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Abstract—We propose a new blind, adaptive channel shortening
algorithm for updating the coefficients of a time-domain equal-
izer in a system employing multicarrier modulation. The technique
attempts to minimize the sum-squared auto-correlation terms of
the effective channel impulse response outside a window of desired
length. The proposed algorithm, known as “sum-squared auto-cor-
relation minimization” (SAM), requires the source sequence to be
zero-mean, white, and wide-sense stationary, and it is implemented
as a stochastic gradient descent algorithm. Simulation results have
been provided, demonstrating the success of the SAM algorithm in
an AUTHOR: What does ADSL stand for? (ADSL) system.

Index Terms—Adaptive, blind, channel shortening, DMT, equal-
ization, multicarrier, OFDM.

I. INTRODUCTION

M ULTICARRIER modulation (MCM) techniques like or-
thogonal frequency division multiplexing (OFDM) and

discrete multitone (DMT) have been gaining in popularity in
recent years. One reason for this surge in popularity is the ease
with which MCM can combat channel dispersion, provided the
channel delay spread is not greater than the length of the cyclic
prefix (CP). However, if the CP is not long enough, the orthogo-
nality of the sub-carriers is lost, and this causes both inter-carrier
interference (ICI) and inter-symbol interference (ISI). The inad-
equacy of the CP in digital subscriber loop (xDSL) systems can
be seen by considering the standard carrier serving area (CSA)
test loops [1].

A well-known technique to combat the ICI/ISI caused by
the inadequate CP length is the use of a time-domain equal-
izer (TEQ) at the receiver front-end. The TEQ is a filter that
shortens the channel so that the delay spread of the effective
channel impulse response is no larger than the length of the CP.
The TEQ design problem has been extensively studied in the lit-
erature. In [2], Falconer and Magee proposed a minimum mean
squared error (MMSE) channel shortening method, which was
designed for maximum likelihood sequence estimation. More
recently, Melsaet al. [3] proposed the maximum shortening
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signal-to-noise ratio (MSSNR) method, which attempts to mini-
mize the energy outside the window of interest while holding the
energy inside fixed. However, in a point-to-point system such
as DSL, the true performance metric to optimize is the max-
imum bit allocation that does not cause the error probability to
exceed a threshold, and in broadcast systems, the true perfor-
mance metric is the bit error rate (BER) for a fixed bit allocation.
Optimizing the MSE or SSNR does not necessarily optimize the
bit rate [4] or error probability [5]. Recent work [4], [6], [7] has
addressed the problem of maximizing the bit rate in xDSL sys-
tems.

Besides the TEQ structure, there are several alternative struc-
tures that can be used for equalization in multicarrier systems.
Per tone equalization moves the TEQ to the far side of the fast
Fourier transform (FFT) in the receiver, allowing separate equal-
ization for each tone [8], [9]. Alternatively, a decision feed-
back multi-input multi-output (MIMO) equalizer can be used
to cancel the interference by estimating the transmitted sym-
bols, filtering them, and subtracting the result from the received
signal [10]. Yet another approach was devised by Trautmann
and Fliege [11], in which a post-FFT block-equalizer structure
is used. This is similar to the per tone structure, but it is shown
in [11] that the unused tones can be exploited to remove the
ICI from the remaining tones with high performance. However,
each of these approaches requires matrix processing of the re-
ceived signal rather than simple filtering. This paper focuses on
the TEQ structure for equalization since it has a low-complexity
implementation, and via the proposed approach, it can easily be
made to adapt blindly.

All of the TEQ design techniques described above are
nonadaptive (except [2]), and all require training (usually to
estimate the channel). The MMSE solution [2] can be imple-
mented adaptively (using training), but it is cited as converging
very slowly [12]. Chow’s algorithm [13] converges more
quickly, but it usually converges to a distinctly suboptimal set-
ting [12]. Lashkarian and Kiaei [14] have developed an iterative
implementation of Al-Dhahir’s approximate maximum bit rate
method [6], but as cited in [4], the method in [6] makes several
inaccurate assumptions and is not really optimal. Furthermore,
the method in [14] is not truly adaptive in the sense that it
assumes knowledge of large matrices that depend upon the
channel; hence, it is not able to track a time-varying channel.
In [15] adaptive channel shortening is discussed, but the focus
is on the performance metric, and no adaptive algorithm is
explicitly given.

In the context of multicarrier modulation, we use the term
“blind” to refer to an algorithm that does not require knowledge
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of the exact values of the transmitted signal, although other def-
initions could be chosen. An algorithm that exploits the trans-
mission of known signals (including zeros) would not be consid-
ered blind by this definition, but an algorithm that exploits struc-
tural properties of the signal (such as a constant modulus signal
on each tone, or the cyclo-stationarity introduced by the cyclic
prefix) would be considered blind by this definition. The goal of
this paper is to develop a blind, adaptive channel shortening al-
gorithm. The problem of adapting the 1-tap frequency-domain
equalizer (FEQ) [13] per tone is not considered, but this is usu-
ally done through the use of frequency-domain training or deci-
sion-directed least mean squares.

De Courville et al. have proposed a blind, adaptive equal-
izer for a multicarrier receiver [16], but it performs equaliza-
tion to a single spike rather than channel shortening. The al-
gorithm assumes that there is oversampling in the transmitter,
which has the effect of zero-padding the IFFT input. The equal-
izer is adapted in order to restore the zeros on the corresponding
FFT outputs. The transmission of zeros on certain carriers could
be thought of as training signals consisting of zeros; therefore,
the use of the term “blind” for this algorithm is debatable. How-
ever, [16] is the first algorithm in the literature that performs
adaptive equalization (to a single spike) for a multicarrier re-
ceiver.

Martin et al. [17] have proposed a low-complexity, blind,
adaptive TEQ algorithm known as MERRY, but it only updates
once per symbol. The MERRY algorithm is based on restoring
the redundancy introduced by the CP, and the cost function
is the mean squared error between the data in the CP and the
corresponding data in the signal. In contrast, the sum-squared
auto-correlation minimization (SAM) algorithm proposed in
this paper adapts in order to suppress the received signal’s
autocorrelation outside of a CP-length window. SAM converges
much faster than the MERRY algorithm but at the expense of
significantly higher complexity. SAM has the added advantage
of not requiring an estimate of the symbol synchronization (i.e.,
the location of the start of each data block). MERRY requires
that the channel not vary significantly over each symbol (since
it only updates once per symbol), but the SAM algorithm can
track time variations within a symbol (since it can update once
per sample).

The adjectives “blind” and “adaptive” need some motivation.
In the DSL case, the TEQ is expected to converge completely
by the end of the initialization period, which consists entirely
of training symbols. Thus, one can argue that in that situation,
a blind algorithm is unnecessary. However, if there are any fur-
ther variations in the channel, for example, due to temperature
variations, then a blind algorithm can track those variations. In a
wireless environment, one wishes to adapt continually, even be-
tween training frames, since the channel is constantly changing.
Finally, even when training is available, a blind algorithm does
not require knowledge of where the training symbol lies in the
data. In particular, SAM does not even need to know where the
symbol boundaries are.

Beyond being necessary in a time-varying environment,
adaptive realizations can also lead to reduced complexity
algorithms. Nonadaptive algorithms such as the minimum MSE
solution and maximum SNR solution require matrix inversions

Fig. 1. System model for an adaptive TEQ.

and eigen decompositions, which are very costly, whereas
adaptive algorithms (such as SAM) are usually vector update
rules and can be thought of as just iterative approximation
algorithms.

The remainder of this paper is organized as follows. Section II
presents the system model and notation. Sections III and IV dis-
cuss the SAM cost function and gradient descent algorithm. Sec-
tion V studies the properties of the cost function. Section VI pro-
vides simulations of SAM in an ADSL environment, and Sec-
tion VII concludes.

II. SYSTEM MODEL

The system model is shown in Fig. 1. Let be the source
sequence to be transmitted through a linear finite-impulse-re-
sponse (FIR) channelof length taps. Let be the
received signal, which will be filtered through an -tap
TEQ with an impulse response vectorto obtain the output se-
quence . Let denote the effective channel-equal-
izer impulse response vector of length taps, where

. The TEQ will be adapted with the goal of short-
ening the effective channelsuch that it possesses significant
coefficients only within a contiguous window of size
taps. In multicarrier systems, is the CP length. That is, we
wish to minimize the energy of the coefficients in the effective
channel outside the window of interest. The received sequence

is

(1)

and the output of the TEQ is

(2)

where . Throughout, we
make the following assumptions.

1) The source sequence is white, zero-mean, and wide-
sense stationary (W.S.S.).

2) The relation holds for multicarrier (or block-
based1 ) systems, i.e., the combined channel has length
less than half the FFT (or block) size.

3) The source sequence is real and has a unit variance.

1Vaidyanathan and Vrcelj [18] have proposed the use of a block structure and
a cyclic prefix for single-carrier systems, in which case channel shortening may
be needed.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 01,2020 at 22:14:15 UTC from IEEE Xplore.  Restrictions apply. 



3088 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

4) The noise sequence is zero-mean, i.i.d., uncorrelated
to the source sequence and has a variance.

The first assumption is critical for the proposed channel short-
ening algorithm. Assumption two is important for analytical rea-
sons, but if it is modestly violated, the performance degradation
should be minor. This assumption is irrelevant for the applica-
tion of SAM to equalization of (non-CP-based) single carrier
systems. The last two assumptions are for notational simplicity.

III. SUM-SQUARED AUTO-CORRELATION MINIMIZATION

This section motivates the use of the SAM cost function and
shows how to blindly measure it from the data. Consider the
auto-correlation sequence of the combined channel-equalizer
impulse response, i.e.,

(3)

For the effective responseto have zero taps outside a window
of size , it is necessary for the auto-correlation values

to be zero outside a window of length , i.e.,

(4)

Hence, one possible way of performing channel shortening is
by ensuring that (4) is satisfied by the auto-correlation function
of the combined response. However, this has a trivial solution
when or, equivalently, . This trivial solution can
be avoided by imposing a norm constraint on the effective re-
sponse, for instance or, equivalently, .

It should be noted that perfect nulling of the auto-correla-
tion values outside the window of interest is not possible since
perfect channel shortening is not possible when a finite length
baud-spaced TEQ is used. This is because if the channel has
zeros, then the effective response will always have
zeros. If we had decreased the length of the channel to, say,

taps, then the combined response would only have
zeros, which contradicts our previous statement.

Hence, we define a cost function in an attempt to
minimize (instead of nulling) the sum-squared auto-correlation
terms, i.e.,

(5)

The TEQ optimization problem can then be stated as

(6)

Consider the auto-correlation function of the sequence

(7)

where , and
. To simplify

...
...

... (8)

where . Since is i.i.d., this ma-
trix will be Toeplitz, with only one diagonal of nonzero entries.
It becomes a shifting matrix, i.e., its affect on a vector is to shift
the elements of the vector up or down (depending on). Since
the signal and noise are uncorrelated, , and

. Finally, becomes another shifting
matrix, provided that the assumption holds.
If this is violated, then the matrix is still Toeplitz, but for some
values of , there will be another diagonal of nonzero entries,
corresponding to the correlation between samples in the trans-
mitted symbol end and samples in the transmitted cyclic prefix.
Fortunately, assumption 2 is a reasonable one, as can be seen by
considering the CSA test loop channels [1] for the case of DSL:

, and , so .
Now, (7) can be simplified to

(9)

Under the noiseless scenario, , and hence, (5)
can be rewritten as

(10)

In the presence of noise, (10) is only approximately true. This
suggests approximating the cost function of (5) by

(11)

In many cases, the equalizer length is comparable to
or shorter than the cyclic prefix length. (This is true, for ex-
ample, in [3] and [4].) In such situations, both noise terms in
(11) vanish entirely, due to the empty summations. Even if
is significantly longer than , for typical SNR values, will
be very small (compared with the unit variance source signal);
therefore, we can neglect the last term in (11). Furthermore, the
summands in the second term will be both positive and negative
so they will often add to a small value. Combining this with the
fact that the second summation is multiplied by the (small) noise
variance, we are justified in ignoring the second term in (11) as
well. This leaves us with (and ex-
actly if ). Accordingly, we will henceforth drop the
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hat on and ignore the noise terms. The effect of noise on
the performance of SAM is investigated in Section VI.

Note that the cost function depends only on the output
of the TEQ, namely, , and the choice of . Hence, a gra-
dient-descent algorithm over this cost function, with an addi-
tional norm constraint on or , requires no knowledge of
the source sequence. Such an algorithm will be derived in Sec-
tion IV. In addition, note that the channel length must be
known in order to determine . In ADSL systems, the channel
is typically modeled as a length FIR filter, where
is the FFT size. The CSA test loops [1] typically have almost all
of their energy in 200 consecutive taps; therefore, the FFT size
is a very conservative choice for in this application. For
other applications, the user must choose a reasonable estimate
(or overestimate) for based on typical delay spread measure-
ments for that application.

IV. A DAPTIVE ALGORITHM

The steepest gradient-descent algorithm over the cost surface
is

(12)

where denotes the step size, and denotes the gradient with
respect to . To implement this algorithm, an instantaneous cost
function is defined, where the expectation operation is replaced
by a moving average over a user-defined window of length.

(13)

The value of is a design parameter. It should be large enough
to give a reliable estimate of the expectation, but no larger, as
the algorithm complexity is proportional to. The “stochastic”
gradient-descent algorithm is then given by

which simplifies to

(14)

The TEQ update algorithm described in (14) will be referred
to as the SAM algorithm, as it attempts to minimize the cost
function described in (5).

An alternate method of implementing the algorithm comes
from using auto-regressive (AR) estimates instead of moving
average (MA) estimates. Let

...

...
...

where is a design parameter, and is the
convolution matrix of the equalizer

...
...

...
. . .

...
...

(15)

Using these AR estimates, the update rule can be written as

...
... (16)

With both implementations, must be periodically renormal-
ized (or else the constraint may be implemented in some other
fashion, such as by adding a penalty term onto the cost func-
tion). The advantage of this implementation is that it allows us
to form an update at each time instant, rather than everyth
time instant, where is the number of samples used in the block
averaging of the expectation estimates. The disadvantage is that
the estimates now depend more on previous settings ofrather
than the current setting, but if the time variations are reason-
ably slow, this should not matter. In terms of complexity, the
auto-regressive implementation of (16) requires approximately

multiplications and additions (each) per update,
plus a division for renormalization, whereas the moving average
implementation of (14) requires approximately
multiplications and additions (each) per update, plus a divi-
sion for renormalization. Hence, the complexity per unit time
is approximately the same for the two if (14) is implemented
only once every samples. However, the moving average im-
plementation is intuitively appealing and is useful for analytic
purposes.
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The choice of in the AR implementation is analogous to the
choice of in the MA implementation of (13). Both the MA
and the AR estimates are unbiased:

(17)

A “fair” comparison of the two approaches should setand
such that the variances of the two estimates are equal, yet

closed-form expressions for the variances of the two estimates
are difficult to obtain. An examination of (17) suggests that

is a reasonable choice.
As stated earlier, to prevent the algorithm from collapsing the

TEQ to an all-zero solution, the equalizer parameters can be nor-
malized after each update to ensure that the norm of the effective
response is unity, i.e., . As the source sequence is as-
sumed to be white, from (9)

(18)

and the norm of can be approximately determined by mon-
itoring the energy of the output sequence . The approxi-
mation does not matter much as it is only used to keep
nonzero, and the actual value of does not matter. Similarly,
if the source is nonwhite, (18) does not hold exactly, but main-
taining will still keep . A more easily
implementable constraint is the unit norm constraint on, i.e.,

. This is easier to implement because we have ready
access to but not to ; therefore, this is the constraint used in
the simulations in Section VI.

V. PROPERTIES OF THECOST FUNCTION

As is typical of blind equalization algorithms, for instance the
constant modulus algorithm (CMA) [19], SAM’s cost surface
can be expected to be multimodal. If it has bad local minima,
then initialization to ensure convergence to the global minimum
becomes important. In general, the SAM cost surface will have
local minima. This is a direct result of the following theorem.

Theorem 1: The SAM cost function is invariant to the opera-
tion , where denotes with the order of its elements
reversed.

Proof: Consider the autocorrelation sequences of the
combined channels and .

(19)

Since the autocorrelation sequence is invariant to reversing the
order of the elements of , the SAM cost is also invariant to
such a switch.

Fig. 2. Contours of the SAM cost function. The two circles are the global
minima of the1=SSNR cost function. The cost function is symmetric about the
dashed line.

The upshot of Theorem 1 is that whenever there is a good
minimum of the SAM cost surface, say at , there will also be
another minimum at . There is no reason to expect that the
flipped is as good an equalizer as (in terms of achiev-
able bit rate, for example); therefore, each good minimum may
give rise to a bad minimum. Here, “good” and “bad” mean that
even though the SAM cost is the same, the ultimate performance
metric (achievable bit rate, for ADSL) will not be the same for
the two settings. Another consequence is that the SAM cost sur-
face is symmetric with respect to ; therefore, there
will be minima, maxima, or saddle points along the subspace

.
To visualize Theorem 1, consider the following example. The

channel is , the cyclic prefix length is 1 (so we
want a 2-tap channel), there is no noise, the equalizerhas
three taps, and we use the unit norm constraint . With
this constraint, the equalizer must lie on a unit sphere; there-
fore, we can represent the equalizer in spherical coordinates:

. In this case, is equivalent to switching
and (the first and third taps), which is equivalent to re-

flecting over or , and is equivalent
to the combination of reflecting over and adding to

mod .
A contour plot of the SAM cost function is shown in Fig. 2.

The axes represent normalized values of the spherical coordi-
nates and . The contours are logarithmically spaced to show
detail in the valleys. There are four minima, but they all have
equivalent values of the SAM cost, due to the equivalence rela-
tions and .

We compare the locations of these minima to those of a tra-
ditional channel shortening cost function: the shortening SNR
(SSNR) [3]. The SSNR is defined as

SSNR (20)
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Fig. 3. Contours of the1=SSNR cost function. The four circles are the global
minima of the SAM cost function.

where is the effective channel impulse response inside the
window of interest (of width ), and is the effective
channel impulse response outside this window. Thus, for our
5-tap effective channel, we pick a 2-tap window and compute
the energy of these taps and then divide by the energy of the re-
maining three taps. For each equalizer setting, we will compute
the combined channel, pick the 2-tap window with the highest
SSNR, and then plot the inverse of that value (so that we are
looking for minima rather than maxima). Contours of this cost
function are shown in Fig. 3. Comparison of the two contour
plots show that the pair of global minima ofSSNR match up
nicely with two of the global minima of the SAM cost. Thus,
if we find a pair of global minima of the SAM cost and they
have a high value of SSNR, we can fix this by switching to
the other global minima of SAM simply by reversing the order
of taps in .

VI. SIMULATIONS

This section provides a numerical performance assessment
of SAM in an ADSL environment. All of the Matlab code is
available in [20]. Parameters were chosen to match the standard
for ADSL downstream transmission: The cyclic prefixwas 32
samples, the FFT size was 512, the equalizer (TEQ) had 16 taps,
and the channel was CSA test loop 1 [1], which is available in
[21]. The noise power was set such that dB.
We used 75 symbols (of 544 samples each), and SAM used the
auto-regressive implementation of (16) with and
with the unit norm equalizer constraint. The initialization was a
single spike, and the step size was 5 (such a large step size can
be used because the SAM cost is very small, so the update size
is still small). SAM is compared with the maximum shortening
SNR solution [3], which was obtained using the code at [21],
and the matched filter bound (MFB) on capacity, which assumes
no ICI.

Two types of noise are considered: white Gaussian noise and
near-end cross-talk (NEXT) [13], which is highly colored. The
NEXT was generated by exciting a coupling filter with spectrum

Fig. 4. Channel (dashed) and shortened channel (solid) impulse responses.
The shortened channel should have 33 taps.

Fig. 5. SAM cost versus iteration (not symbol) number for 40 dB SNR.

with white noise [14]. The
constant was chosen so that the variance of the NEXT was

, with chosen to achieve the desired SNR. The filter
is an ADSL upstream spectral mask that passes frequencies be-
tween 28 and 138 kHz since the upstream signal is the source of
the NEXT for the downstream signal. The code to generate the
NEXT was obtained from [21].

Fig. 4 shows the channel and the combined channel-equal-
izer after running SAM. Figs. 5 and 6 show the SAM cost and
achievable bit rate versus the iteration number. The fact that the
SAM cost is not monotonically decreasing in the first few hun-
dred samples is because of the renormalization. After each iter-
ation, the equalizer is divided by its norm, and this projection
causes the algorithm to no longer be a gradient descent algo-
rithm (though it is approximately so). The bit rate is not mono-
tonically increasing because the SAM cost bears no direct rela-
tion to the bit rate. At 340 iterations, SAM achieves 96% of the
MFB but then drops and eventually rises again to 74% of the
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Fig. 6. Achievable bit rate versus iteration number (not symbol number) for 40
dB SNR. The dashed line and the diamonds correspond to the maximum SSNR
solution and the matched filter bound.

Fig. 7. Achievable bit rate versus SNR for SAM and the maximum SSNR
algorithm for white noise and for colored noise (NEXT).

bound. The fact that the SAM cost is steadily decreasing when
the bit rate decreases and then increases again is very important
It indicates that the SAM minima and the bit rate maxima are
not in exactly the same location. Note that SAM performs sim-
ilarly for white and for colored noise.

Fig. 7 shows the achievable bit rate versus SNR for SAM and
for the maximum shortening SNR algorithm of [3] for white
noise and for NEXT. The bit rate is determined based on

SNR
(21)

The bit rate was computed using a 6-dB margin and a 4.2-dB
coding gain. For more details, see [4] or [21]. The bit rate was
determined for the settings SAM arrived at after 75 DMT sym-

bols. Observe that for low SNR, the performance of SAM and
the MSSNR method are comparable, and the performance of
SAM degrades (relatively) for high SNR. This is because when
the noise is high, SAM only needs to reduce the ICI below the
noise floor, but when the SNR is 60 dB, the excess ICI becomes
more noticeable. For very low SNR (less than 15 dB for white
noise, less than 25 dB for NEXT), the performance of SAM
degrades, presumably due to the noiseless assumption in the
derivations. However, typical SNR values for ADSL are 40 to
60 dB, and an SNR less than 25 dB is very unusual. BER curves
are not included because for ADSL, the bit allocation on each
tone is increased until the BER becomes ; therefore, a BER
curve would be flat as a function of SNR.

VII. CONCLUSIONS ANDFUTURE WORK

A new blind, adaptive channel shortening algorithm based
on a windowed sum-squared auto-correlation minimization has
been proposed. The effectiveness of the algorithm to blindly
shorten the channel has been demonstrated numerically. How-
ever, SAM may perform poorly in situations such as when the
source sequence is not white or when there is extremely strong
cross-talk (or other forms of colored noise).

Proper initialization of the TEQ is necessary to ensure the
convergence of the SAM algorithm to a good minima. Further
studies are needed to characterize the cost function and formu-
late suitable design rules to ensure good performance. Robust-
ness of the algorithm to receiver noise and violation of the as-
sumption of source whiteness need to be investigated further as
well.
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