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This paper provides a tutorial introduction to the constant
modulus (CM) criterion for blind fractionally spaced equalizer
(FSE) design via a (stochastic) gradient descent algorithm such
as the constant modulus algorithm (CMA). The topical divisions
utilized in this tutorial can be used to help catalog the emerging
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gradient descent algorithms used to minimize it.
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I. INTRODUCTION

Information-bearing signals transmitted between remote
locations often encounter a signal-altering physical channel.
Examples of common physical channels include coaxial,
fiber optic, or twisted-pair cable in wired communications
and the atmosphere or ocean in wireless communications.
Each of these physical channels may cause signal distortion,
including echoes and frequency-selective filtering of the
transmitted signal. In digital communications, a critical
manifestation of distortion is intersymbol interference (ISI),
whereby symbols transmitted before and after a given
symbol corrupt the detection of that symbol. All physical
channels (at high enough data rates) tend to exhibit ISI. The
presence of ISI is readily observable in the sampled impulse
response of a channel; an impulse response corresponding
to a lack of ISI contains a single spike of width less than
the time between symbols. An example of a terrestrial mi-
crowave channel impulse response [obtained from the Rice
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Fig. 1. Terrestrial microwave channel impulse response magni-
tude,1=T = 30� 10

6 symbols/s (SPIB channel #3).

University Signal Processing Information Base (SPIB)1] is
shown in Fig. 1.

Linear channel equalization, an approach commonly used
to counter the effects of linear channel distortion, can
be viewed as the application of a linear filter (i.e., the
equalizer) to the received signal. The equalizer attempts to
extract the transmitted symbol sequence by counteracting
the effects of ISI, thereby improving the probability of
correct symbol detection.

Since it is common for the channel characteristics to be
unknown (e.g., at startup) or to change over time, the pre-
ferred embodiment of the equalizer is a structure adaptive in
nature. Classical equalization techniques employ a time-slot
(recurring periodically for time-varying situations) during
which a training signal, known in advance by the receiver,
is transmitted. The receiver adapts the equalizer (e.g., via
LMS [6], [27]) so that its output closely matches the known

1This microwave channel database resides at http://spib.rice.edu/
spib/microwave.html.
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(a) (b)

Fig. 2. (a) Nonconstant modulus source constellation (16-QAM)
versus (b) CM source constellation (8-PSK).

reference training signal. Since the inclusion of such signals
sacrifices valuable channel capacity, adaptation without
resort to training, i.e., blind adaptation, is preferred. The
most studied and implemented blind adaptation algorithm
of the 1990’s is the constant modulus algorithm (CMA).

CMA seeks to minimize a cost defined by the CM
criterion. The CM criterion penalizes deviations in the
modulus (i.e., magnitude) of the equalized signal away from
a fixed value. In certain ideal conditions, minimizing the
CM cost can be shown to result in perfect (zero-forcing)
equalization of the received signal. Remarkably, the CM
criterion can successfully equalize signals characterized by
source alphabets not possessing a constant modulus [e.g.,
16-quadrature amplitude modulation (QAM)], as well as
those possessing a constant modulus (e.g., 8-PSK) (see
Fig. 2). This paper attempts to explore the behavior of CMA
by considering the similarities between the CM and mean-
squared error (MSE) criteria. This relationship is important
because of well-known connections between MSE and the
actual quantity we desire to minimize: probability of bit
error (e.g., see the discussion in [5]).

Plotting the CM cost versus the equalizer coefficients
results in a surface referred to as the CM cost surface. Sto-
chastic gradient descent (SGD) algorithms [6], [13] attempt
to minimize the CM cost by starting at some location on
the surface and following the trajectory of steepest descent.
The CM cost surface characteristics are important because
they can be used to understand the behavior of any SGD
algorithms that attempt to minimize the CM cost, such as
CMA. Specifically, these characteristics lend insight into
the channel, equalizer, and source properties which affect
SGD behavior.

The success of a stochastic gradient descent equalizer
adaptation algorithm is dependent on a certain amount of
stationarity in the received process. Thus, throughout the
paper, we restrict our focus to stationary source and noise
processes and to channels whose impulse response is fixed
or slowly2 time varying.

A. History

In the literature, blind equalization algorithms blossomed
in the 1980’s. The two principal precursors are Lucky’s

2Here “slow” is considered relative to the tracking speed of the SGD
algorithm.

blind decision-direction algorithm [11] and Sato’s algorithm
[19]. What we term the CM criterion was introduced
for blind equalization of QAM signals in [29] and of
pulse-amplitude modulation (PAM) and FM signals in
[30]. By the end of the 1980’s blind equalizers were
commercialized for microwave radio [9]. By the mid 1990’s
blind equalizers were realized in very large scale integration
(VLSI) for high definition television (HDTV) set-top cable
demodulators [23]. The current explosion of interest in the
CM criterion stems from blind processing applications in
emerging wireless communication technology (e.g., blind
equalization, blind source separation, and blind antenna
steering) and from CMA’s record of practical success.

B. Our Mission

This paper is intended to be a resource to both readers
experienced in blind equalization as well as those new to the
subject. In a tutorial style, Section I-C provides background
in fractionally spaced equalizer (FSE) modeling and design.
(For baud-spaced equalizer (BSE) design, we refer the
interested reader to a variety of classical references, e.g.,
[5], [6], [10], and [16].) Section II then illustrates several
low-dimensional examples that help to characterize the
behavior of FSE’s adapted under the constant modulus
criterion.

In Section III we construct a categorization of literature
focusing on the application of the CM criterion to blind
equalization. The annotated bibliography in Appendix III
catalogs the existing literature according to the classifica-
tions of Section III, providing the reader with a valuable
tool for further research. Our attempt to be exhaustive
is justified only by the relative infancy of the subfield;
evidence of the emerging status of this literature is seen
in the wealth of conference papers in the bibliography of
Appendix III.

Following the introductory FSE tutorial, Section I-E
presents a novel view of classical nonblind adaptive equal-
ization that illuminates the connection between the MSE
and CM criteria. Specifically, the LMS-with-training strat-
egy requires preselection of a design variable, namely
training sequence delay, that may lead to a potentially
suboptimal solution. The delay-optimized MSE (a function
of equalizer parameters only) yields a cost surface (see
Fig. 7) for which a simple LMS-like parameter update
algorithm is not known to exist. Remarkably, the CM
criterion offers a proxy for this surface for which there
exists a (blind) parameter update algorithm, namely, CMA.

C. Fractionally Spaced Linear Equalization

In this section we describe the fractionally spaced equal-
ization scenario and present some fundamental results re-
garding minimum MSE (i.e., Wiener [6]) equalizers. This
material is primarily intended to provide background and
context. For simplicity, our focus is restricted to a -
spaced FSE, where denotes the baud, or symbol, duration.
All results are extendible to the more general -spaced
case. Examples of seminal work on fractionally spaced
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Fig. 3. Baseband model of single-channel communication system
with T=2-spaced receiver.

Fig. 4. Multirate system model.

equalization include [4], [12], [14], and [26], while more
comprehensive references are [5] and [18].

1) Multirate and Multichannel System Models:Consider
the single-channel model illustrated in Fig. 3. A (possibly
complex-valued) -spaced symbol sequence is
transmitted through a pulse shaping filter, modulated onto
a propagation channel, and demodulated. We assume all
processing between the transmitter and receiver is linear
and time invariant (LTI) and can thus be described by the
continuous-time impulse response . The received signal

is also corrupted by additive channel noise, whose
baseband equivalent we denote by . The received
signal is then sampled at -spaced intervals and filtered
by a -spaced finite impulse response (FIR) equalizer
of length . (An even length is chosen for notational
simplicity.) This filtering can be regarded as a convolution
of the sampled received sequence with the equalizer
coefficients . Finally, the FSE output is decimated
by a factor of two to create the-spaced output sequence

. Decimation is accomplished by disregarding alternate
samples, thus producing the baud-spaced “soft decisions”

. We note that, in general, all quantities are complex
valued. For clarity, we reserve the indexfor baud-spaced
quantities and the index for fractionally spaced quantities
throughout the paper.

Appendix I derives the equivalence between the
continuous-time model in Fig. 3 and the discrete time
models in Figs. 4 and 5, both constructed using-spaced
samples of and . Fig. 4 depicts the multirate model
while Fig. 5 depicts the multichannel model. Though our
derivation of the discrete-time models is based on the
single-channel system in Fig. 3, the equivalence between
the multirate and multichannel models suggests that we
could have based our model on a two-sensor (-sampled)
communication system instead. For a concise discussion
on the equivalence between temporal and spatial diversity,
see [15].

The multirate model of Fig. 4 uses the discrete-time
fractionally spaced channel coefficients
and the discrete-time random process .
The multichannel model of Fig. 5 subdivides these sample
sequences into even and odd baud-spaced counterparts (of
relative delay ), so that and

Fig. 5. Multichannel system model.

for . In a similar manner, the FSE
coefficients are partitioned as and

.
Given a fractionally spaced channel of finite3 length ,

we can collect the even and odd sets of equalizer and
channel coefficients into column vectors

(1)

It is possible to form the (baud-spaced) impulse response
of the linear system relating to using a pair of

baud-spaced convolution matrices and , where
.

...
...

.. .

...

...
...

. . .

...

(2)

3In practice, we would consider the fractionally spaced channel to be
of “finite length”M if the response magnitude can be said to decay below
some sufficiently small threshold for all timet �M(T=2).

JOHNSONet al.: BLIND EQUALIZATION USING CONSTANT MODULUS CRITERION 1929

Authorized licensed use limited to: Cornell University Library. Downloaded on August 01,2020 at 22:17:41 UTC from IEEE Xplore.  Restrictions apply. 



Convolution matrices are constructed so that, for example,
the vector is composed of coefficients from the
convolution .

Defining the compound matrix and vector quantities

(3)

we can rewrite the noise-free multichannel convolution
equation (39) compactly in terms of the (baud-
spaced) system impulse response coefficients

(4)

Equation (4) indicates that maps the FSE coefficient
vector to its corresponding system response. Note that
is a Sylvester matrix [8].

A different (though essentially equivalent) construction of
and deserves mention. First consider the fractionally

spaced convolution matrix constructed as in either
or in (2), but from a vector of fractionally spaced

channel coefficients

...
...

.. .
...

. . .

. . .
...

(5)

The product of with FSE coefficient vector
yields the fractionally spaced im-

pulse response between the upsampler and downsampler in
Fig. 4, i.e., [See (47) in Appendix I-B.] Since
the baud-spaced impulse responseis formed using the odd
coefficients of , we reason that can be constructed
from the product of and a row-decimated version of .
In other words, where is formed from the odd4

rows of

...
...

.. .
...

...
. . .

. . .
...

(6)
Notice that is a column reordering of and is a row
reordering of . Thus, we consider the alternate formulation
of the “decimated fractionally spaced convolution matrix”

in (6) as essentially equivalent to in (3).

4Throughout, we assume a vector/matrix indexing that starts with zero
rather than one, so that the first row is considered “even” and the second
“odd.”

The convention we adopt in constructingand , which
is sometimes referred to as “odd-sampled” decimation,
connects the odd subchannel output to the even subequalizer
input and vice versa (see Fig. 5). Appendix I discusses the
implications of this choice.

In the baud-spaced equalization context [10], [16], the
convolution matrix relating the equalizer coefficient
vector to the baud-spaced impulse response does not have
the compound form of (3) or (6). Instead it appears like

(or ) in (2), but with columns constructed from the
-spaced samples of the channel response. In the absence

of channel noise, this construction of yields the BSE
design equation

(7)

where is the baud-spaced equalizer coefficient vector.
2) Requirements for Perfect Source Recovery:Equation

(4) leads to what are commonly referred to as the
“length and zero” conditions for perfect fractionally
spaced equalization. We use the term perfect equalization
interchangeably with perfect source recovery (PSR), i.e.,

for some fixed delay and any source sequence
. In addition to the absence of noise, PSR requires the

“zero-forcing” system impulse response

(8)

where the nonzero coefficient is in theth position (and
must satisfy ). This response characterizes a
system which merely delays the transmitted symbols by
baud intervals. In order to achieve this particular response,
the system of linear equations described by must
have a solution. For PSR under arbitrary,5 must be full
row rank [22]. This condition is sometimes referred to as
strong perfect equalization.

The full-rank requirement implies that must have at
least as many columns as rows, which, in the -spaced
case, results in the following equalizer length requirement:

(9)

Applying the same argument to (7) reveals the reason that
no FIR BSE can perfectly equalize a nontrivial FIR channel:
the row dimension of always exceeds the column
dimension. The -spaced full rank requirement also
implies that the polynomials specified by the coefficients

and share no common roots (i.e., the polynomials
are coprime). Appendix I-C discusses this common-root
condition in more detail.

D. Mean-Square Error Criterion

In the presence of noise, we desire to minimize the
expected squared magnitude of the recovery error

(10)
5A necessary and sufficient condition on perfect equalization (in the

absence of noise) is that there exist a� for which h� lies in the column
space ofC. Hence, there exist channels that do not result in full row-rank
convolution matrices but that do satisfyh� = Cf for particular�. Though
we acknowledge the existence of such channels, we consider them to be
trivial in the physical sense.
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for a particular choice of delay (). We will see that this
criterion can be interpreted as the best compromise between
ISI and noise amplification in a minimum mean-squared
error (MMSE) sense.

To formulate this error criterion more precisely, we
collect the previous -spaced elements of the source
sequence into the vector

(11)

and the last fractionally sampled values of noise into
vector

(12)

where the collection of even noise samples follows the
collection of odd noise samples to be consistent with
our definitions of and in (3). [Note, however, that
this particular ordering of samples in the noise vector is
inconsequential when assuming an independent identically
distributed (i.i.d.) noise process.] With these quantities, the

th equalizer output can be written
compactly as

(13)

yielding an expression for the recovery error

(14)

Under the assumption that the noise and source processes
are i.i.d. and jointly uncorrelated, with respective variances

and , the expected value of the magnitude-squared
recovery error becomes

(15)

(Appendix I-D discusses the independence assumption re-
garding fractionally sampled channel noise.) Note that (15)
is proportional to the source-power-normalized MSE cost
function

(16)

where . In terms of , the
technique of “completing the square” yields

(17)

Note that is positive definite for .
Equation (17) indicates that the equalizer parameter vec-

tor minimizing is

(18)

and it follows that the -optimal MSE

(19)

(20)

remains a function of system delay. We make this
property explicit by adopting the notation . It
follows from (8) and (20) that the optimum delay

Fig. 6. f -optimal MSE,JMSE(fy; �), versusT -spaced delay�
for the channel of Fig. 1 and 30 dB SNR using 300-tap FSE.

corresponds to the index of the minimum diagonal element
of [7]. This is written formally as

(21)

For a -spaced FSE with 300 taps and an SNR ( )
of 30 dB, Fig. 6 plots versus for the “typical”
impulse response of Fig. 1. Note the degree to whichcan
affect MSE performance.

We conclude that proper preselection ofis important
for equalizer-based minimization of . This idea
of fixed- optimization is of particular relevance because it
describes the typical adaptive equalization scenario when a
training signal is available [17].

E. An Amalgamated MSE Cost Function

When the source is differentially encoded [5], knowledge
of absolute phase is not required for symbol detection. For
example, either or (for all )
would form an acceptable output sequence for differentially
encoded binary phase-shift keying (BPSK). (For complex-
valued source alphabets such as QAM, we allow

for fixed .) Therefore, an
acceptable system impulse response can include a fixed
phase shift in addition to a bulk system delay. With
this in mind, we construct a phase- and delay-optimized
amalgamated cost function

(22)

where is one of the set of allowable phase shifts (e.g.,
for real-valued PAM).

is a multimodal fabrication, bearing similarity to a
-dimensional egg carton. A surface plot appears

in Fig. 7 for well-behaved -spaced channel defined
in Table 1. By “well-behaved” we mean that has
no common or nearly common subchannel roots. Fig. 7
indicates that if we minimize by a gradient descent
strategy, then the initial value ofwill determine the values
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Fig. 7. JA for well-behaved channelc1 and no noise in equalizer
(f ) space.

Table 1 Summary of Channels Used for Two-Tap FSE Examples

of and to which the descent scheme will asymptotically
converge. In other words, optimization of by gradient
descent accomplishes preselection ofvia choice of -
initialization.

Section II attests to the claim thatthe CM criterion
serves as a close proxy to , which is robust under typical
operating conditions.For a preview, compare the CM cost
surface in Fig. 8 to the amalgamated MSE surface in Fig. 7
for the same channel . As such, the CM criterion offers a
performance metric that bears many similarities to MSE but
which is capable of minimization by (stochastic) gradient
descent schemes conducted blindly with respect to the
transmitted symbols.

With our tutorial orientation, Section II restricts focus
to a two-tap FSE design task that permits visualization
of equalizer-parameter-space cost-contour plots illustrating
various properties of the CM cost function . In par-
ticular, we can isolate an “ideal zero-cost” situation where
the stationary points in and match exactly and
where the minima achieve zero cost. This special case
requires several assumptions not often satisfied in practice.
We will examine examples of CM-adapted FSE behavior
conducted under violations of these requirements for ideal
zero-cost equalization. This implicit taxonomy will be used
in Section III to provide an overview of the literature
citations in the annotated bibliography of Appendix III.

II. TWO-TAP ILLUSTRATIVE EXAMPLES

The shape of the cost surface defining a particular sto-
chastic gradient algorithm often lends great insight into the

Fig. 8. JCM for well-behaved channelc1 and no noise in equal-
izer (f ) space.

expected behavior of that algorithm. With this in mind, we
embark on a tutorial study of the cost surface defined by
the CM criterion and descended by CMA. First, however,
consider the following list of features characterizing a
generic (stochastic) gradient descent algorithm.

— Far from a stationary point, the gradient (i.e., first
derivative) of the cost surface determines local con-
vergence rate.

— Near a stationary point, the local curvature (i.e.,
second derivative) of the cost surface determines
local convergence rate.

— Local minima with nonzero cost induce excess
steady-state error in stochastic gradient descent
algorithms with nonvanishing step-sizes.

— Multimodal surfaces may exhibit local minima of
varying cost, thus linking initialization to achievable
asymptotic performance.

— “Poor” initialization on a multimodal surface can
lead a trajectory into temporary capture by (one
or more) saddle points, resulting in arbitrarily slow
convergence to a minimum.

— Nontrivial deformations of a multimodal surface re-
locate each saddle point and alter the region of
attraction associated with each local minima.

The following sections combine low-dimensional examples
with the well-known characteristics above to formulate
an intuitive understanding of the CM criterion and its
connection to the MSE criterion.

A. Two-Tap Equalizer Design Equations

As discussed in Section I-C, satisfaction of the “length
and zero” conditions ensures an exact solution to the zero-
forcing equation . For a two-tap -spaced FSE,
the length condition is satisfied for channels with impulse
responses and shorter. For a length-four
channel, the root condition is satisfied when the even and
odd subchannel polynomials and

have distinct roots.

1932 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998

Authorized licensed use limited to: Cornell University Library. Downloaded on August 01,2020 at 22:17:41 UTC from IEEE Xplore.  Restrictions apply. 



In this case, (3) specifies that the FSE design quantities
take the following form:

(23)

Since has one nonzero coefficient, the zero-forcing
equalizer will be proportional to either the first or the second
column of . Thus, all four channel parameters enter into
the design of ; the sub-equalizers of Fig. 5 are not simply
inverses of their respective subchannels.

B. Introduction to the CM Cost Function

The CM cost function can be motivated using the tem-
porary assumption that the source is binary valued (1).
In this case, has a constant squared-modulus of one
( ). Under perfect symbol recovery we know that
the output has the same CM property and can thus
imagine a cost that penalizes deviations from this output
condition. This, in fact, defines the CM cost function for
a BPSK source

Appendix II presents more general versions of the CM
cost function and derives expressions for in terms of
channel parameters, particular source and noise statistics,
and equalizer coefficients.

The leap of faith, first espoused by [29], is the appli-
cation of to a multilevel (i.e., nonconstant modulus)
source. Reference [29], which addressed baud-spaced blind
equalization via minimization of , makes the first
observation concerning the proximity of the and
minima.

It should also be noted that the equalizer coefficients
minimizing the dispersion functions closely approxi-
mate those which minimize the mean squared error.

This is remarkable because an approximation of
can be formed solely from the equalizer output; no
training signal is required to compose an accurate gradient
approximation for use in a stochastic gradient minimization
algorithm such as CMA [30]. It is worth noting that the
phase-independent nature of has its own advantages
in modem design [24].

C. Illustrative Cost Surface Examples

The following sections present mesh and contour plots
of the CM cost surface for a two-tap -spaced FSE
under various operating conditions. Refer to Table 1 for
definitions of the various channels used in our experiments.
In all contour plots, the asterisks () indicate the locations
of global MSE (i.e., ) minima while the crosses ()
indicate the locations of local MSE minima. Recall that
different pairs of MSE minima (reflected through the origin)
correspond to different values of system delay, while the
two elements composing each pair correspond to the two

Fig. 9. JCM contours (solid) for well-behaved channelc2 and no
noise, withJA overlay (dashed) and global MSE minima marked
by “�” in equalizer (f ) space.

choices of system polarity.6 Thus, the asterisks mark the
MMSE equalizers of optimum system delay. The “MSE
ellipse axes” appearing in the upper left corner of each
contour plot indicate the orientation and eccentricity of the
elliptical MSE contours (see Fig. 9).

All quantities in the experiments are real-valued. Unless
otherwise noted, the source used was zero-mean and i.i.d.
with alphabet { 1, ,1}.

1) Ideal Zero-Cost Equalization:For a well-behaved7

channel in the absence of channel noise, Fig. 8 plots
in equalizer space. Recall that Fig. 7 plots

for the same noiseless channel. For a different well-
behaved and noiseless channel, Fig. 9 superimposes
the corresponding and cost contours. Note the
symmetry (with respect to the origin) exhibited by both

and cost surfaces.
In these ideal situations, all MSE and CM minima attain

costs of zero (see Figs. 7 and 8). In addition, it can be seen
that the locations of the and minima coincide.
(The minima locations can be inferred from the
cost contours.) Fig. 9 also indicates that the curvatures of
CM and MSE cost surfaces in the neighborhoods of local
minima are closely related.

2) Combined Channel-Equalizer Space:The behavior of
a gradient descent of is sometimes studied in the
(downsampled) combined channel-equalizer space (i.e.,
from Section I-C). The appeal of studying in -space
follows from the normalization and alignment of
with the coordinate axes. These features are clear in a
comparison of Figs. 9 and 10, both constructed from the
same noiseless channel. Equation (4) implies that a unique
reversible mapping (i.e., an isomorphism) exists between

6We note that in the complex-valued CM criterion, each pair of minima
would be replaced by a continuum of minima spanning the full range
(0–2�) of allowable system phase.

7Well-behaved indicates the absence of common or nearly common
subchannel roots.
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Fig. 10. JCM contours for well-behaved channelc2 and no noise
in combined channel-equalizer (h) space.

Fig. 11. JCM contours for well-behaved channelc2 and 20 dB
SNR.

points on the surfaces in - and -spaces when is
invertible, as it is here in our two-tap example.

3) Additive White Channel Noise:As channel noise is in-
troduced, Fig. 11 indicates that the MSE and CM minima
both move toward the origin in-space. The and
minima move by different amounts, though, destroying the
equivalence that existed between them in the ideal case of
Fig. 9. However, the relative proximity of and
minima evident in Fig. 11 still prompts consideration of

as a close proxy for the amalgamated MSE cost
even when in the presence of channel noise.

4) Common Subchannel Roots:As evidenced by the ex-
pression we derived for MSE minima

when has a large condition number, modest values of

Fig. 12. JCM contours for nearly common subchannel-roots
channelc3 and no noise. Note axis scaling.

Fig. 13. JCM contours for nearly common subchannel-roots
channelc3 and 20 dB SNR. Note axis scaling.

can have significant consequences on(and thus on the
cost surface). If the two subchannels ( and

) have a nearly common root ( )
then (23) indicates that the column space ofcollapses;
thus we expect that one eigenvalue of will be near
zero [20]. Figs. 12 and 13 use channel to demonstrate
the cost surface sensitivity to noise in the presence of nearly
common subchannel roots. Even under such severe surface
deformation, we note that the global minima remain in
the vicinity of global minima. This further demonstrates
the robustness of the relationship between and .

5) Channel Undermodeling:In general, under violation
of the length condition discussed in Section I-C, no equal-
izer settings are capable of achieving zero MSE or CM
cost. This can be confirmed by extending the length of
impulse response by two samples, thus forming the
“undermodeled” channel . (Note that the two extra coef-
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Fig. 14. JCM for undermodeled channelc4 and no noise.

Fig. 15. JCM contours for undermodeled channelc4 and no
noise.

ficients forming are no larger than any of the coefficients
in .) Fig. 14 shows the CM cost surface for this under-
modeled channel. Large differences in the heights of local
minima demonstrate that the CM cost surface can indeed
be significantly multimodal.

Elongating the channel impulse response adds another
possibility for the system delay and thus increases the
number of minima (see Fig. 15). Note, however, that
the number of CM minima have not changed. More impor-
tantly, note that the global CM minima remain close to their
MSE counterparts under violations of the length condition.

6) Non-CM Source:The CM source property leading to
the ideal zero-cost situation in Figs. 8–10 is violated in
constructing the cost surface in Fig. 16. Here, the source
is real-valued 32-PAM, which is far from CM. The non-
CM property increases the source kurtosis [defined in
(50)] and increases the minimum CM cost relative to that
of a CM source. Notice also that the CM cost surface has
become “flattened” in the parameter plane. However, as the

Fig. 16. Effect of source shaping (�s = 1:8) onJCM for channel
c1 in equalizer space with no noise.

CM surface deforms due to a non-CM source, the minima
locations remain unchanged.

D. Summary

Our investigations of low-dimensional examples under
the following “ideal, zero-cost” conditions:

— no channel noise (i.e., );
— no common subchannel roots (i.e., avoidance of

);
— sufficient equalizer length (i.e., for

-spaced FSE’s);
— i.i.d., zero-mean, constant-modulus source (circularly

symmetric when complex)

showed that, under such conditions, the and
minima coincide and achieve zero respective cost. Our
other examples suggest that modest deviations from the
ideal conditions can be tolerated in the following sense:
under suitable choice of initialization, a stochastic-gradient
minimization of will approximate the performance
achieved by the same minimization of . We did find,
however, that the deformations caused by various viola-
tions of the ideal zero-cost conditions are different. In
fact, substantial effort has been expended to characterize
the performance robustness properties of the CM crite-
rion (as descended by popular gradient descent strategies).
Section III catalogs much of this effort.

The previous examples can be used to illustrate and
interpret the following observations.

— Channel noise: CMA-based blind equalization is typ-
ically successful in common noise environments (i.e.,

). Under modest noise levels, relocation
of global minima toward the origin is typically more
severe than changes in surface curvature around such
minima.

— Undermodeling of channel length: Given hardware
constraints on equalizer length, residual ISI is un-
avoidable in practice. Mild contributions from un-
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compensated portions of channel response typically
result in mild surface deformation.

— Nearly common subchannel roots: These seem quite
likely as channel length increases (see Fig. 18).
Nearly common subchannel roots increase sensitivity
to other violations from ideal conditions, but only
for sub-optimal CM solutions; global CM minima
still exhibit robust performance.

— Source kurtosis: Nonuniform (i.e., shaped) symbol
distributions often lead to increased source kurtosis.
As source kurtosis approaches Gaussian,8 the surface
lifts and flattens. Lifting increases the excess error of
stochastic adaptation (e.g., CMA), while flattening
reduces its convergence rate. If the source exhibits
a Gaussian kurtosis, the minima and saddle points
vanish along a rim of the CM surface so that the
gradient has solely a radial component. In this case,
convergence to desirable settings is practically im-
possible.

— Source correlation: This may occur, e.g., as a result
of differential encoding. Small amounts result in
slight cost surface deformation. Large amounts cause
major problems, such as additional local minima with
terrible performance.

— Non-CM source: This property is unavoidable in
communication systems using multilevel constella-
tions. Though non-CM sources do not alter the min-
ima locations, they raise and flatten the CM surface
(as a consequence of increased source kurtosis—see
above).

— Initialization: The CM surface is unavoidably mul-
timodal. Choice of initialization affects both time-
to-convergence and steady-state performance. One
approach referred to in the literature suggests ini-
tializing the equalizer with a single spike9 time-
aligned with the channel response’s center of mass.
In this way, crude knowledge of the channel impulse
response envelope can be used to aid initialization.

— Channel time-variation: We proceed under the global
assumption that the channel varies slowly enough
in time to be tracked by the CM-minimizing gra-
dient descent algorithm. In the vicinity of a local
minimum, the tracking capabilities of any gradient
descent scheme can be related to the local curvature.

— Equalizer tap spacing: Fractionally spaced equalizers
have the ability to perfectly cancel ISI caused by a
finite-length channel impulse response. In contrast, a
baud-spaced equalizer requires an infinite number of
taps for the same capability. Though we admit that
this noiseless FIR channel model is rather academic,
practical experience offers much evidence for the
superiority of fractionally spaced equalization [5].

— Transient versus steady-state performance: Dynamic
system design is often a tradeoff between transient
and steady-state performance. Convergence rate is

8Table 2 presents the values of normalized kurtosis for various sources.
9The single-spike initialization has its origins in baud-spaced equaliza-

tion. Fractionally spaced counterparts are discussed in Section III-B3.

a transient behavior descriptor; slow convergence is
undesired. Excess error (due to a nonvanishing step-
size and a nonzero local minimum) is a steady-state
feature; abundance of excess error is undesired.

III. CM-M INIMIZING EQUALIZATION

LITERATURE CATEGORIZATION

Section II presented a tutorial view of the linear equalizer
design task and related the minimization of the delay-
optimized and phase-indifferent mean-squared recovery er-
ror ( ) to minimization of the CM criterion ( ).
Appendix III presents a bibliography of the literature deal-
ing with the CM criterion and its optimization via steepest
gradient descent (such as with CMA). The purpose of this
section is to describe our classification scheme in terms of
the problem formulation and the examples of the preceding
section. We also take this opportunity to cite certain papers
as recommended reading on particular topics.

In addition to the birth of the CM criterion in the early
1980’s, highlights in its analytical history include:

— the establishment of “perfect” conditions under
which a gradient descent of the CM cost surface
results in asymptotically perfect symbol recovery,
i.e., “global convergence”;

— confirmation that, under slightly imperfect condi-
tions, the CM minima remain in the vicinity of the
MSE minima for various choices of delay and sign;

— recognition that, due to performance differences be-
tween CM minima under less-than-perfect condi-
tions, initialization may be critical to acceptable
transient and steady-state behavior.

The “perfect” global-convergence conditions referred to
in these statements differ in detail between the baud-
and fractionally spaced cases. As discussed in Section I-
C, achievement of perfect source recovery devolves into
exact solution of a set of simultaneous linear equations
when channel noise is absent. Solution of these equations
ensures that the transfer function characterizing the baud-
spaced system (relating source symbols to equalized soft
decisions) achieves that of a pure delay. One requirement
on the existence of this perfectly equalizing solution is
that the equalizer must have enough degrees of freedom.
For a baud-spaced equalizer and an FIR channel, this
latter requirement necessitates an equalizer with infinite
impulse response (IIR) [31]. For -spaced FSE’s, on
the other hand, an equalizer response length matching
(or exceeding) that of the channel proves sufficient [21].
The other requirement for the existence of a perfectly
equalizing solution is that the system of equations be
well posed. We mean, in an algebraic sense, that the
matrix characterizing the linear system of equations must be
nonsingular. For baud-spaced equalizers, this nonsingularity
condition prohibits nulls in the channel frequency response
(which implies, for example, that no FIR channel zeros
are tolerated on the unit circle). We henceforth refer to
satisfaction of this baud-spaced condition as “invertibility.”
For -spaced FSE’s, this nonsingularity translates into a
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lack of common subchannel roots (see Appendix I-C) and
is commonly referred to as “subchannel disparity.”

If conditions on the source (e.g., zero-mean, circularly
symmetric, white, and sub-Gaussian) are added onto the
perfect equalization requirements described in the last para-
graph, a gradient descent of the CM criterion will provide
asymptotically perfect source recovery from any baud- or
fractionally spaced equalizer initialization. In this case the
multiple CM minima all have the same depth, i.e., that
of an egg carton. The distinctions in global convergence
conditions between the baud- and fractionally spaced cases
prompt our separation of these two cases. We note that,
while analyses of CM-minimizing baud-spaced equaliz-
ers have been published since their introduction in 1980,
very few analyses of CM-minimizing fractionally spaced
equalizers were published before 1990.

The stringency of the global convergence requirements
has prompted theoreticians to examine the impact of their
violation. For example, what if the FSE length is less than
the total channel response but greater than the “signifi-
cant” portion of the channel response? How are prominent
features of the CM cost surface (e.g., stationary point
locations, regions of attraction, and heights of local minima)
altered as the source is shaped or correlated and/or channel
noise power increases and/or channel disparity is lost?
While engineering practice desires answers about simulta-
neous dissatisfaction of all global convergence conditions,
theoretical analysis is more likely to move forward by
studying individual (or possibly pairwise) violation of these
conditions. Therefore, we are encouraged to adopt a set
of literature categorizations concerning studies of robust-
ness to violations in each of the four global-convergence
conditions (i.e., absence of channel noise, sufficient length,
adequate disparity, and use of a zero-mean, white, circular,
sub-Gaussian source process).

In Section II-C we noted that the CM and MSE error
surfaces are quite similar in the vicinity of the CM local
minima. This relationship implies that the local behaviors
of their stochastic gradient descent minimizers (e.g., CMA
and LMS, respectively) should be closely related. As a
result, we are encouraged to use key behavioral descriptors
associated with classical trained-LMS equalization theory
as further categories for our literature classification. In
particular, we borrow excess MSE (i.e., misadjustment10)
and convergence rate.

While the CM and MSE criterion are comparable in
a local context, their global characteristics are strikingly
different. Recall the multimodality of the CM cost sur-
face (e.g., see Figs. 8 and 14). As noted earlier, a good
gradient-descent initialization may be necessary to ensure
convergence to a “good” local minimum as well as to
avoid temporary local capture by saddle points. In contrast,
consider the trained-LMS cost surface: a unimodal elliptical
hyper-paraboloid. Its unimodality obviates the need for a
clever initialization strategy (assuming the training delay
has been chosen). In fact, the LMS equalizer is often

10Misadjustment is defined as the ratio of excess MSE to minimum
MSE.

initialized by zeroing the parameters.11 If we consider
delay-selection as part of the initialization of trained LMS,
however, we find many similarities with the equalizer
parameter initialization of CMA. Specifically, the choice of
training delay bounds asymptotic LMS performance, and,
in conjunction with the equalizer initialization, LMS time-
to-convergence. Conversely, CMA equalizer initialization
determines (asymptotic) system delay. With these thoughts
in mind, we add surface topology and initialization strat-
egy as literature categories under the heading of gradient
descent behavior.

In summary, the classification scheme we adopt for our
literature review uses a total of 11 labels within the three
main categories discussed above.

1) Equalizer tap spacing:

B baud-spaced;
F fractionally spaced.

2) Global convergence criteria dissatisfaction:

P perfect; no noise, sufficient length, adequate
disparity/invertibility, and zero-mean, white,
circular sub-Gaussian source;

N noise present;
L equalizer length inadequate;
D disparity/invertibility lost or threatened;
S source shaped or correlated.

3) Gradient descent algorithm behavior:

E excess error (due to nonvanishing step-size);
R rate of convergence;
T topology of cost surface;
I initialization strategy.

The remainder of this section is organized by the cate-
gorization above. Each of the 11 labels is discussed using
selected citations drawn from Appendix III.

Because the focus of this paper is the CM criterion in a
blind linear equalizer application, we have not considered
work that

1) principally deals with algorithm modifications (e.g.,
normalized, least-squares, Newton-based, block, an-
chored, or signed CMA) that may alter the (effective)
cost function surface shape;

2) infers behavior principally from simulation studies
with no connection made to the CM cost function;

3) principally addresses applications other than linear
equalization (e.g., beamforming, source separation,
interference cancellation, channel identification, de-
polarization, or decision-feedback equalization).

Though some of our citations do involve the categories
above, we have chosen to include them because they
contain a substantial amount of directly relevant material
as well.

11Initializing CMA at the origin is unwise due to the zero-valued
CM-cost gradient there.
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We do not provide a synopsis of each citation in the
bibliography. Rather, we propose the abstracts of each
paper as a source for synopses and provide a postscript
bibliography that includes abstracts at http://backhoe.ee.
cornell.edu/BERG/bib/CM_bib.ps.

A. Equalizer Tap Spacing

Practically speaking, the equalizer tap spacing refers
to the rate at which the received signal is sampled and
processed by the equalizer. In creating a discrete linear
system model, the tap spacing determines the delay time
of the equalizer difference equation. Usingto denote the
source symbol interval, baud- or-spaced FIR equalizers
use a unit delay of seconds in their tapped delay line.
Fractionally spaced equalizers use a tap spacing less than

. The most common fractional tap spacing is s. In
the bibliography in Section V, approximately two-thirds
of the citations cover baud-spaced equalization, while the
remaining one-third cover fractionally spaced equalization.

1) Baud-Spaced Equalization:The pioneering paper in-
troducing the CM criterion for a complex-valued source
[29] considers baud-spaced equalization only.

Conditions assuring global convergence of a baud-spaced
equalizer updated via CMA are: i) no channel noise, ii)
infinite impulse response equalizer, iii) no nulls in channel
frequency response (i.e., no FIR channel zeros on the unit
circle), and iv) a zero-mean, independent (and circularly
symmetric if complex-valued) finite-alphabet source with
sub-Gaussian kurtosis.

The first proof of global convergence for CMA in adapt-
ing a baud-spaced equalizer relied on a doubly infinite
equalizer parameterization which allowed any combined
channel-equalizer impulse response [31]. This allows con-
vergence study in the combined channel-equalizer space,
which has analytical advantages.

2) Fractionally Spaced Equalization:Original motiva-
tions for the use of fractional rather than baud spacing
included: insensitivity to sampling phase; ability to
function as a matched filter; ability to compensate
for severe band-edge delay distortion; and reduced
noise enhancement [5]. Fractionally spaced equalizers
have nearly dominated practice since the 1980’s [28].
One feature of fractionally spaced equalizers—virtually
unnoticed until the 1990’s—was the possibility that under
ideal conditions a fractionally spaced equalizer of finite
time-span could perfectly equalize an FIR channel [1]. As
noted in [21], this suggests the same connection of equalizer
parameters to the combined channel-equalizer parameters
exploited in [31] and therefore confirms the potential for
global convergence of a CM-minimizing fractionally spaced
equalizer.

Conditions assuring global convergence of a -spaced
FSE updated each baud interval via CMA are: i) no channel
noise, ii) equalizer time span matching or exceeding that
of the FIR channel, iii) no reflected zeros in the -
sampled FIR channel transfer function, and iv) a zero-mean,
independent (and circularly symmetric if complex-valued)
finite-alphabet source with sub-Gaussian kurtosis.

These global convergence-inducing conditions do not
include restriction to a constant modulus source, which was
included among the ideal zero-cost conditions of Section II-
D.

The first global convergence proofs for fractionally
spaced CMA which do not simply rely on the extension of
the baud-spaced arguments in [31] appear in [32].

B. Gradient Descent Algorithm Behavior Theory

The algorithm that performs a stochastic gradient descent
of is often referred to as CMA

(24)

Equation (24) is written in terms of the (fractionally sam-
pled) regressor vector at time

(25)

the equalizer parameter vector at time index , the
equalizer output , a step-size , and the squared source-
modulus (also referred to as the dispersion constant).

The study of dynamic systems, such as CMA, is often
divided into transient and steady-state stages. Convergence
rate is the dominant transient performance descriptor in
classical LMS theory. MMSE and excess MSE (and their
dimensionless ratio, misadjustment EMSE/MMSE) are
the dominant steady-state performance descriptors. There-
fore, we consider their CM counterparts here.

Though initialization is not a major concern for the
unimodal cost functions of MSE-minimizing equalizers
(with preselected delay and phase), it is an unavoidable
issue for CM-minimizing equalizers due to the multi-
modal topology of their associated cost surface. Though
initialization strategies exist, none have been proven 100%
successful in practice.

1) Convergence Rate:For trained LMS, the convergence
rate (or geometric decay factor) of the sum-squared param-
eter error (and squared recovery error) is approximately
bounded above and below by one minus twice the product
of the step-size and the smallest and largest eigenvalues,
respectively, of the received-signal’s autocovariance matrix
(i.e., ). This arises
because the underlying quadratic cost function has the
same Hessian, or curvature, across its entire surface. In
contrast, the multimodal CM cost function has a Hessian
that varies across its surface. Early convergence rate studies
addressed this variation in convergence rate across the CM
cost surface by focusing on convergence rate descriptors in
various regions, such as far from minima and near minima
[34].

Referring to Fig. 9, initialization near
will lead to a small-stepsize gradient-descent trajectory
that passes through the neighborhood of a saddle point.
An example displaying multiple temporary saddle-captures
appears in [35]. We believe this saddle capture phenomenon
to be the source of the folklore that considers CMA to be
slowly converging.
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A lower bound on the initialization-independent conver-
gence rate is impossible with the multimodal CM surface
due to potential of indefinite-term capture by saddle points.

In the neighborhood of a local minimum, the curvature
of CMA’s cost surface can be directly related to that
of trained-LMS [36]. Thus, the LMS convergence rate
expression can be used in a traditional manner (e.g., [23])
to provide limits on the channel tracking12 capabilities of
CMA.

2) Excess Cost at Convergence:In realistic situations, it
is impossible to zero the update of a nonvanishing-stepsize
stochastic gradient descent algorithm, even at the optimum
solution. With trained LMS or CMA, this undying pertur-
bation may be a result of channel noise or residual ISI.
With CMA, the nonzero update may also be the result of
a non-CM source. The effect of a nonvanishing equalizer
update is an asymptotic MSE level higher than that attained
by the optimum fixed equalizer. This is directly related to
the lifting effect that a non-CM source has on the CM cost
surface, which is evident in Fig. 16.

In addition to the factors determining the excess MSE
of trained LMS (i.e., stepsize, minimum achievable cost,
equalizer length, and received signal power) CMA also has
a term dependent on the source kurtosis.

Excess MSE of fixed (small) step-size CMA due to a
non-CM source is analyzed in [37].

Figs. 8 and 16 show the effect of changing the source
from constant to nonconstant modulus while simultaneously
satisfying all of the global convergence conditions. Though
the CM minima rise in height, they remain in the same
locations in the equalizer parameter plane. As long as
the source is kept sub-Gaussian, a (pure) gradient descent
algorithm would still be able to asymptotically achieve
perfect symbol recovery.

3) Initialization: As noted in the examples of Section II-
C and illustrated in Figs. 11 and 15, the presence of noise or
channel undermodeling causes some CM minima to achieve
better performance than others.

Under violation of the conditions ensuring global conver-
gence, choice of initialization determines asymptotic perfor-
mance.

Two initialization strategies are common in the literature
and in practice: spike based or matched filter. The single-
spike initialization promoted in [29] for baud-spaced CMA
is characterized by one nonzero equalizer tap, usually
located somewhere in the central portion of the equalizer
tapped-delay line. For -spaced CMA, a suitable exten-
sion of the single-spike idea might be a “double-spike”
initialization, whereby two adjacent taps are initialized
nonzero. In the frequency domain, double-spike initializa-
tion has a lowpass characteristic, a property also shared
by the transmitter’s pulse-shaping filter. In a mild-ISI

12In many practical implementations, such as those with low ambient
noise levels, CMA lowers the symbol error rate to a level suitable for
decision-directed LMS (DD-LMS) to take over. Due to its lower excess
error, DD-LMS is preferred for tracking the slow channel variations. In
low-SNR situations, however, such as those that may arise with a coded
system, the tracking ability of CMA might prove important due to the
potential infeasibility of DD-LMS.

(a) (b) (c)

(d) (e) (f)

Fig. 17. (a)–(c) CMA’s achieved system delay as a function of
double-spike location for an equalizer with length 16, 32, 64,
respectively. (d)–(f) CMA’s asymptotic MSE performance (solid)
compared to same-delay MMSE performance (dashed) for an
equalizer with length 16, 32, 64, respectively.

environment, one might even consider initializing the FSE
with an impulse response matching the pulse-shaping filter
itself, as (in this mild case) this response is close to
the expected steady-state equalizer solution (assuming that
the FSE is used to accomplish matched filtering at the
receiver).

All of the initialization techniques above still require a
selection of delay, i.e., spike positioning within the equal-
izer time span. This delay choice is intimately connected
to the delay-choice in trained-LMS equalization in the
following way: CMA tends to converge to minima with
the same group delay as its initialization. Fig. 17 provides
evidence for this claim using double-spike initializations of

-spaced CMA on the SPIB microwave channel shown
in Fig. 1 under 50 dB SNR and a QPSK source. Note
the (affine) linear correspondence between double-spike
position and asymptotically achieved system delay. Another
interesting characteristic of Fig. 17, seen after comparing
subplots Fig. 17(d)–(f) to Fig. 6, is its suggestion thatthe
set of system delays reachable by CMA are best in an
MMSE sense. We offer these last two statements as educated
conjectures, as no theoretical proofs yet exist to verify
them.

The aforementioned relationship between initialization
and channel group delays suggests that prior information
about the channel may aid in selection of initialization delay
choice. Appendix III notes the existence of other more
complicated off-line initialization schemes that leverage
such notions.

4) Surface Topology:In Figs. 8 and 14, the “molar”
shape of the CM cost surface in two-tap real-valued
equalizer space is the same one used in Section II-C to
aid in an understanding of CMA’s transient and asymptotic
performance, as well as to motivate the importance of
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initialization. Section II-C also described how deformation
of this molar shape occurs with violation of the various
ideal zero-cost conditions, and it used this surface-centric
view to predict the pertinent effects of these violations.

The three-dimensional “molar” shape typical of the real-
valued two-tap equalizer CM cost surface offers a compact
visualization of virtually all of the major features of CMA
behavior theory, applicable even to longer equalizers.

Surface characterization via gradient and Hessian formu-
las is provided in [38] for baud-spaced equalizers. Refer-
ence [39] offers a more developed topological study of the
fractionally spaced CM criterion.

C. Violation of Conditions Ensuring Global Convergence

1) Perfect—All Conditions Satisfied:While Sections III-
A1 and III-A2 listed conditions ensuring the global conver-
gence of CMA, their violation is unavoidable in practice.

There exists a set of conditions under which an ar-
bitrarily initialized gradient-descent minimization of the
CM criterion results in perfect symbol recovery. These
“global convergence” inducing conditions, however, are
unconditionally violated—if only modestly—in practice.

2) Channel Noise Present:CM-based blind equalization
typically remains successful in common noise environments
(i.e., ). To recall the cost surface deformations
due to noise, compare Figs. 9–11.

When the presence of (modest) channel noise is the only
violation of the global convergence conditions, the locations
of global CM minima shift toward the origin in equalizer
parameter space and the minimum achievable CM cost is
increased.

This behavior is strikingly similar to the behavior of the
MSE criterion in the presence of channel noise. In fact,
under modest amounts of noise, the CM minima remain
near the MSE minima [33], [40].

At extremely high noise levels (i.e., ), the two
criteria differ in the following manner: the MSE minima
continue to move toward the origin, while the CM minima
remain within an annulus outside the origin. This behavior
is attributed to the so-called “CMA power constraint” [40].

We have also observed the disappearance of local min-
ima under modest-to-high noise levels [41], especially for
channels without much disparity (see Fig. 13).

3) Insufficient Equalizer Length:In order to completely
cancel the ISI induced by an arbitrary FIR channel, one
requires an IIR baud-spaced equalizer or a sufficiently
long FIR fractionally spaced equalizer. In the presence
of channel noise, the MSE-optimal equalizer makes a
compromise between ISI cancellation and noise gain, and
the resulting equalizer impulse response is no longer finite-
length, even for fractionally spaced equalizers [5].

In the presence of noise, the (baud- and fractionally
spaced) MMSE equalizers have an infinite impulse response,
implying that the length of an FIR equalizer should be
chosen to capture “enough” of the desired response.

Studies on the effect of violations in the equalizer length
condition include [42] in a baud-spaced context, and [43],
[44] in a fractionally spaced context. The latter provide

evidence of CMA robustness to modest channel undermod-
eling and include approximate bounds on performance.

As hardware advances permit-increased baud-rate, phys-
ical channel delay-spreads remain unchanged, and the rela-
tive length of the channel impulse response grows propor-
tionally. To combat ISI, there is a corresponding need to
increase equalizer length. Therefore, the desire for higher
communication rates will always stress the equalization
task. This is a primary justification for the continued
development and study of truly simple adaptive equalization
algorithms like LMS and CMA.

4) Disparity/Invertibility Lost: As discussed earlier, the
set of zero-forcing equalizer design equations becomes
poorly conditioned in the presence of deep spectral nulls for
baud-spaced equalizers, or in the presence of nearly com-
mon subchannel roots for fractionally spaced equalizers.
Poor conditioning implies an increased parameter sensitiv-
ity to noise and other violations of the global convergence
conditions. Fortunately, this parameter sensitivity does not
imply a performance sensitivity. In other words, global
CMA minima remain robust under a loss of disparity. We
note that the same is true for the delay-optimal MMSE
solutions.

A near-loss of disparity (for FSE’s) or invertibility (for
BSE’s) dramatically increases the sensitivity of suboptimal
CM (and MSE) minima to other violations in the global
convergence conditions. However, global CM (and MSE)
minima remain robust under these conditions.

The behavior of fractionally spaced CM (and MSE)
minima under loss of disparity is explained through the
following design procedure. For simplicity, let us assume
the absence of noise. 1) Factor the common root(s) out of
the subchannels in Fig. 5 and form a new system composed
of the common root(s) component and what remains of
the multichannel component, connected in series. 2) De-
sign the subequalizers so that the remaining multichannel
component approximates the inverse of the common root(s)
component. At this point, the cascaded system should
approximate a pure delay. This procedure closely describes
the construction of the MMSE or CM-optimal equalizers
under a loss of disparity [33]. We describe this idea more
formally in Appendix I-C.

There are a number of reasons that we expect the
presence of nearly common subchannel roots, e.g., nearly
reflected13 -spaced roots, in realistic situations. Looking
at Fig. 18, which portrays the roots of the length 300 -
sampled SPIB channel whose impulse response appears in
Fig. 1 and whose response we consider to be “typical,”
one notices the apparent plethora of nearly reflected roots.
Similarly, one might realize that a long FIR approximation
to a pole14 in the physical channel would also generate
nearly reflected roots. These reasons suggest the likelihood

13Common subchannel roots have been shown to be identical toT=2-
spaced channel roots reflected across the origin [25].

14A degree-N polynomial forming a close approximation to a single
pole can be constructed usingN roots on a ring in the complex plane
with a radius equal to the pole magnitude. The roots are spaced atN +1

equal intervals on the ring with the exception that there exists no root at
the location of the approximated pole.
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Fig. 18. Roots ofT=2-sampled SPIB terrestrial microwave chan-
nel #3.

of nearly common subchannel roots in realistic situations.
See [2] for further discussion on the existence of reflected
roots in physical systems and its negative implications on
second-order-statistics based blind equalization.

5) Shaped or Correlated Source:Source shaping, en-
couraged by a potential increase in coding gain (e.g., see
[3]), has the effect of making the source symbol distribution
more Gaussian. As far as our problem is concerned, it has
the practical effect of raising the kurtosis. Increases in
source kurtosis, as long as they remain sub-Gaussian, do
not affect the locations of CM local minima. However,
they are known to flatten the CM cost surface in all
but the radial direction, making CMA’s convergence to
the minima slower (and in the limiting Gaussian case,
impossible). In addition, increases in source kurtosis have
been shown to raise the CM surface (see Fig. 16), thus
increasing the excess asymptotic error levels achieved by
nonvanishing-step-size stochastic gradient algorithms.

Recall that non-CM sources also have kurtoses greater
than one. To put source shaping in perspective, Table 2
presents the kurtosis of popular source alphabets along with
the limiting Gaussian values. Note that a shaped source has
the potential for raising the kurtosis far past that of a dense
(uniform) constellation like 1024-QAM.

For shaped sources with near-Gaussian kurtoses, the CM
cost surface is raised and flattened, therefore unsuited to
stochastic gradient descent.

Source correlation results from the use of certain types
of coding (e.g., differential encoding) or under particular
operational circumstances [45], [46]. Moderate amounts of
source correlation may shift the locations of local minima.
Large amounts of correlation may cause additional (false)
minima to appear in the CM cost surface. Recall that
any amount of source correlation violates the CM global
convergence requirements. The most thorough studies on

Table 2 Normalized Kurtoses for Various Source Distributions

Table 3 Annotations Used in the Bibliography
and Their Interpretions

the effects of shaped and/or correlated sources appear in
[39] and [46].

As a final note, we point out that the global conver-
gence conditions for complex-valued implementations of
the CM criterion specify a circularly symmetric source,
i.e., . Studies have shown that violations of
this requirement (e.g., from the use of a real-valued source
with a complex-valued channel and/or equalizer) can result
in the appearance of undesired CM minima [47].

D. Additional Information

These descriptions of the literature categorization have
prepared the reader to utilize the annotated bibliography
in Appendix III, which provides an in-depth look into the
CM literature. Each entry in the bibliography is annotated
with boldface letters that indicate the classification of its
content (see Table 3). A postscript file containing the
abstracts of papers in this list is provided available from:
http://backhoe.ee.cornell.edu/BERG/bib/CM_bib.ps.

We also recommend The BERGULATOR, a public-
domain MATLAB-5 based software environment which
allows for experimentation with the CM criterion and
various implementations of CMA. It can be used, for
example, to generate all contour plots in this paper. The
BERGULATOR was written by P. Schniter of Cornell
University’s Blind Equalization Research Group (CU-
BERG) and is available from the following web site:
http://backhoe.ee.cornell.edu/BERG/.
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APPENDIX I
FRACTIONALLY SPACED SYSTEM MODEL

We denote the combined LTI channel and pulse-shape
impulse response by and the baseband additive chan-
nel noise process by . The continuous-time baseband
representation of the waveform seen by the receiver can
then be described by

(26)

for symbol sequence , baud interval , and arbitrary
time delay . Sampling15 the received signal every s at
the receiver, we denote the sampled received sequence by

(27)
The output of a length FIR FSE with tap spacing

of can be written as a -rate convolution with the
sampled received sequence

(28)

The choice of an even number of equalizer taps is chosen
for notational simplicity. Now suppose that only the “odd”
fractionally spaced equalizer output samples are retained in
a decimation by two (i.e., for ).
The decimated equalized output sequence then be-
comes

(29)

(30)

(31)

Note that a similar procedure can be carried out for even-
indexed output sampling (i.e., and ). An
illustration of the setup described above appears in Fig. 3.

A. Multichannel Model

From (31) we observe that the decimated output can
be considered the sum of two baud-spaced convolutions

(32)

where

15The noise and channel are considered band-limited assuming antialias
filtering is done prior toT=2-spaced sampling at the receiver.

and

(33)

We refer to and as the “even” and “odd” received
sequences and to and as the “even” and “odd”
subequalizers, respectively.

Defining the even and odd baud-rate channel response
samples

and

(34)
and channel noise samples and

(for nonnegative integers),
we can confirm that they are related to the received subse-
quences in a straightforward manner

(35)

(36)

These expressions allow us to rewrite the decimated equal-
izer output in terms of the baud-spaced symbol sequence.

It is important to note that the arbitrary delay has
been incorporated into our definitions of the channel re-
sponse samples. This implies that the “even” and “odd”
subchannel classifications are merely notational and have
no real physical significance. Furthermore, the inclusion of
arbitrary delay implies that our convention of retaining the
odd-indexed (as opposed to the even-indexed) decimated
equalizer output samples also lacks practical significance.
In this spirit, we drop the “odd” notation on and
simply refer to the baud-spaced system output samples as

. Here we are seeing evidence for the inherent baud-
synchronization capabilities of an FSE (not characteristic
of BSE’s).

Substituting the received subsequence expressions (35)
and (36) into (32)

(37)

(38)

where the “ ” indicates convolution. The relationships
between the source, noise, subequalizers, and subchannels
described above appears in the multichannel model of
Fig. 5.

Consider for a moment the noiseless case. The impulse
response from transmitted source to baud-spaced equal-
izer output follows immediately from consideration of
as the Kronecker delta sequence. Thus, we conclude that

(39)
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This impulse response leads directly to a transfer function
with unit delay ( ) of duration

(40)

Note that the perfect zero-forcing system
(with nonnegative integer delay), leads to the Bezout
relationship [8]

(41)

B. Multirate Model

To show that the multirate model of Fig. 4 also originates
from the fractionally spaced communication system of
Fig. 3, we show that the fractionally spaced equalizer output

in (28) can be written in terms of a zero-filled version
of the source sequence

for even

for odd
(42)

as depicted in Fig. 4. Rewriting (27) as

(43)

we see upon its substitution into (28) that

(44)

(45)

(46)

where the fractionally spaced channel response samples
are defined such that .

At this point we can observe that, in the noiseless
case, the fractionally spaced system impulse response
becomes

(47)

Note from (39) that only half of the terms in the fractionally
spaced impulse response (47) are directly relevant to the
system output since the fractionally spaced output is
later decimated by two.

C. The Subchannel Disparity Condition

The Bezout equation (41) leads directly to the per-
fect equalization requirement concerning subchannel roots.
Specifically, for the existence of a (finite-length) zero-
forcing equalizer, the subchannel polynomials
and must not share a common root.

The existence of perfectly equalizing sub-equalizer poly-
nomials and implies that (41) can

be satisfied. For example, if the subchannels share one
root, a common polynomial can
be factored out of both and , leav-
ing and , respectively. The perfect
equalization relationship would then become

(48)

but this is contradicted by the fact that there is
no finite-length polynomial

that when multiplied by
results in the delay operator .

However, and can be chosen so
that (48) is approximated, in which case the following
relationship is satisfied:

(49)

In other words, the FSE combines with the noncommon-
root component of the channel to approximate the (IIR)
inverse of the ( -spaced) common root component.

D. On The Independence of Fractionally
Sampled Channel Noise

A typical assumption on the (baseband equivalent) chan-
nel noise is that it is well modeled by a zero-
mean, circularly symmetric Gaussian process [10]. In many
situations is also assumed to have a flat wideband
power spectrum. Does this imply that the fractionally
sampled noise process will also be white? Under
these conditions, will only be white when the anti-
alias filters prior to -spaced sampling satisfy a rate

Nyquist criterion. In practice, this criterion is satisfied
by anti-alias filters that are power-symmetric about the
frequency Hz. If, for example, the filtering prior to
equalization is matched to the pulse shape of the transmitted
signal, then fractionally sampled will not be white.

APPENDIX II
THE CM COST FUNCTION

Below we provide the general formulation of the CM cost
function for a complex i.i.d. zero-mean source and complex
baseband channel in additive white zero-mean noise. We
will assume that each member of the symbol alphabet
is equiprobable in the source sequence. Furthermore, we
also assume that the receiver sampling clock is frequency
synchronous (a fixed time offset is allowed) with the source
symbol clock. In practice, this is a reasonable assumption
since the symbol clock can often be extracted by computing
the square magnitude of the received signal (commonly
known as envelope detection). Given these assumptions,
we follow the general formulation of the CM cost function
with expressions for the specific cases of PAM, PSK, and
QAM input signals.
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In addition to the previously introduced notation we will
use the following definitions:

the normalized kurtosis of (50)

the dispersion constant of (51)

the squared -norm of (52)

Note that , where . Following the
presentation of the FS system model in Section I-C and
Appendix I, we can redefine the equalizer output using (4)
and (13). This results in

(53)

The CM cost function is

(54)

(55)

In order to analyze , we will first expand ,
using (53). For convenience we will temporarily let

and , where . Using
the assumptions of mutually independent zero-mean noise
and source sequences, we note that and are also
independent and zero-mean, i.e.,

and

With these assumptions, we arrive at

(56)

Expanding and , we have that

(57)

The same approach can be used to examine ,
which leads to the following equation:

(58)

(59)

Due to space limitations, we omit the details of the deriva-
tion of but mention the following properties used
in the derivation.

— The second-order terms are relatively easy to com-
pute; they involve summations of source (and noise)
terms of the form , , or

.

— The fourth-order terms are more difficult to compute,
but each of the source (and noise) terms are of the
form .

Any of the expectations not involving an even power (two
or four) will vanish because the source and noise are
both zero-mean and white. After a considerable amount of
algebra we arrive at the following expression for .
Noting that and are independent of , we
will denote expectations of this form by and ,
respectively

(60)

We define the noise kurtosis analogous to the source
kurtosis in (50). Substituting (57) and (60) into (55) we
have the final expansion of the cost function.

(61)
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We will now consider how various restrictions on the source
and noise simplify this equation.

A. PAM Source, Real-Valued Channel

For PAM the source symbols are real valued so that
. Furthermore, if , and

are real valued, we have ,
, and . Thus, we

have that, for a real-valued source and real-valued channel,
(61) reduces to

Noting that

and summing like terms we arrive at

(62)

Note that if the noise is Gaussian, and the third
term in (62) is zero.

1) BPSK Source, Real-Valued Channel:Here we con-
sider the subcase of a BPSK source in a real-valued channel
results in further simplifications. For BPSK, ,
which implies that (62) reduces to

(63)

In the absence of noise, (63) is the equation given in [38].
2) Complex-Valued Rotationally Invariant Noise:If we

make the assumption that the (complex) noise is rotationally
invariant, i.e., for all

, then we have that ,
for . Using this assumption the cost function

reduces to

(64)

For the remaining derivations we will make the assumption
of rotationally invariant noise.

3) PSK Source:For PSK symbols,
and (where ), we note
that . Thus, (64) simplifies to

(65)

4) QAM Source:For 90 rotationally invariant QAM
(i.e., for every member in the QAM alphabet,

are equally likely members of the
alphabet), we have that and (64) reduces to

(66)
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