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Abstract-A tutorial-style framework is presented for understanding the 
current status of adaptive infinite-impulse-response (RR) filters. The paper 
begins with a detailed discussion of the difference equation models that are 
useful as adaptive IIR filters. The particular form of the resulting predic- 
tion error generic to adaptive IIR filters is highlighted and the structures of 
provable convergent adaptive algorithms are derived. A brief summary of 
particular, currently known performance properties, drawn principally from 
the system identification literature, is followed by the formulation of three 
illustrative adaptive signal processing problems, to which these adaptive IIR 
filters are applicable. The concluding section discusses various open issues 
raised by the formulation of this framework. 

I. INTRODUCTION 

A DAPTIVE infinite-impulse-response (IIR) filters are 
contemplated as replacements for adaptive finite- 

impulse-response (FIR) filters when the desired filter can 
be more economically modeled with poles and zeros than 
with the all-zero form of an FIR tapped-delay line. The 
possible benefits in reduced complexity and improved per- 
formance have spawned the adaptive IIR filter efforts of, 
e.g., [l]-[9]. A significant portion of these efforts has been 
spurred by the similarities of the adaptive IIR filtering 
problem and certain system identification problems [6]-[9]. 
The system identification literature has offered a rich trove 
of theoretical results, but, as we will see by the end of this 
paper, their translation to the adaptive IIR filtering prob- 
lem reveals a number of important unanswered questions, 
several of which have not arisen in system identification 
studies. 

This paper is intended to present a readily compre- 
hendable progression from deterministic and stochastic 
identification-style modeling issues pertinent to the output 
error formulation underlying adaptive IIR filtering, through 
a broad categorization of algorithm forms and resulting 
convergence properties, to appropriate adaptive signal 
processing applications. This then permits the succinct 
statement of several open issues that form major future 
directions for adaptive IIR filter research. The hope is that 
those readers interested in adaptive signal processing will 
be encouraged to further beneficial examination of system 
identification and its rich literature. Conversely, hopefully 
those readers interested in system identification will recog- 
nize adaptive IIR filtering as an emerging source of numer- 
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ous problems (and fixes) that challenge their skills. Such an 
objective requires promulgation of a cohesive, relatively 
tutorial perspective with just enough tantalizing detail to 
prompt the readers to continue their study with closer 
examination of the referenced sources. 

The pedagogical structure developed in this paper relies 
on the detailed examination in the next section of the 
pertinent models and associated predictors yielding predic- 
tion errors suitable for use in adapting the predictor 
parameters. A prediction error structure generic to the 
output error formulation underlying adaptive IIR filters is 
carefully revealed as demonstrably different from the pre- 
diction error structure of the more familiar equation error 
formulation underlying adaptive FIR filters. The resulting 
adaptive output error algorithm modifications, relative to 
equation error forms, are produced in Section III from 
both minimization (via gradient descent) and stability the- 
ory viewpoints. Section IV briefly states a number of 
currently available convergence results for various model- 
ing and adaptive algorithm combinations. Section V shows 
how these adaptive parameter estimation algorithms can be 
applied to provide adaptive IIR filters for three particular 
signal processing applications. (Those readers wishing to 
first examine the practical motivation of the parameter 
estimation basis of adaptive IIR filtering can turn directly 
to Section V for study of its representative applications 
and then return to Section II.) Section VI closes the paper 
with a discussion of various open issues raised by the 
preceding sections. Be aware that the originality of this 
paper lies as much in its unifying form as in its detailed 
substance and proceed accordingly. 

II. MODELING AND PREDICTIONERROR 

This section focuses on autoregressive moving average 
with exogenous input (ARMAX) models and the resulting 
prediction errors, which underlie the adaptive parameter 
estimation view of adaptive filtering. The principal message 
is that the modeling choices that can be interpreted as 
useful as adaptive IIR filter structures share a particular 
prediction error characteristic that distinguishes them from 
the prediction errors attributable to models useful as adap- 
tive FIR filters. Forming a meaningful succinct statement 
of this distinction and its adaptive algorithm formulation 
and performance consequences is difficult. In fact, the 
description of this distinction and its consequences is the 
major theme of this paper. In jargon that will be developed 
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in this and subsequent sections, this distinction can be 
described as the presence of an autoregressive (AR) filter- 
ing of the inner product of the parameter error and infor- 
mation vectors in the measurable prediction error associ- 
ated with adaptive IIR filters. This AR filtering is absent in 
the prediction error of adaptive FIR filters. Following 
precedent terminology, models such as those for adaptive 
FIR filters which yield a prediction error that is an inner 
product of the parameter estimate error and information 
vectors (plus, possibly, a sample from an uncorrelated 
zero-mean sequence) are called equation error formula- 
tions. The output error formulation label is attached to 
models, such as those for adaptive IIR filters, which yield a 
measurable prediction error that is an AR filtered version 
of the inner product of the parameter estimate error and 
information vectors (again with the possible addition of an 
uncorrelated, zero-mean sequence sample). To make these 
statements understandable we will first review the model- 
ing and subsequent prediction error of adaptive FIR filter 
forms and then expand this view to more general parame- 
ter estimation forms which we will discover are applicable 
as adaptive IIR filters. 

The general linear process model within which we would 
like to estimate parameters will be restricted in this paper 
to the single-output, two-input difference equation, or 
ARMAX model, 

y(k) = i [a,y(k - i) + biU(k - i) 
i=l 

+ciw(k - i)] + w(k) (2.1) 

where y is the measurable scalar output, u the measurable 
scalar input, and w the unmeasurable scalar input typically 
considered to be a white, zero-mean sequence uncorrelated 
with {u(k)}. Note that the order n is the upper bound on 
the delay line lengths on the right of (2.1) and that various 
parameters can be zero for a particular process. A more 
compact form for (2.1) uses delay operator notation: 

Y(k) = 4C’)YW + BWb(k) 
+c(q-l)w(k) + w(k), (2.2) 

where 

A(q-‘) = a,q-’ + a,q-2 + . . . + a,,q-“, (2.3) 
B(q-l) and C(q-‘) are similarly defined, and 4-j denotes 
a delay operation of i samples, i.e., q-‘y(k) = y( k - i). 
Note that each of these polynomial operators is defined 
without an undelayed term. For clarity this convention will 
be maintained throughout this paper. Use of this nota- 
tional convention leads to the omission of a possible direct 
feedthrough term b,+(k) on the right of (2.1). Such a term 
could be incorporated in the following with the concom- 
itant notational complexity increase. 

The process (2.2) is illustrated in block diagram form in 
Fig. 1 as the plant. The remainder of Fig. 1 illustrates a 
system identification style setup for estimating the plant 
parameters. A model is constructed, driven by theA mea- 
surable signals, and parametrized, perhaps without F  or G  

plant ----------------, 

(unmea~uuroblel / &  j 

--------1 e 

I F 

i-------------i 
model 

Fig. 1. General parameter estimation model. 

or & to reflect the model structural assumptions, such that 
the prediction error e is m inimized. Given Fig. 1, m inimiz- 
ing e can be viewed as completely removing the portion of 
y due to the deterministic, measurable u and whitening the 
portion of y driven by the stochastic w. Thus e should 
equal w. From the block diagram with F, e’, and fi 
time-invariant, polynomial operators defined similarly to 
(2.3) we have that 

(2.4) 

where the q-l arguments of A, B, C, p, e;, and fi are 
suppressed for clarity. Thus e(k) = w(k) if P = B, 6 = 
C + A, and fi = - C. Note that if w = 0, then e = 0 if 
&=B,~=A,and~=Oorif~=B,6=0,andEi’=A. 
(These equivalence statements for e obviously assume ap- 
propriate or zero initial conditions. For arbitrary initial 
conditions e -+ w. Stable cancellations are also assumed.) 
Thus different “structural constraints” in the model can 
lead to different parameterizations. Note that it is these 
various plausible designations of F, 6, and fi in Fig. 1 that 
keep us from replacing them with a single combination of 
a, 3, and C. Note that throughout this paper the carets 
will be used to denote estimated entities. 

Parameter estimators use the value of the prediction 
error e(k) in conjunction with the concurrent “informa- 
tion” in the available signal values u(k), y(k), and j(k) to 
improve the estimates &q-l), G(q-l), and fi( 4-l). The 
form of the parameter estimate correction is strongly de- 
pendent on the functional relationship between the param- 
eter estimate errors and the prediction error. Thus the 
remainder of this section will examine this relationship for ~ 
various special cases of (2.4). This will be done algebrai- 
cally rather than via manipulation of Fig. 1. However, 
reference to Fig. 1 will be made in each of the following 
special cases to emphasize the structural character of the 
underlying parameter estimation problem. 
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A. Equation Error Formulation 

Consider the special case where C( 4-l) = 0, which re- 
duces (2.2) to 

y(k) = A(q-‘)y(k) + B(q-‘)u(k) + w(k). (2.5) 
Since the white, unmeasurable w is unpredictable, (2.5) is 
“adequately” modeled by 

j(k) = a(q-l)y(k) + B(q-l)u(k) (2.6) 
with a and b dimensioned just as A and B as in (2.3), e.g., 

A( q-1) = Li,q-’ + ci,qP2 + . . . + ii,q-“. (2.7) 
The model (2.6) is adequate in the sense that if a = A and 
h = B then the prediction error 

e(k) = .I@)  -B(k) (2.8) 
is whitened and equals w(k). Our  interest is in the form of 
the prediction error of (2.8) which can be written as 

e(k) = i(q-‘)y(k) + B(q-‘)u(k) + w(k) (2.9) 
where 

A”( q-l) A A( 4-l) - a( q-l) (2.10) 

and 3 is similarly defined. Throughout this paper the tilde 
will be used to denote the error of the estimated entities as 
in (2.10). For comparison with subsequent prediction error 
forms we will write (2.9) as 

e(k) = [O - 81TX(k) + w(k) = BTX(k) + w(k) 

(W or 
where 

e(k) = A(q-‘)b(k) -B(k)] 
+ [A(~-‘1 - &d]-J(k) 

and 

0 = [a,, a2;.‘,a,, bl, b2,-..,bnlT (2.12) 

8 = [Lil,~2,...,~n,i)l,i)2,...,i)n]T (2.13) 
or 

+ [ B(q-‘) - A( q-l)] u(k) + w(k) (2.16) 

4-w(k) 

X(k) = [y(k - 11, y(k - 2);. .,y(k - n), 

= a(q-‘)9(k) + B(q-‘)u(k) + w(k) (2.17) 

e(k) = [l - A(q-‘)I-‘[B”X(k) + w(k)] (2.18) 
where 

from y to whiten the difference y - J to w. In Fig. 1 in this 
special case c = 2, k = 0, and k = 0. 

How to generate an adaptive algorithm for these two 
special cases or the two-input (y and u), single-output (p) 
FIR model of (2.5) will be discussed in Section III. At this 
point it is sufficient to recognize that the prediction error 
of (2.11) suggests a least squares solution that will asymp- 
totically provide unbiased parameter estimates due to the 
whiteness and zero-mean character of { w(k)}. 

To relate (2.6) to Fig. 1 note that P = b and 6 = a 
while I? = 0. Furthermore, since i? = 0, it is apparent 
from Fig. 1 that the model does not possess an IIR 
response. We shall see that the zeroing of fi distinguishes 
the equation error formulation and its adaptive FIR filter 
applicability from the so-called output error formulation, 
(where fi # 0), and its adaptive IIR filter applicability. 

B. Output Error Formulation 

If instead, (2.5) is modeled via 

J(k) = a(q-‘)9(k) + B(q-‘)u(k), (2.15) 
a single-input (u), single-output ( jj) IIR model results. The 
prediction error (2.8) associated with (2.15) arises from 
subtracting (2.15) from (2.5): 

u(k- l),u(k-2);y(k-n)]=. (2.14) 
Note that the measurable prediction error in (2.11) is 
simply the inner product of the parameter estimate error 
vector fi and the information vector X plus a sample from 
an uncorrelated, zero-mean sequence, i.e., an equation er- 
ror formulation. 

Two special cases of (2.5) and (2.6) are of interest. The 
first is when A and thus 2 are constrained to zero and w is 
also absent. This clearly reduces (2.5) (and (2.6)) to a 
single-input (u), single-output (y), FIR form. Thus, if the 
parameter estimates B in (2.6) were recursively adapted, 
(2.6) would describe an adaptive FIR filter. With reference 
to Fig. 1, this special case uses P = &, (? = 0, and fi = 0. 

The second special case of interest that also fits within 
the form of (2.5)-(2.6) and thus (2.11), is when u = 0 and 
thus B = B = 0. Note that this reduces (2.5) to an autore- 
gressive (AR) filtering of white noise. Furthermore (2.6) 
becomes a single-input (y), single-output (9) FIR filter. If 
a is recursively adapted an adaptive FIR filter results, the 
output of which, once a converges to A, can be subtracted 

8 = [al - B1;..,a, - “i,, b, - &;..,b,, - $1’ 
(2.19) 

and 

X(k) 
= [j(k - l);.. ,j$k - n),u(k - l);y(k - n)]‘. 

(2.20) 

Compare (2.18) with (2.11). Note that, while the prediction 
error of (2.11), associated with the two-input, single-output 
model of (2.5) in (2.6), is the inner product of the associ- 
ated parameter estimate error and information vectors plus 
white, zero-mean noise sample w, the prediction error of 
(2.18) associated with the single-input, single-output model 
of (2.5) in (2.15), is an AR filtered version of the inner 
product of the associated parameter estimate error and 
information vectors plus a similar w. The notation of (2.18) 
indicates that the prediction error e is the “output” of a 
system with transfer function [l - Al-l, which is purely 
AR, driven by the “input” eTX + w. Note that the poles of 
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this transfer function are those of the actual process in 
(2.5), which we are trying to estimate. Finally, note that the 
information vectors of (2.11) and (2.18) differ. For (2.11) 
the information vector of (2.14) includes past y and u; for 
(2.18) the information vector of (2.20) is composed from 
past J and u. With reference to Fig. 1, (2.15) associates $ 
with 8 and fi with a while 6 is constrained to zero. 

In modeling the full ARMAX process in (2.2) we cannot 
measure w in order to append the term c(q-‘)w(k) to 
(2.5) or (2.15). Note that if we assume that a model, to be 
defined, generating 9 can be refined (or adapted) such that 
e = y - j = w, we would be inclined to add instead the 
term e(q-‘)e(k) as in 

j(k) = a(q-‘)y(k) + B(q-‘)u(k) + C?(q-‘)e(k). 
(2.21) 

The validity of this use of e, in a sense for w, is provided 
by the ability, discussed in Section IV, to adapt the esti- 
mates in (2.21) such that e -+ w. The prediction error from 
subtracting (2.21) from (2.2) is 

e(k) = a(q-‘)y(k) + B(q-‘)u(k) 

+c(q-‘)e(k) - C(q-l)[e(k) -w(k)] + w(k) 
(2.22) 

or 

e(k) = [l + C(q-‘)I-‘[8’X(k)] + w(k) (2.23) 

where 

s = [al - &;.*,a, - ci,, b, - &,;..,b,, - i),, 

and 

1 
Cl -cl,“‘, n c - Z,]’ (2.24) 

X(k) = [y(k - 1);. .,y(k - n), 
u(k - l);..,u(k - n), 

e(k - l);..,e(k - n)]‘. (2.25) 

The IIR form of (2.21) is implicit. Since e = y - 9, 
(2.21) can be rewritten as 

j(k) = -c(q-‘)j(k) + @q-‘)u(k) 

+[c(,-‘> +&-‘)]y(k), (2.26) 

which is a two-input (u and v), single-output (9) IIR form 
with characteristic polynomial 1 + C. This characteristic 
polynomial, which is the to-be-estimated noise MA poly- 
nomial in (2.2), is also the polynomial in (2.23) autoregres- 
sively filtering the parameter error vector f? inner product 
with the information vector X. This m imics the similar 
pattern of (2.18). With reference to Fig. 1, (2.21), or 
equivalently (2.26), associates P with 8, (? with C + 2, and 
fi with -C. Note that both (2.15) and (2.21) result in 
fi # 0, which clearly provides IIR modeling. 

A special case of interest here is when u = 0 and thus 
b = 0. In this case (2.21) becomes 

j(k) = a(q-‘)y(k) + c(q-‘)e(k) (2.27) 

which, given that e = y - 9 can also be written as 

j(k) = a(q-l)[j(k) + e(k)] + c(q-‘)e(k). 
(2.28) 

These two special cases of (2.21), both of which result in 
(2.23) with the bi removed from fi and the u(k - i) re- 
moved from X(k), will prove directly useful in the applica- 
tions of Section V. However, the most significant observa- 
tion at this point is of the addition of AR filtering in the 
measurable prediction error of the IIR models relative to 
the prediction errors of FIR models. 

III. ALGORITHM FORMS 

The intent of this section is to illustrate convincingly the 
additions to more well-known equation error based param- 
eter estimation algorithms, useful for establishing adaptive 
FIR filter algorithms, in order to yield less widely known 
output error based parameter estimation algorithms, useful 
for establishing adaptive IIR filter algorithms. Understand- 
ing the subsequent alterations in adaptive parameter esti- 
mation algorithms from the equation error to the output 
error case requires reference to the equation error solution. 
Thus the equation error problem will be addressed via each 
of two generic approaches to deterministic (w = 0) algo- 
rithm development, each followed by extension to the 
output error case. The reason for considering only two of 
the many approaches to algorithm establishment is that, in 
the output error case, these two approaches will establish 
the generic structure of the two most widely studied solu- 
tions to the output error formulation. This bifurcation is 
somewhat surprising, since in the equation error case both 
approaches yield the same basic algorithm form. As we 
shall see, it consists of correcting the old parameter esti- 
mates to the new parameter estimates by addition of a term 
composed of the product of a bounded step-size term 
(possibly a time-varying matrix), the information vector, 
and the scalar prediction error. The two modifications in 
the output error case are essentially either a fixed moving- 
average (MA) filtering of the prediction error or a time- 
varying AR filtering of the information vector. Both of 
these “fixes” can (and will) be interpreted as attempts to 
counter the AR filtering present in the output error form 
prediction error but absent in the equation error form. 
Once trivialized support for these additions is provided, a 
number of references will be cited for more complete 
development of these generic results. 

A. M inimization Approach 

Consider the equation error formulation of (2.5)-(2.14) 
with w = 0. Thus 

y(k) = ‘-(k), (3.1) 
j(k) = dT(k - 1)X(k), (3.2) 

d’(k) = [G,(k);4,(k), ~,(k);~~,~~(k)], (3.3) 

and 8 and X(k) are as in (2.12) and (2.14), respectively. 
The measurable a priori prediction error is 

e(k) = e’(k - 1)X(k). (3.4) 
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This prediction error between y and J at time k is termed a 
priori since the parameter estimate vector of the previous 
time instant &k - 1) is used to form j(k). 

A common approach to adaptive parameter estimation 
algorithm establishment is to invoke a strategy that mini- 
mizes the squared prediction error e’(k). Admittedly for 
this deterministic problem, with the accumulation of enough 
data an exact solution exists based on matrix inversion. 
However, our purpose here is instructive, so we will con- 
sider a simple gradient descent based solution 

6e2( k)/2 
d(k) = fi(k - 1) - ~~~~~ _ 1> > (3.5) 

where p is a small positive step size to be taken in the 
correction of 6 in the direction opposite to the upward 
(positive) partial derivative of e2 with respect to the current 
6. Recall that e(k) = y(k) - j(k) and that y and u and 
therefore X are not functions of 6. Thus 

Wk) -@(k) 
6&k - 1) = 6&k - 1) 

= -X(k) (3.6) 

from (3.2). Therefore (3.5) becomes the familiar LMS-type 
adaptive algorithm [lo] 

B(k) = d(k - 1) + pX(k)e(k). (3.7) 
Note the form of the correction term in (3.7) as the product 
of a step-size p, the information vector X, and the predic- 
tion error e. If we had pursued a recursive solution of the 
matrix formulation of the least squares problem, we would 
have generated the same structure as in (3.7) except that 
the scalar p would be a time-varying matrix [ll]. 

Now consider repeating this gradient descent approach 
for the corresponding output error formulation with w = 0 
of (2.5), (2.15)-(2.20) where (3.2) and (3.3) apply but X(k) 
is given by (2.20). The prediction error is as in (2.18) with 
w=o 

e(k) = [l - A(qP’)]P1[6T(k - 1)X(k)]. (3.8) 
As before neither y nor u are functions of 6 so 

6e(k) 89(k) L?[f!j’(k - 1)X(k)] - 
6&k - 1) = 6&k - 1) = 6&k - 1) . 

(3.9) 
Now however, since X(k) includes past j which are depen- 
dent on past 6 which are used to form new 6, a portion of 
X(k) is not independent of 8. So the transpose of the right 
equation in (3.9) is 

&P(k) V(k) 
68,( k - 1) “. ” G ,( k - 1) ’ 

Q(k) O(k) 
&,(k - 1) ‘“‘%n(k - 1) 1 

= XT(k) + i b,(k - 1) 
i=l 

6j(k - i) 
6b,(k - l)‘““&?,(k - 1)’ 

Sj(k - i) 6J(k - i) 
Sb,(k - l)‘.“’ 6bn(k - 1) . 1 (3.10) 

Note that (3.10) indicates the necessity of reevaluation of 
the derivatives of past 9 with respect to current parameter 
estimates. A simplifying assumption commonly made in 
the adaptive IIR filtering literature [2], [4], [5] is that p is 
sufficiently small such that &(k - 1) z d(k - 2) = . 1 . = 
8(k - n - l), which suggests replacement of (3.10) by 

O(k) 
6&k - 1) 

= X(k) + i ii,(k - 1) 
i=l 1 

(3.11) 
or 

Wk) 
6&k - 1) 

- igI&(k - 1)[ S&@;i)l)] = X(k). 

(3.12) 
Note that (3.12)nprovides a recursive method of approxi- 
mating SJ(k)/M(k - 1). Defining the operator 

a(,-‘, k - 1) e b,(k - l)q-’ + B,(k - l)q-2 
+ . . . + ci,( k - l)q-“, (3.13) 

similarly to A(q-l) in (2.3) converts (3.12) to [l - 
a(q-‘, k - l)][Sj(k)/S&k - l)] = X(k) and suggests the 
definition of 

#(k) 2 [l - a(,-‘, k - l)] -lx(k), (3.14) 
where IJ( k) can be considered an approximation of 
sJ(k),d(k - 1). As an aside, note that [l - a(q-‘, k - 
l)]-’ provides a shorthand operator notation for the dif- 
ference equation form of (3.14), which is similar to that of 
(3.12); &q-l, k - 1) d oes not indicate a z transform, 
which is why the time operator q-l is used rather than the 
transform operator 2-l. The form of 1c/ in (3.14) requires a 
significant computational burden since n past values of the 
full 2n X 1 4 vector must be stored and each element of # 
updated independently via an n th order AR. Recognizing 
that X(k) in (2.20), which drives the propagation of $ in 
(3.14), is composed of successively delayed versions of 9 
and u suggests [5], [12] a more computationally efficient 
approximation for sj(k)/d(k - 1). This alternate ap- 
proximation uses filtered versions of j and u via 

jF(k) = [l - a(,-‘, k - l)]-‘j(k) (3.15) 

uF(k) = [l - a(,-‘, k - 1)]-‘u(k) (3.16) 
and composes 6 from past values 

q(k) A [jF(k - l), jF(k - 2);QF(k - n), 

uF(k - l);*.,uF(k - n)lT. (3.17) 
That (3.17) is not equivalent to (3.14) can be noted by 
comparing the second entry #2 in (3.14) 

+b,(k) =j(k - 2) + i c?i(k - l)#,(k - i) (3.18) 
i=l 

and the second entry in (3.17) 

jF(k - 2) =j(k - 2) + 5 ci,(k - 2)jF(k - i - 2). 
i=l 

(3.19) 
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Even if the past values I/J~( k - i) and J”( k - i - 2) were 
equal, q2(k) need not equal jF(k - 2) due to the dif- 
ference in the time indices on the Bi. However, under the 
assumption used to generate (3.12), i.e., the 8 and thus “I! 
are slowly time-varying, these two approximations 4 and $ 
for SJ( k)/M( k - 1) are essentially interchangeable. 

From (3.5) the adaptive algorithm is 
d(k) = 8(k - 1) + p#(k)e(k). (3.20) 

Admittedly, the construction of (3.14) and (3.20) does not 
constitute a proof of its convergence, but it does succinctly 
capture one of the generic additions suggested in the 
output error case, i.e., the AR filtering of the information 
vector by the current estimate of the AR appearing in the 
associated prediction error, (3.8) in this case. Note that in 
the equation error case, represented by (3.4) and (3.7), 

8(k) = d(k - 1) + p{ X(k)}{ X’(k)d(k - 1)); 
(3.21) 

whereas, in the output error case, represented here by (3.8), 
(3.14), and (3.20), 

8(k) = e(k - 1) + p( [l - A(q-l, k - l)] -lx(k)) 

.([l - A(q-‘)I-‘[X“(k)g(k - l)]). (3.22) 

Thus the time-varying AR filtering of the information 
vector in (3.22) can be viewed relative to (3.21) as “com- 
pensation” for the fixed AR filtering of I!?‘X in the mea- 
surable prediction error. This fix is more common in the 
stochastic setting of (2.21) and (2.25), where the time-vary- 
ing AR filtering of the information vector is constructed 
from the estimate of the noise MA polynomial [l + C] that 
appears as the AR filtering of eTX in forming the predic- 
tion error in (2.23). The m inimization approximation pro- 
cedure resultingAin (3.14) and (3.20) with [l + a1-l re- 
placed by [l + C] - ’ and X appropriately redefined as in 
(2.25) is much more complicated in this full ARMAX case. 
Refer to [12]-[13]. Convergence proof is commonly based 
on the ODE method of [12]-[14]. Some of the proven 
properties of this solution are discussed in Section IV. The 
most critical is that in order to retain parameter estimator 
stability, the roots of 1 + C (or 1 - a in the deterministic 
case of (3.14)) must be constrained within the unit circle. 
This is needed to insure that + does not become undesir- 
ably unbounded. This requires an on-line stability check of 
[l + ‘Cl-’ (or [l - A]-’ in the deterministic case) and, 
when instability is encountered, a projection of C (or A) 
back into the region of the parameter space where [l + 
Cl-’ (or [l - Al-l) is stable. This obviously adds an 
undesirable computational burden. 

B. Stability Theory Approach 

An alternate approach to algorithm development arises 
from a stability theory interpretation. Reconsider the equa- 
tion error formulation of (3.1)-(3.4). Subtracting both sides 
of the adaptive algorithm in (3.7) from a time-invariant 8 
yields, given (3.4), 

d(k) = [I - pX(k)XT(k)]#(k - 1). (3.23) 

The stability theory approach to adaptive parameter esti- 
mation is based on recognizing that (3.23) represents an 
unforced, time-varying, possibly nonlinear (when X is a 
function of 8 and therefore #) system, the zero state 
stability of which represents the desired converge*nce prop- 
erty of (3.7). In other words, showing that 6 -+ 0, or 
equivalently that g -+ 0, for any finite e”(0) can be done by 
proving (3.23) to be globally, asymptotically stable. A 
similar stability theory formulation exists in expectation 
when {X} is stochastic rather than deterministic. Applica- 
ble stability theorems abound under the labels of Lyapunov 
stability theory [15], [16] and hyperstability [6], 1171 in the 
deterministic case and ODE analysis [12], [18], [19] and 
martingale convergence theory [20] in the stochastic case. 

For the error system of (3.23) consider the Lyapunov 
function candidate of summed squared parameter estimate 
errors 

V(k) = @(k)d(k). (3.24) 
If 

AT/(k) = V(k) - V(k - 1) I 0 (3.25) 

for all k and v(O) is finite, then AI’+ 0 [15]. Evaluating 
(3.25) given (3.4), (3.23) and (3.24) yields [15] 

Av(k) = -pe2(k)[2 - pXT(k)X(k)]. (3.26) 
Since p is defined as positive, if 

2-u 
’ < ’ < XT(k)X(k) ’ 

for all k and some UE (0,2). 

(3.27) 

then (3.25) is satisfied and AV --+ 0 implies that pe2(k) + 0 
or 

e(k) = 8’(k - 1)X(k) - 0. (3.28) 
Note that (3.27) implicitly assumes that X(k) is bounded 
or that u is bounded and [l - A]-’ is stable. Furthermore 
note that (3.28) does not imply that fi + 0 unless { X(k)} 
is sufficiently rich such that a nonzero fi is not orthogonal 
to X(k) for all k > k. The information vector X can be 
interpreted as being sufficiently rich to excite every mode 
of the plant such that errors in identifying any of these 
models are observable in the prediction error. This nonor- 
thogonality condition can be shown [21] to be guaranteed 
if the smallest eigenvalue of Cj,ZTX(k)XT(k) is bounded 
away from zero for all j and some S greater than the 
dimension of X, i.e., for some positive scalar p 

j+S 
c X(k)XT(k) 2 pl> 0, 

k=j 

for allj and some S > dim (X). (3.29) 

Similar conditions exist in expectation for stochastic {X} 
[22]. The “persistent” excitation condition of (3.29) re- 
quires that over any time window of S consecutive samples 
enough information exists in CXXT to solve by bulk pseu- 
doinversion the matrix reformulation of the parameter 
estimation task. This persistency will prove critical in al- 
lowing parameter tracking with unpredictable plant param- 
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eter changes. G iven (3.29) (3.23) is globally asymptotically 
stable and 8(k) -+ 0. 

In an attempt to guarantee (3.27) consider replacing the 
constant ~1 in (3.7) by the time-varying a/[1 + 
yXT( k)X( k)]. Since 

2 
y-l + X’(k)X(k) < X’(k)X(k) 

(3.30) 

with 00 > y > 0 and 0 < (Y < 2, 

d(k) = d(k - 1) + ayX(k)e(k) 
1 + yXT(k)X(k) 

(3.31) 

has the property from (3.26), where a/[ y-l + X’(k) X( k)] 
replaces p, that 

ae2( k) 
y-l + XT(k)X(k) +” 

(3.32) 

since the bracketed term in (3.26) is always positive. If X is 
bounded or can grow no faster than e [23], then e - 0, 
and, if in addition (3.29) is satisfied, e’ + 0. Note that 
given (3.4) and (3.31) the a posteriori prediction error c(k), 
which uses the current parameter estimate error vector 
8(k) rather than its previous value &k - 1) as in the a 
priori prediction error in (3.4), becomes 

c(k) A XT(k)&(k) 

= XT(k)@ _ 1) _ ayX’(k)X(k)e(k) 
1 + yXT(k)X(k) 

= [l + ~(1 - a)XT(k)X(k)] 

.[l + yXT(k)X(k)]-‘e(k). (3.33) 

Thus with (Y = 1, (3.31) can be written as 
d(k) = e(k - 1) + yX(k)c(k). (3.34) 

Note that (3.34) is an implicit formula for 8(k) since 
computation of c(k) from (3.33) as 

c(k) =y(k) - @(k)X(k) (3.35) 
requires B(k). However, the form of (3.34) will prove 
useful for extension to the output error case. 

The pertinent stability theory result for the output error 
case from hyperstability theory [6] or Lyapunov stability 
theory [16] is that 

where 
d(k) = b(k - 1) + yX(k)u(k), (3.36) 

u(k) =@q-‘)[@(k)X(k)], (3.37) 

is stable if the transfer function Z( 4-l) is strictly positive 
real (SPR), i.e., 

Re [x( e-@)] > 0, for all 0 E [0,27r]. (3.38) 

Furthermore given the boundedness of U, the stability of 
[l - A1-i and (3.29) 8 - 0. For the equation error case of 
(3.34) Z’= 1, which is trivially SPR. For the output error 
formulation, the a posteriori prediction error, similar to 
(3.8), is 

c(k) = [l - A(q-l)]P1[BT(k)X(k)] (3.39) 

and 

x(4-1) = [l - A(q-l)] -l. (3.40) 

Thus, if (3.40) is SPR, the output error formulation of 
(3.34) will be stable. As shown in [7], that (3.40) is SPR is 
unlikely even in simple low-order cases. This raises the 
possibility of the second fix. Consider the adaptive param- 
eter estimator of (3.36) with 

u(k) = b(k) - wwwl 
- k d,[y(k - i) - eT(k - i)X(k - i)] 

i=l 

Cl - %-‘)I f(k) 

(3.41) 

In this case, with reference to (3.37), 

z(q-1) = 11 - HP)1 
[l - 4-')I ' (3.42) 

which is SPR if D is sufficiently close to A. If (3.42) is SPR, 
then using u from (3.41) in (3.36) will result in e + 0 given 
(3.29) as stated for the equivalent (3.36)-(3.38). The im- 
plicit form of (3.36) using (3.41) can be made explicit by 
noting that 

u(k)=y(k)-[bT(k-l)+yXT(k)u(k)]X(k) 

- k d,c(k - i) 
i=l 

= [l + yXT(k)X(k)]-’ e(k) - k @(k - i) , 
i=l 1 

(3.43) 

with the usual a priori output estimate (or prediction) error 
e(k) = y(k) - dT(k - 1)X(k) and the a posteriori output 
estimate (or prediction) error c(k) in (3.35), and using 
(3.43) for (3.41). 

Obviously choosing a satisfactory D presents a practical 
difficulty due to its dependence on the unknown A. But, if 
D is satisfactorily selected such that (3.42) is SPR, no 
stability check is required as for the first fix as illustrated 
in (3.22). Comparing the equation error solution of (3.34) 
rewritten as 

d(k) = d(k - 1) + y{ X(k)}{ XT(k)B:(k)} (3.44) 

and the corresponding output error solution of (3.36) re- 
written as 

d(k) = &k - 1) + y{ X(k)} 

(3.45) 

clearly reveals the character of the present “compensation.” 
A complete convergence proof for (3.45) when applied to 
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the deterministic identification problem of (2.5) (with w = 
0), (3.2), (3.3), and (2.20) appears in [6] and [17]. If, rather 
than a scalar constant y as in (3.45), a time-varying, 
possibly matrix, step size is used, the SPR condition on 
(3.42) is varied such that &‘- h must be SPR [24]. The 
positive constant X is dependent on various choices of 
designer-selected parameters within the step-size formula 
[24]. Note that with h > 0, requiring % ‘- X to be SPR is 
more severe than requiring #alone to be SPR. 

Reliance on the SPR of the filtering of X’(k)& k) in the 
prediction error in (2.23) used in the update term has also 
appeared in the stochastic setting. For example, in ex- 
tended least squares [12] or approximate maximum likeli- 
hood [20], where no a posteriori error smoothing is added 
and vanishing, ergo time-varying, step sizes are used, [l + 
C(q-‘)lP1 - X is required to be SPR. In modeling these 
stochastic identification problems X includes past output 
estimate errors. (Refer to (2.25).) These convergence proofs 
require the use of past a posteriori estimates, rather than a 
priori, in X. The generic observation is that the denomina- 
tor of Z’in (3.37) for the output error formulation always 
includes the unknown AR filtering of @X forming the 
prediction error y - 9 as detailed in Section II. 

Thus we can characterize solutions to the output error 
problem, where the measurable prediction error is an AR 
filtered version of the parameter estimate error and infor- 
mation vector inner product possibly plus a white, zero- 
mean signal, by their use of either a) AR filtering, by the 
estimate of the AR in the prediction error, of the informa- 
tion vector or b) MA filtering, satisfying an SPR condition, 
of the a posteriori prediction (or output) error in the 
general algorithm form 

function 
of the I 1 . 

information 
vector 

[ function 1 
of the I J prediction f (3.46) 

error 

IV. ALGORITHM CONVERGENCE PROPERTIES 

The categorizations arising only from the distinctions 
based on the various models from Section II and the two 
algorithm “compensation” schemes of the preceding sec- 
tion are numerous. Add to this the various techniques for 
selecting the step size as fixed or time-varying, as scalar or 
matrix, the prediction errors used as a combination of a 
priori and past a posteriori prediction errors, etc., and the 
bewildering array of “different” adaptive algorithms 
populating the literature is explained. Attempting to list 
the convergence properties of even the subset applicable to 
what we have termed an output error type problem be- 
comes monumental. Instead we will highlight only a few 
broad classes of interest that have been widely studied and 

TABLE I 
ADAPTIVE IIR FILTERCATEGORIZATIONS 

CATEGORY LABEL ONE TYPE OTHER TYPE 

TABLE II 
ADAPTIVE IIR FILTERCLASSESFORWHKHCONVERGENCE 

PROPERTIES ARE DISCUSSED 

CLASS NO. CATEGORIZATION 

ALGORITHM 
PLANT MODEL FILTERING STEP-SIZE 

I Deterministic Without Information Vector Positive 
Noise Model 

2 Deterministic Without Prediction Error Positwe 
NOISE Model 

3 Stochastic Without Prediction Error Vanishing 
NOISB Model 

4 Stochastic With Noise Model None Vanishmg 

5 Stochastic With Noise Mcdel lnfamotlon Vector Vanishing 

have been shown to possess distinctive attractive conver- 
gence properties. This summary should help us identify 
remaining issues in adaptive IIR filter theory research in 
the last section. 

Refer to Table I, which identifies four broad binary 
categorizations of adaptive IIR filter types. The first de- 
scriptor differentiates between cases where w = 0 and w # 
0. The second division considers the predictor as without 
noise modeling, i.e., c = 0 as in (2.15) or with noise 
modeling, e # 0 as in (2.21). The third label is based on 
the filtering “fix” used: a time-varying AR information 
vector filtering, as in (3.22), or a time-invariant MA predic- 
tion error filtering, as in (3.45). The final categorization 
simply distinguishes between adaptive parameter estima- 
tors with positive step sizes guaranteed to be bounded 
away from zero and those with step sizes that purposefully 
vanish with time. We need not consider all sixteen combi- 
nations, since some have not received significant study. In 
fact, we will lim it ourselves to the five classes indicated in 
Table II. 

A. Class 1 

The squared prediction error m inimization interpretation 
of the output error problem has been exploited in, e.g., [l], 
[2], [4], and [5] with the solutions falling within this class. 
One concern is the modality of the error surface being 
descended. It was shown [25]-[26] to be possibly multi- 
modal in reduced-order use, i.e., when the plant order n in 
(2.1) exceeds that of the adaptive IIR filter. This reveals a 
lim itation to local m inimization in a reduced-order applica- 
tion. However, the major drawback of this class is the need 
for on-line stability monitoring of the time-varying, AR 
information vector filter [l - & ‘. This issue will be dis- 
cussed further in Section VI. 
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B. Class 2 

The initial proof of the convergence of an algorithm in 
this class, i.e., deterministic plant, no noise modeling, 
prediction error smoothing, and nonvanishing step size, 
appeared in [17], was based on hyperstability, and was 
intended for use as an identifier. This algorithm was subse- 
quently translated [6] and simplified [7] for adaptive IIR 
filter use. The major practical drawback is the associated 
SPR condition, e.g., on (3.42), guaranteed satisfaction of 
which relies on unknown plant parameters. This will be 
discussed further in Section VI. 

G iven the persistent excitation of the information vector, 
as in (3.29), this class was shown to posses an exponential 
convergence rate [22]. Recognition that the persistent exci- 
tation requirement in (3.29) was unacceptably dependent 
on the practically unpredictable character of the 9 in X 
spurred translation of (3.29) to a similar condition on 
{u(k)} alone [21]. The advantage of an exponential con- 
vergence rate in ideal usage is that it supports the proof of 
local stability in the presence of nonideal application such 
as reduced-order modeling (or bounded disturbance 
accommodation) [27] and time-varying desired parameter 
tracking [28]. These results are based on the recognition 
that such nonidealities result in the addition of bounded 
disturbances to the homogeneous error system. The 
exponential stability of a homogeneous, time-varying, non- 
linear system is widely used in the stability theory litera- 
ture, e.g., [29], [30], to establish a bounded-input, 
bounded-state property when this system is forced with 
small signals. Such robustness properties have important 
practical significance. 

The behavior of the parameter error trajectories in the 
parameter error space has also been considered [31] to 
discern their relationship to the squared output error surface 
steepest descent character of Class 1. A consistently biased 
descent interpretation may be possible. However, this 
biased descent does not necessarily take place on the 
squared output error surface and, as shown in [25], does 
not result in squared output error minimization in the 
reduced-order case as do the algorithms of Class 1. In fact 
the particular prediction error smoothing used can be 
shown to effect the location of the local convergence 
point(s). Therefore, if squared output error minimization is 
the actual objective of the adaptive IIR filter, this class can 
be considered deficient. 

c. Class 3 

The convergent parameter estimate unbiasedness of this 
class given zero-mean white output measurement noise, 
C = -A in (2.2), was the principal focus in its develop- 
ment in [17]. Note that with this choice for C in (2.2), the 
prediction error with (2.15) becomes 

e(k) = [l - A(qpl)]‘l#TX(k) + w(k). (4.1) 
This unbiasedness was extended to general ARMAX plants 
in [32]. A principal requirement for such results is the 
vanishing step size. This can be heuristically justified as 

follows. If the parameter estimates in (2.15) are unbiased 
when applied to (2.2), then the prediction error is the 
filtered noise sequence with zero mean. For convergence to 
a point in the parameter space this random prediction 
error must not be allowed to continually perturb the 
parameter estimates via (3.46). This is accomplished with 
the decay of the step-size to zero. However, as the step size 
vanishes, the ability of the parameter estimator in (3.46) to 
react to nonzero prediction error due to the time-variation 
of the plant parameters in (2.2) also vanishes. Since a 
central purpose of adaptive parameter estimators, or adap- 
tive filters, is to track such time-varying parameters, this 
class and the two following ones should, strictly speaking, 
not be considered adaptive. 

Unfortunately, the use of nondisappearing step size gains 
for tracking capability, instead of the vanishing gains of 
this class, appears from our simulation experience to result 
in a bias in the parameter estimates that is proportionally 
related to the strictly positive lower bound on the step size. 
Roughly speaking, the smaller the step size the smaller the 
parameter estimate bias. 

D. Class 4 

Algorithms in this class rely on the strict positive reality 
of [l + Cl-’ - h and do not use any prediction error 
smoothing, e.g., [12], [20]. Again, as with Class 3, the 
convergence proofs of asymptotically unbiased behavior 
rely critically on the vanishing step size. It is conjectured 
that, as with Class 3 algorithms, nonvanishing step sizes 
could create biased parameter estimates. 

E. Class 5 

O f the stochastic Classes 3-5, this last one has received 
the most thorough study due to its asymptotic maximum 
likelihood behavior even in nonideal applications [ 12]-[ 141. 
In addition to such asymptotic consistency, the asymptotic 
efficiency, i.e., the convergence of the estimation error to 
the Cramer-Rao lower bound, and the asymptotic normal- 
ity, i.e., the convergence of the estimation error distribution 
to a Gaussian distribution, of this class have been proven. 
Again these properties are predicated on the vanishing step 
size. They are likely to be practically retained for a suffi- 
ciently small nonvanishing step size. 

V. SIGNAL PROCESSING APPLICATIONS 

The preceding development of an understanding of the 
adaptive parameter estimation basis of adaptive IIR filters 
would be hollow without some indication as to how these 
model-algorithm combinations could be used to provide 
adaptive IIR filters useful in signal processing applications. 
A number of applications for adaptive IIR filters, includ- 
ing noise canceling [7], [8], multipath cancellation [7], 
sinusoid detection [9], time delay estimation [8], line- 
enhancing [33], adaptive differential pulse code modulation 
(ADPCM) [34], and air pollution prediction [35], have been 
suggested. For illustrative purposes we will only consider 
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Fig. 2. Adaptive noise canceling. 
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three applications, each of which falls within one of the last 
three model-algorithm classes of Section IV: adaptive noise 
canceling, adaptive line-enhancing, and ADPCM. 

A. Adaptive Noise-Canceling 

The format of adaptive noise-canceling, introduced in 
[36], is illustrated in Fig. 2. The physical setup presumes 
that two measurements are available: one the signal (s) to 
be extracted plus noise (n) and the other a measurement 
(u) correlated with the noise (n). Fig. 2 adds the presump- 
tion that the additive noise corrupting the signal is a 
filtered version of a white sequence {Z(k)} and that the 
measured correlated noise is this same fi passed through a 
different coloration filter. For notational simplicity and 
easy correlation with the earlier sections of this paper both 
of these coloration filters are presumed to be FIR (or 
tapped-delay line) filters. The critical characteristic is that 
the relationship between u and n is described by an IIR 
transfer function, i.e., 

and 
n(k) = B(q-‘)E(k) (5.1) 

so 

u(k) = [l - A(q-‘)]n(k) (5 4 

n(k) = A(q-‘)n(k) + B(q-‘)u(k). 
Now since 

(5 *3) 

y(k) = s(k) + n(k), 
(5.3) can be written as 

y(k) = Ah-‘b(k) + B(q-%(k) 

(5 4 

-A(q-‘)s(k) + s(k). (5.5) 
The adaptive noise-canceling filter in Fig. 2 has the form of 
(2.15). Forming the prediction error to be used in updating 
a and 2 yields a form similar to (4.1) with w replaced by s. 
Clearly if A b A - a = 0 and B L B - & = 0 then e(k) 
= s(k) as desired, i.e., the output of the adaptive noise- 
canceling structure is the uncorrupted signal. 

Note that if s(k) were itself white (or colored) noise with 
a zero mean this problem would fall within Class 3 of the 
preceding section where an ARMAX process is “identified” 
without a “noise” model. In such a case, with disappearing 
step-size gains and appropriate error smoothing, a + 0 

source) ’ \ i 
I I 

L ____ ----- ---- _! 
odoptive IIR filter 

Fig. 3. Adaptive line enhancing. 

and fi -+ 0 can be guaranteed. In practice to track time- 
varying A and B the step size cannot be allowed to 
disappear. Insufficient theory exists to explain the resulting 
m isbehavior of Class 3 through 5 algorithms when step 
sizes are not allowed to decay to zero. Simulations [7] have 
shown that, even when s is a zero-mean highly correlated 
signal rather than white, but remains uncorrelated with U, 
and the step sizes are small but nonzero, significant SNR 
improvement is available when using e as an estimate of s 
over the SNR of y = s + n. 

B. Adaptive Line-Enhancing 

As with adaptive noise-canceling, adaptive line-enhance- 
ment was first suggested as an application of adaptive FIR 
filtering [36], [37]. This adaptive FIR filter usage is com- 
monly predicated on the assumption of a white noise 
driven AR model with its to-be-recovered output signal 
corrupted by additive white measurement noise. As shown 
in [33], this generates the measurable signal model of (2.2) 
with u = 0 and w an appropriate unmeasurable white 
composite of the uncorrelated driving and measurement 
noises. Furthermore, the optimal predictor [33] for the 
underlying process output is to pass y through (2.27) with 
a = A and c = C. The structure for this adaptive IIR line 
enhancer from (2.27) is shown in Fig. 3. 

If an AR model driven by white noise accurately de- 
scribes the source to be recovered such that (2.2) with 
u = 0 is an accurate model for the additive noise corrupted 
source, then a Class 4 or 5 adaptive algorithm could cause 
the adaptive IIR line enhancer in Fig. 3 to converge to the 
optimal predictor. Several successful simulations of a Class 
5 algorithm are presented in [33]. As noted earlier, the 
theory requires vanishing step sizes for exact parameter 
convergence. However, as noted in the preceding subsec- 
tion, the near convergence chatter and subsequent perfor- 
mance degradation due to small nonvanishing step sizes 
can be tolerable. However, insufficient theory exists to 
strengthen such a robustness statement. 

Note that 1 + C should be satisfactorily damped to 
avoid frequent use of the Class 5 adaptive algorithm sta- 
bility projection facility for 1 + c once convergence is 
neared. Also as the roots of 1 + C are nearer the unit circle 
and as its order increases the SPR condition on [l + Cl-’ 
- h of Class 4 is more likely to be violated. 
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L------------ J 
odoptive IIR filter 

Fig. 4. Adaptive differential pulse code modulation encoder 

C. Adaptive Differential Pulse Code Modulation 

The ADPCM problem [38] is one that only recently [34] 
has been seen as a possible application for adaptive IIR 
filters. The configuration for ADPCM suggesting adaptive 
IIR filter algorithm use is shown in Fig. 5.3. The source 
signal to be encoded is assumed to be the output of a 
white, zero-mean noise driven ARMA process as in (2.2) 
with u = 0. The feedback predictor from Fig. 4 is similar to 
(2.28) 

j(k) = a(,-‘)[j(k) + Z(k)] + c(q-l)?(k). (5.6) 

We will define the quantization error n(k) as the difference 
between the prediction error e(k) = y(k) - j(k) and the 
quantized prediction error e(k) 

e(k) -F(k) = n(k). (5.7) 
Thus, similar to the development of (2.23), 

F(k)=y(k)-j(k)-n(k) 

= [l + c(q-l)]-l 

* { [A(C’) - wl>l [9(k) + WI 

+ [C(q-‘) - %-1)] e(k)} 

+w(k) -[l + C(q-‘)]-I[1 - A(q-‘)]n(k). 

(5 J3> 
Note that if n(k) = 0, i.e., the quantization error is 

negligible, then (5.8) reduces to (2.23) where 6 and X are as 
in (2.24) and (2.25) but with the bi - bi and u(k - i) terms 
removed since u = 0. Therefore, a Class 5 algorithm results 
in e( = 2) -+ w. Clearly n is not zero in actual application. 
Note in (5.8) that even if parameter convergence occurred 
such that a = A and 6 = C, .Z would not be whitened and 
would not equal w. Furthermore the presence of the col- 
ored perturbation by filtered {n(k)} will lead to biased 
parameter estimates in an attempt to adaptively whiten 2 
by selection of a and c. The objective of ADPCM, how- 
ever, is not to achieve exact parameter identification but 
rather to lower the variance of e relative to that of y so that 
a coarser quantizer can be used on e, than y, with the same 
fidelity. This quantizer bit reduction is usually quantified 
by the SNR of y to e where each 6 dB of improvement 
corresponds to an allowable removal of one quantizer bit. 

Preliminary simulation studies using real speech data have 
shown over 12 dB improvement. 

VI. OPEN ISSUES 

The preceding sections summarizing the modeling, algo- 
rithmic, convergence, and application aspects of adaptive 
IIR filters are purposefully bereft of cloying detail. The 
intent was to capture in a readable, unified framework the 
generic aspects of adaptive IIR filtering, heretofore un- 
documented in a single source. This rather tutorial presen- 
tation also serves another purpose: to permit a discussion 
of several open issues with regard to adaptive IIR filters. 
The ones chosen for discussion in the concluding section of 
this paper are a) methods for SPR condition satisfaction, 
b) stability projection techniques, c) alternative adaptive 
algorithm forms, d) the alteration of “noise” and “signal” 
definitions relative to identification use, and e) prediction 
error quantization effects. This list omits other relevant 
issues, such as convergence rate, the effects of nondisap- 
pearing step-size gains in a stochastic setting, lattice versus 
tapped-delay line implementation, and the investigation of 
additional applications, all of which are undeniably im- 
portant. Those issues omitted from discussion here are 
already widely recognized as important in the adaptive 
filtering literature; while the issues to be discussed repre- 
sent some that emerge from this particular study and have 
not received adequate advertisement in the adaptive filter- 
ing literature. 

A. SPR Condition 

As noted in Section III-B one of the major “compensa- 
tions” for the AR filtering of the parameter estimate error 
and information vectors inner product present in the out- 
put error formulation is MA filtering of the prediction 
error prior to its use in the adaptive algorithm. The ratio of 
this MA filtering to the prediction error autoregression 
must satisfy an SPR condition, as in (3.38) and (3.42), to 
ensure stable convergence for all possible input sequences. 
One tendency of the a priori information needed for SPR 
satisfaction of, e.g., (3.42) should be noted again: as the 
roots of the prediction error AR approach the unit circle, 
i.e., become more oscillatory, the tendency is for the com- 
pensating prediction error smoothing polynomial to be 
required to have its roots closer and closer to the “ un- 
known” roots of the AR. 

The need for satisfaction of such an SPR condition to 
guarantee convergence for all possible input sequences 
does not mean that for certain input sequences convergence 
cannot occur without satisfaction of this SPR condition. In 
fact it has been shown [39] that if the information vector 
has a sufficiently large inner product with itself (i.e., the 
sum of the squares of its entries) at every time instant, 
which differs from the outer product persistent excitation 
condition of (3.29) no MA error smoothing is required. As 
shown in [39] convergence is retained by effectively mod- 
ifying the SPR condition. Though not noted in [39], this 
inner product condition can be satisfied by a similar condi- 
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tion on the {u} portion alone of the information vector. 
This sufficiently positive inner product condition has the 
disadvantage of disallowing even temporary periods of too 
many successive near-zero values in the input sequence. An 
open issue is whether or not this inner product condition, if 
satisfied, and the outer product condition of (3.29), trans- 
lated to {u} alone as in [21], can assure exponential 
convergence and the accompanying robustness properties. 
Furthermore, the possibility of translating this inner prod- 
uct constraint to the stochastic case has not been investi- 
gated. 

Since satisfaction of the SPR condition has been consid- 
ered critical for proper algorithm behavior, simultaneous 
adaption of these error smoothing coefficients has been 
suggested [40]. Unfortunately the desired stability of the 
resulting algorithms cannot be guaranteed without the 
same stability check and projection facility needed by the 
alternate “compensation” technique of time-varying AR 
information vector filtering of Section III-A [41]. Thus the 
desire to use a fixed prediction error smoothing, and 
thereby avoid this costly stability check and projection 
facility, remains as a severe practical limitation of such 
schemes. Needed is a thorough study of the practical 
ability to obtain the information allowing SPR condition 
satisfaction in a real application. Admittedly this needed 
information is short of precisely knowing the “unknown” 
AR coefficients in the prediction error, though not much 
less severe in certain applications. 

B. Stability Projection Techniques 

The need to provide a real-time stability check for the 
algorithms using a time-varying AR information vector (or 
time-varying, MA prediction error) filtering is a significant 
computational burden in many situations. O f more con- 
cern, however, is the associated projection facility which 
resituates the time-varying filter coefficients such that its 
instantaneous roots are always within the unit circle. As 
might be suspected, simulations have verified that when the 
desired roots for this time-varying compensator are near 
the unit circle, more frequent projection is required. Cur- 
rent theoretical results cannot prove that this projection 
facility is needed only finitely often in every situation, 
which would imply stable convergence. Rather, the algo- 
rithm convergence theorems, e.g., [14], state that either the 
parameter vector stably converges to the desired value or 
converges to a boundary point of the projection region. 
This implies that the time-varying AR filtering of the 
information vector has roots that inappropriately cluster 
near the unit circle (or the boundary, within the unit circle, 
of the region to which instantaneously unstable para- 
meterizations are projected). The open issue is to find a 
projection facility that can be proven to be needed only 
finitely often and requires only a reasonable amount of 
computation. 

One simple-minded projection facility is to ignore those 
updatings of the parameter estimate vector that would lead 
to the instability of the information vector filtering poly- 

nomial. Recall that in all of the algorithms using a time- 
varying AR filtering of the information vector, these filter 
coefficients are a portion of the full parameter estimate 
vector. (Refer to (3.22) and the comments following it.) 
This simplistic strategy of ignoring what could be called 
“unstable updates” has been seen to lock-up in numerous 
simulations, i.e., roots of the time-varying AR information 
vector filter cluster and freeze near the unit circle. An 
important attribute suggested in [18] for the projection 
scheme is that it be to a decidedly interior point of the 
stable region to avoid such lock-up. An alternate projection 
facility repeatedly shrinks the adaptive step size until the 
downscaled correction term does not result in instability of 
the new parameter estimate. This technique appears more 
robust, but not infallible, in simulation. Another scheme 
that has been studied [42] is based on the reflection of any 
roots found to be unstable. This technique has a somewhat 
logical basis since it maintains the magnitude of the 
frequency response of the nonminimum phase polynomial 
while altering only its phase characteristic. Admittedly the 
numerical complexity of such a technique is considerable. 
But even this approach has not yet been proven to always 
be successful. Development and evaluation of further pro- 
jection candidates are needed. 

C. Alternate Adaptive Algorithm Forms 

Section III is devoted to introducing the two currently 
widely studied “compensations” for the AR filtering of the 
parameter estimate error and information vectors inner 
product in the prediction error of the output error formula- 
tion. As noted in the two preceding subsections both 
techniques for augmenting the simple correlation form of 
the correction term of the simpler equation error form have 
limitations. One uses a prediction error smoothing that 
must satisfy an SPR condition in undesirable conjunction 
with an “unknown” polynomial. The other requires a 
stability check on the added, time-varying AR information 
vector filter, for which there is presently no universally 
acceptable projection scheme. As noted in Section VI-A an 
algorithm form has been suggested to adapt the MA error 
smoothing coefficients of the first fix, but this then requires 
the stability check and projection of the second approach. 
A fourth possibility is a fixed AR information vector 
filtering. One might expect an SPR requirement to arise, as 
suggested in [13]. Our  preliminary simulation studies of 
such a scheme have indicated some desirable attributes, 
especially with regard to deterministic reduced-order use. 
From Sections IV-A and IV-B arises the expectation that 
AR information vector filtering leads to squared output 
error minimization while MA prediction error smoothing 
does not. The desirable minimization characteristic appears 
to be retained with fixed AR information vector filtering, if 
the fixed filtering matches the optimum value of the re- 
spective portion of the parameter estimate vector. Ad- 
mittedly such a fortuitous choice is practically impossible 
in a real application. More surprising was the graceful 
degradation in the convergent squared output error as this 
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fixed filter is suboptimally chosen. Apparently this fourth 
choice of fixed AR information vector filtering deserves 
further study. 

Two algorithmic modifications particular to the output 
error form, that were motivated by study of a time-varying 
AR information vector filtering (class 5) algorithm, were 
introduced in [43]. The first is the use of a “pull” factor 
that essentially divides the delay operator by a positive 
factor greater than one, e.g., 

1 + k(aq-1) = 1 + C,aqq’ + i.2cX2q-2 + * *. + i?,ff”q-n 

(6.1) 

where 0 5 (Y 5 1. If this device is used in the AR informa- 
tion vector filter it will cause this filter to be more stable 
than otherwise and therefore lessen the need for use of the 
projection facility. The second modification could arise 
from consideration of (2.18) and (2.23), which can be 
associated with Classes 3 and 5, respectively, in Section IV. 
The suggestion is rather than use [l + 61-l for informa- 
tion vector filtering in conjunction with (2.23) use [l - 
A]-‘, which more naturally arises with (2.18) or a weighted 
combination of these two. In certain applications, C = -A. 
For example, in the line enhancer of Section V-B as the 
corrupted source SNR increases C --f -A. In such cases 
this second modification exploits the fact that with Class 5 
algorithms A tends to converge faster than c. As noted in 
[43], these two modification have been studied mostly via 
simulation and require analytical evaluation. 

D. “Noise” and “Signal” Definitions 

One peculiarity of adaptive IIR filtering application in 
comparison to identification application of output error 
schemes is a reversal of the normally stochastic and de- 
terministic definitions, respectively, of “ noise” and 
“signal.” In the identification format of Section II, which 
is the most common setting in which output error algo- 
rithms have been analyzed, the desired convergent predict- 
ion error is the unmeasurable, stochastic, sequentially un- 
correlated signal W. Refer to (2.23). Contrast this with the 
adaptive noise canceling application of Section V-A where 
the desired convergent prediction error is the unmeasur- 
able, possibly deterministic, likely highly correlated signal 
s. Refer to the remarks below (5.5). Presently, theoretical 
convergence results are available only for the identification 
format. The adaptive IIR filtering format requires further 
attention to prove stochastic convergence properties with 
this stochastic to deterministic conversion of the character 
of the unmeasurable input in (2.2). From a signal process- 
ing viewpoint what is being exploited in the noise-canceling 
application of Section V-A is the separability of uncorre- 
lated signals with insignificantly overlapping spectra. Per- 
haps such a distinction will require incorporation in a 
subsequent theory handling this issue. 

E. Prediction Error Quantization Effects 

The last issue to be discussed also arises from considera- 
tion of an adaptive signal processing application, specifi- 
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tally ADPCM of Section V-C. In Section V-C it was noted 
that the negligibility of the quantization error was needed 
to justify the unbiased convergence of the predictor param- 
eters. This assumption clashes with the ADPCM objective 
of withstanding as coarse quantization as possible. The 
simulations cited in Section V-C included a quantizer, yet 
performed quite well. Thus reasonable behavior can be 
expected when this quantization error is small relative to w. 
However, a thorough analysis of its effects is warranted. 
O ther adaptive IIR filtering applications can be expected 
to provide similar “new” issues. 
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