice depends on what one would like to
minimize while communicating information in a given
multicast group.

The Cost of a tree is defined as the sum of Costs of
all the links in the tree. The Cost of a set of trees is
defined as the sum of Costs of all the trees in the set.

For a given multicast group size, the average Cost of
a scheme is the weighted average of the Cost of all the
trees being computed, weighted by the average amount
of time each of the trees is being used; i.e., it is

n
i1 Costireci* Tireei
%1 Tireei

Average Cost = z

5.2 Dcost

The idea behind defining Dcost is that in a single chan-
nel wireless network, the MAC layer is naturally of
broadcast type. In other words, when a node trans-
mits, all its neighbors are able to listen to it. Hence
the cost of transmission of information to all neighbors
from one node is the same as the cost of transmission
to the most “expensive” neighbor.

To find Dcost, we divide up the tree graph T into
many trees T7 with the following property: if an edge
i belongs to 7 for some j, all edges in T with the same
origin node as i (denoted by O;) also belong to 77 and
all other edges that belong to T9 have the origin node
O;. With each TY, we associate a number dc; which is
{maz c; : i € T?}. The Dcost of the tree T is then
defined as }_ . dc;. The Dcost of a set of trees is defined
as the sum of all Dcosts of the trees in the set.

Just as in the case of the Cost, the average Dcost of
a scheme is the weighted average of the Dcost of all the
trees being computed, weighted by the average amount
of time each of the trees is being used; i.e., it is

_ B7q Dcostireci* Tyreei
Average Dcost = 5L P .

5.3 Time of failure or mean time be-

tween interruptions

The time of failure of a tree is the minimum time by
which at least one of the links of the tree fails and the
time of failure of the system is the minimum time at
which all paths to at least one of the multicast receivers
fail in the first and in all the backup trees.

We use the terms system time and the mean time
between interruptions, Interchangeably, since an inter-
ruption occurs whenever there is a failure of all the
trees triggering re-computation of trees.

5.4 Probability of usefulness

The probability that any of the trees will be used is de-
fined as the probability of usefulness. It is that fraction
of the total number of trials for which failure time of
the system is greater than failure time of the first tree.

5.5 Increase in mean time between in-

terruptions

The increase in mean time between interruptions due
to backup i8 Tsystemn — Ttree1- Here Toystem is the time
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6.1 The simulation environment

N nodes are uniformly distributed over a square area
of size L meters by L meters. Each node can exchange
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information with any other node within R meters of
itself. At time 0, with probability 0.5 they pick a des-
tination point (which is also uniformly distributed in
the area) and start moving in that direction with veloc-
ity V [m/s] and with probability 0.5 they wait in their
positions for a random amount of time (uniformly dis-
tributed over [0,5 sec]) before choosing a destination.
After reaching their destination point, they stop with
probability 0.5 in their positions for a random amount
of time (uniformly distributed over [0,5 sec]), choose
another destination point and start moving in the new
direction with probability 0.5.

The nodes were allowed to move according to the
above mobility model until the multicast tree and all
backups had failed and the failure times of various
schemes were recorded. The data presented here are
averaged over 500 different trees (each under 25 re-
alizations of the mobility pattern) for each multicast
group size. In all the graphs in this section, SPTH
refers to the Shortest Path Tree Heuristic, LCH refers
to the Low Cost Heuristic, IPA refers to the Indepen-
dent Path Algorithm, and MIA refers to the Matroid
Intersection Algorithm.

6.2 Results for one backup tree

Simulation results in this section are for a 50 node net-
work in a square area of size 700m by 700m with nodes
moving at 40[m/s] and with the transmission range of
140m.

Figure 5 shows that the average Cost of trees used
is not very different for the various schemes. However,
from Figure 6 we see that the average number of trans-
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missions required per packet, the Dcost, is significantly
higher for the Matroid Intersection Algorithm, while
the Dcost curves for other three schemes are relatively
bunched together. This is because of the fact that the
Matroid Intersection Algorithm, in the process of mak-
ing the two spanning trees edge disjoint, causes links
incident on any given node to be distributed among
the two spanning trees. Hence, there is a smaller num-
ber of links incident on any given node in each of these
spanning trees, when compared to the whole network.
Because of this, each multicast tree (which is computed
on these spanning trees as described in section 4.1.1)
has smaller number of outgoing links to choose from at
each node and hence has greater number of transmis-
sions.

If we were using just one tree, we would expect that
the mean time between interruptions be reduced with
an increase in multicast group size. This is so, since
increase in multicast group size increases the size of the
tree and hence increases the probability that at least
one of the links fails by any given time. However, while
using backups, the total time for which the system lasts
may increase with an increase in multicast group size
due to the increase in probability of usefulness. This
is because even though the first tree fails faster, the
backup trees are available more often, hence increasing
the total time, on an average, for which the the set of
trees lasts. The effect of these two factors can be seen
in Figures 8 and 7. From these figures, we can rank
the schemes based on the increase in the mean time
between interruptions, because of the backup trees, in
the following order IPA, MIA, LCH and SPTH, with
the IPA scheme performing best. The two trees in LCH
are expected to have greater independence than the
SPTH, because by encouraging several links from one
node to be included in the first tree, we make the tree
occupy a smaller “area”, hence leaving greater space for
the other tree to be formed without having to overlap
with the first one.

MIA ensures that the trees are almost edge disjoint,
by computing the two trees simultaneously, while the
SPTH and LCH compute the first tree before the sec-
ond one and hence losing out on the possibility of com-
bined optimization. IPA lasts much longer than other
schemes, especially for larger multicast groups, because
of the fact that it includes local repair. Firstly, since in-
dependence means that the two paths to each receiver
are independent of one another, the average depen-
dence does not increase much with the size of the mul-
ticast group like the other schemes. Secondly, since we
do local repair, if one part of first tree and one part of
second tree have failed, the system can still be working
by some combination of the two trees, hence increasing
the system time.



Number of | SPTH | LCH | IPA
backup trees
1 0.100s | 0.142s | 0.297s
2 0.058s | 0.081s | 0.105s
3 0.056s | 0.079s | 0.132s

Table 1: Increase in mean time between interruptions

due to nt* backup tree

Probability of usefulness decreases with an increase
in dependence between the two trees. For the tree
based algorithms, dependence between the two trees
increases with increase in multicast group size, because
each tree occupies more “area.” On the other hand, as
the size of a tree increases, its failure time decreases.
For this reason, given that first tree fails, it is very
likely that the rest of the network is still intact and
hence the second tree is intact with higher probability.
These opposing factors can be seen at play in Figure 9
especially for the SPTH curve. Despite the above argu-
ment, the LCH curve does not change much, because
the two factors balance each other out. In the case of
MIA, the two trees are almost edge disjoint, irrespec-
tive of the size of the group and hence only the second
factor dominates. Same is the case with IPA, because,
as described in the previous paragraph, its dependence
does not increase much with group size.

Results for two and three backup trees follow the
same trends for various parameters as in the one tree
backup case, but with greater improvements in terms
of probability and mean time between interruptions,
in terms of probability of usefulness, and in terms of
higher cost and Dcost of the trees.

6.3 Improvements as a function of

number of backups

This section presents the performance of the algorithms
as a function of The number of backup trees com-
puted. The Table 1 contains the increase in mean time
between interruptions (averaged over multicast group
sizes) as a function of the number of backups for var-
ious schemes. We see that the IPA results in greater
increase in mean time between interruptions than the
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Number of | SPTH | LCH | IPA
backup trees

1 0.37 0.54 | 0.77

2 0.07 0.12 | 0.12

3 0.03 0.05 | 0.03

Table 2: Increase in probability of usefulness due to

nt? backup tree

other two schemes for any amount of backup used. Sur-
prisingly, we also observe that, for IPA, the improve-
ment in time due to third backup tree is greater than
the improvement due to second backup tree. This is
also true for LCH and SPTH for low multicast group
sizes, where dependence between two trees is still low.

To understand how this might be possible, consider 4
independent, identically distributed random variables
in time: Tby, Tby, Tbs, Tby. They could for exam-
ples of the time of failure of 4 paths from a sender
to a receiver, say P, P», P; and P,. Let the cu-
mulative distribution function (cdf) of Tb; be F(t).
Then, the cdf of time by which two paths fail is F2(t)
(P{max(Tbl,Tbg) S t} = P{Tbl S t, Tb2 S t} =
P{Th <t} P{Th, < t} = F(t) *x F(t)) and so on.
Hence mean time of failure with 7 backup trees is:

f tdgth)) d(F“'l(t))dt
ttTa dat .

Hence, if I; denotes the improvement due to i**
backup, the improvement due to the third backup mi-
nus the improvement due to second backup is:

Iy — I = [, t4E0) (2R (1) + 4F3(t) — 6F2(8))dt

Of the terms in the integral ¢, dt, and AEQ) are all
positive, while 2F (¢) + 4F3(t) — 6F2(t) is positive for
F(t) € [0,0.5] and negative for F(t) € [0.5,1]. Hence
it is possible for the improvement due to third backup
to be better than improvement due to second backup.
In fact, Is — I, is positive for the cdf for failure time of
a single link calculated theoretically in Appendix A.

From Table 2, we observe that the increase in prob-
ability of usefulness decreases with an increase in num-
ber of backup trees. This is an expected result, because
with an increase in n, the probability that at least one
first n — 1 backup trees is available along with the nt®
backup tree at the time of failure of first tree increases.
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6.4 Tradeoff between dependence of a
pair of trees and mean time be-

tween interruptions

This section illustrates that maximum independence
among the trees does not maximize mean time between
interruptions (explanation has been provided in section
2.2). Results in this section are based on the Indepen-
dent Path Algorithm and a 30-node network with node
degree of 6 and one backup tree. The Link Weight and
Node Weight parameters (defined in Section 4), which
regulate the amount of dependence, were set equal to
each other and varied over the range [1,30]. The ef-
fect on the number of common edges, Dcost of trees,
and the mean time between interruptions is shown in
Figures 10, 11 and 12. We see that an increase in
Link Weight/Node Weight increases the average Dcost
of trees monotonically and decreases the number of
common edges (and hence dependence) monotonically.
However, we see that the mean time between interrup-
tions increases first, until Link Weight/Node Weight
value of 2, and then decreases slightly to reach a sat-
uration level shown by the circles. This illustrates the
tradeoff between dependence of a pair of trees and the
total time for which at least one of them lasts (Sec-
tion 2.2). Hence the ITAMAR framework performs
best when some dependence is allowed among the set
of trees, by choosing a relatively moderate value for the
Link Weight and the Node Weight parameters in tree
computation algorithms.
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6.5 Replacing trees

Results in this section are for a 30-node network with
node degree of 6. The curves shown are for multicast
group size of 1,5,10,15,20,25, and 29. To implement
the scheme, the time by which route discovery has to
be redone in order to maintain a low probability of in-
terruptions has to be determined. Figure 13 shows the
probability of interruption occurring after any given
time ¢ measured from most recent route discovery cy-
cle (Fy,y, referred to in Section 2.3). For example, if
we want the probability of interruption to be below
30% at all times, initial estimate of the time by which
we have to redo the route discovery is 0.07 seconds for
group size 1 and 0.17 seconds for group size 29 (Figure
13). Figures 14 and 15 show the probability of inter-
ruption occurring after any given time, measured from
the failure time of Tree 1 and Tree 2, respectively. For
the threshold of 30% for probability of interruption,
updated estimate of the time by which to redo route
discovery at the time of failure of first tree might be
greater than 0 for many multicast group sizes, i.e., we
might be able to wait some more time before start-
ing route discovery (since several curves are below 30%
near t=0). However, at the time of failure of the second
tree, we will have to start route discovery immediately,
if we have not already done so, since probability of in-
terruption is above 30% for t=0, for all multicast group
sizes (Figure 15).
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6.6 Sensitivity analysis

6.6.1 The effect of speed of nodes

Simulations for this set of results were done on a 30-
node network with a node range of 76.5m and node
degree 6. To study the effect of the speed, the speed
of mobiles was set at values 1.8 m/s (walking speed),
18m/s (speed of a car), and 40 m/s (high speed). The
results showed a small decrease in probability of useful-
ness with increase in speed. However, the percentage
increase in the mean time between interruptions was
almost the same for all three speeds (Figure 16).

6.6.2 The effect of node degree

Simulations for this set of results were done on a 30-
node network with a node range of 76.5m and speed
of 18m/s. Average node degree of the network was set
at 4, 6, and 8. We saw a decrease in the average Cost
of trees, which is expected, since an increase in node
degree means that there are more outgoing links from
each node and hence Dcost will be lower. Also, since
there are more links in the network but the same num-
ber of nodes, greater degree of independence is possible
between nodes and hence we saw an increase in % In-
crease in mean time between interruptions (Figure 17).

6.6.3 The effect of the network size

The number of nodes in the network was set to 30, 40,
and 50 nodes. The node degree was maintained at 6,
the range of nodes at 140m, and the speed at 40m/s.
We found that the average Cost of trees increases with
the number of nodes (since average number of links
between any two nodes increases), while the average
Dcost decreases. However the probability of usefulness
does not change much, while the percentage of the in-
crease in mean time between interruptions increases
with the number of nodes (Figure 18).

7 Conclusions

Several heuristic schemes for constructing multiple “in-
dependent” trees were developed, simulated, and their
performance figures were compared in various network
conditions. We found that the Independent Path Al-
gorithm gives much better performance than the other
schemes, with a very small increase in transmission cost
of the multicast trees. We have shown through simula-
tions that in a typical ad hoc network it is possible to
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have working backup infrastructure with high proba-
bility, without much extra expense in terms of the cost
of the trees, the computation complexity, or data col-
lection overhead. Existence of an optimal level of inde-
pendence that allows for maximum mean time between
interruptions has been illustrated through simulation.
The probability of backup being useful is 0.9 for just 2
backup trees computed with no extra control overhead
and mean time between interruptions is increased by
100%-600% (for most multicast group sizes) through
the use of 3 backup trees in a 50-node network. The
simulation results also indicate that, contrary to intu-
ition, the improvement obtained due to additional trees
does not always decrease with an increase in number
of backup trees. Sensitivity analysis for the Indepen-
dent Path Algorithm indicates performance gains over
a wide range of network conditions, with performance
gains increasing with an increase in size of the network
and in node degree, while remaining constant with an
increase in speed. Timely update of the backup tree
set can keep the probability of interruption below a de-
sired value. One way of estimating the time to update
the backup tree set has been proposed and illustrated
for a 30-node network.
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A Dependence of adjacent links

In this Appendix, the dependence between two edges
of a graph with a common node is analyzed probabilis-
tically under the following (usual) assumptions about
spatial distribution of nodes and their mobility pat-
terns:

¢ nodes are distributed uniformly over the area of
the network;

¢ direction of motion of each node is uniformly dis-
tributed in all directions, is independent of other
nodes and does not change after initial selection;
and

¢ the nodal velocity is distributed uniformly be-
tween 0 and an upper limit (say V) and does not
change after initial selection.

Notation and conventions used in the following anal-
ysis are as follows: r is the range of transmission of
each node; ng, n1, and ng are the three nodes in ques-
tion; 1 and 79 are distances between ng and nq, and
between ng and ng, respectively at time t = 0. All
angles are measured in the counterclockwise direction
from the x-axis. The x and y axes are defined along
the line joining ng with n; and the line joining ng with
ng, respectively. Fy is a coordinate frame of reference
fixed to the earth, while F5 is a coordinate frame of
reference fixed to ng and hence moves with respect to



Figure 19: Two edges with a common node

F, with the same velocity as ng. The V] is the speed of
n; in Fy, 6 is the angle of y-axis, 8, 07, and 65 + @ are
angles of velocity of ng, n1, and ng, respectively in F;.
The V; is the speed of n; in Fy, 6y, 6,, and 62 + 8 are
angles of velocity of ng, n1, and ng, respectively in Fs.
Finally, Tbhy and Tbs are times at which transmission
between ng and n;, and transmission between ngand
ng, respectively, fails.

The basic random variables and their distributions
(derived from the assumptions stated above) are:

1. Vi, V{, V, - assumed to be uniformly distributed
over the interval [0,V]

2. 6, 61, 6, and @ - assumed to be uniformly dis-
tributed over the interval [0,27)

3. r1 and ro with values in the interval [0,r] with
P(ri <=12) = f—j (This is because we want the
probability that a node is in a region to be pro-
portional to the area of that region.)

Writing horizontal and vertical components of V;
and of V, (Figure 19), we obtain the expressions for
V1, Ve, 81, and 05 in terms of the basic random vari-
ables:

1 ! 1 !
Vig = Vi cosf; — Vj cosé)

Vig = Vi siné] — Vj sin 6,

Vi = SRV ®
= VR VR 2V cos(B, - 8) ()
6 = tan_l(@) (3)

Vig
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Vi sin8] — Vy sin gy

= tan™'
(Vl’ cosf] — Vj cosb

Voo = Vi + V5 (6)
= VRV -2V cos(By — 6y +6) (T)
Vi
~ (Ve
fs = tan (‘/2:1:) (8)

V, sin ) — V sin(6y — )

= tan!
o (V2’ cos 8}, — Vy cos(6) — )

) 9

It can be seen from the expression for V5 and 65
above that ) always appears along with 6 and that
irrespective of the value of 8], (6}, — ¢) is uniform over
[0,27). Hence we conclude that V, and 6, are inde-
pendent of the random variable 8j,. The only common
random variable between V1, 6, and Vs, 65 is Vj. From
this we deduce that if all the nodes are moving
at the same constant velocity, as we would ex-
pect when most users are walking or driving
along a defined trail, having a common node
does not cause any dependence between the two
trees. Also, we can rewrite the expression for V; and 6,
in the following way without affecting our calculations
in any way (where 6 is a random variable uniformly
distributed over [0, 27)):

Vo =/ Vi + V2 — 2V} Vi cos(6y — ) (10)

V, sinfy — Vy siné
. 11
‘/QICOSQIQ—VOICOSQ) (1)

Finding expressions for the random variables T'b;
and T'b; in terms of the basic random variables is done
by calculating the time taken for the distance between
two nodes to increase beyond the transmission range
7

By = tan~!(

1
Th = V(W_ 71 cos ) (12)
1
1 P
Tbhy = V(W — 1y cosfy). (13)
2

We assume that the basic random variables listed
above are an independent set. Since Vj is the only
random variable common to the expressions between
V1, 61 and Vs, 02 we conclude that it is the random
variable causing dependence between T'b; and Tbs.
Now we have all the necessary expressions to compute
Pr(Th <= t/Vy), for a given value of V. If we hold
V{ and 6] — 6] constant, V; remains constant and only
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Figure 20: T'b as a function of 8; for different values of

1

61 changes. Observe that value of ) completely de-
termines that of #] and that 6, starts at some value
(depending on VY and 8] — 6}), call it 61 _snitiar, for
6y = 0 and increases linearly with 6. Hence the range
and distribution of #; ((0,27) and uniform) is inde-
pendent of V{ and 6] — 6} and hence independent of
1.

Figure 20 shows variation of Th; with #; and r; for
fixed V1. It can be seen from the graph that given rq,
the probability that Tb; < t is the angle 8, at which
the curve corresponding to ry crosses the line Th; = t.
A simple calculation dictates that:

(r + Vit)? — r?

fe = cos™' (1 —
e = cos™ 2V try

) (14)
and the probability that Th; < t is found using the
following expression

Pr(Thy < t/Vi) = / %P(r1 —2)dz  (15)

Considering all the different cases: a) the line Th =
t cuts the curve corresponding to r1, b) the line Tb; = ¢
passes above the curve corresponding to 71 and c¢) the
line Th; = t passes below the curve corresponding to
r1 we obtain the following expression:

INT, Vi<3
Pr(Tby <t/Vi) =4 M2 L INT, <V <2
1, i> 2.

(16)
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Figure 21: Difference between the actual joint CDF of
failure times of two adjacent links and the joint CDF

expected if they were independent

where,

,
INT = 2
T

(r'+Wit)2 —r2_

2Witr! Jdr

(17)

Now to find CDF of V; for a fixed Vjj. Defining « to
be V{/Vy and ¢ to be 8] — 6}, we can rewrite

' cos™!(1 —
|T—V1t|

Vi =Vgv/a2 +1—2acosé (18)

In the above equation, ¢ is uniformly distributed
over (0,27) and a is uniformly distributed over (V/V}).
Defining oy to be V1 /V{, we see that for given a, the
value of oy lies between |a — 1| and o+ 1 (Figure 22).
Also, a; increases monotonically with ¢ for a given a.

We can see that given oy = =z, the ¢ at which
Va2 +1—2acos ¢ equals z is

1+ a® —z?
20

)- (19)

Hence the expression for Pr(a; < z) is found to be

G
1
+/ _¢maw7
la—1| 7

where H(x) is the heavy side step function, fz(z)
is the PDF function of random variable Z, and G =
min(l + a, V/VY).

Brmaz = cos™(

H(z-1)

Prio <2) =37 5
0

(20)
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Figure 22: Minimum and maximum values of a; as a

function of a

Pr(Th, < t/Vy) :/Pr(Tb1 <t/Vi =z)fv, (z)dz
’ (21)
Pr(Th <t)= /Pr(Tb1 <=t/Vy)fv,(z)dz (22)

PT‘(Tbl S t1 n Tbl S t2) ==
/PT‘(Tbl S tl/VOI) *P(Tb2 S tQ/VOI) * fVO(.’IJ)d.’IJ

Figure 21 contains the plot of difference between
PT‘(A <t NnB < t1) and PT‘(A < tl) * PT‘(B < t1)
as a function of ¢; and ¢ and assuming r = 76.5m and
V =15m/s. We see that there is non-zero dependence
between the two links sharing a node. For the mobility
pattern assumed, we find that the correlation between
the two random variable Th; and Tbs is 0.172. From
this analysis we conclude that when velocity of
nodes is a random variable, common nodes in-
duce dependence between the two trees.
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