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The feasibility of the application of image/signal processing for measuring, marking, matching,
and sorting vast quantities of data derived from materials typically found in artworks is
presented through four case studies. Different patterns produced by canvas weave
structures, surface textures of historic photographic papers, chain line intervals in
Rembrandt’s printing papers, and watermark variations have been subjected to different
modes of computational analysis. The art-historical implications that result from computer-
generated algorithms – including dating, attribution, authenticity, and workshop practices –
can be considered as “computational connoisseurship.” The case studies discussed point to
future areas for research. Finally, because of the need for statistically meaningful datasets of
images, a practical means of recording internal paper structure is introduced.
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Introduction

Opportunities for the enhanced examination of works of art in order to better under-
stand their materials and techniques, sometimes called “technical art history,” have
multiplied thanks to the introduction of computational approaches –more specifically,
automated digital image/signal processing software used to detect analog physical qual-
ities.1 The application of pattern recognition software to digital images of certain ma-
terials found in artworks, such as canvas, paper, cracked oil films, and brush strokes,
has generated data that can answer persistent inquiries regarding dating, attribution,
authenticity, and workshop practices. It has also allowed for the possibility of pursuing
previously undreamed-of questions, but may be hampered in the future by the logistics
and costs of image acquisition.

Background

Art historians and conservators have long sought to address traditional challenges of
dating and attribution, not to mention authentication, by resorting to various means
of visual assessment, such as canvas thread density (counting the number of warp
and weft threads per specific area of canvas), dendrochronology (counting and charac-
terizing tree growth rings as an aid in dating), radiography (imaging the internal struc-
ture of a material using X-rays or beta rays), and multispectral imaging (the visual
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recording of materials as they appear under various wavelengths of the electromagnetic
spectrum), among other technologies. There is a growing arsenal of imaging options to
record specific physical features of an artwork’s materials and its manner of fabrication.
Despite these advances, the products of these imaging technologies still need to be
painstakingly measured, marked, matched, and sorted by humans.

Such attempts to address quantitative materials-based questions are impressive,
but of limited scope and success, because of the necessity to manually process an enor-
mous amount of information gleaned from a statistically meaningful number of art-
works. Additionally, the logistical problems of systematically recording and
accumulating data from works of art found in collections around the world can be
overwhelming in terms of labor, time, and skills. Finally, a seemingly objective assess-
ment of a pattern can vary drastically according to the operator, measuring device,
sample location, image scale, and light source. A marked margin of error results
when humans measure, mark, match, and sort images, which in turn easily leads to
misinterpretation or inaccurate conclusions.

Over the past decade, computerized image/signal processing programs have been
developed that can compare and match countless seemingly random arrangements of
pixels in minutes rather than years. Algorithms can be used to identify similarities and
differences in any material that produces patterns; as described below, these include
thread density in the canvas supports of paintings by Vincent van Gogh (Dutch,
1853–1890) and Johannes Vermeer (Dutch, 1632–1675), chain line intervals in the
etching papers of Rembrandt van Rijn (Dutch, 1606–1669), and mechanically em-
bossed photographic papers as used by Lewis Hine (American, 1874–1940).

Based upon the promising results of our initial forays into automated computer-
based pattern recognition, it seems safe to say that computational connoisseurship is
a valid approach to characterizing the materiality and facture of works of art and
that it can constitute a significant aspect of scholarship in the age of digital art history.

Case Studies in Computational Connoisseurship

The potential of image/signal processing software to characterize the appearance and
structural properties of typical materials found in artworks can be demonstrated by
four case studies in computational connoisseurship. Each one of these projects cata-
lyzed investigations of other materials, including Chinese silks2 and modern European
printmaking papers,3 two current research pursuits. It can be seen that these four case
studies proffer tantalizing avenues for future research and may extend to the collectors’
stamps found on drawings and archaeological tool marks found on ancient artifacts, to
name just two potentially vast datasets.

Thread Count Automation Project (TCAP)

Begun in 2007, the Thread Count Automation Project (TCAP) used image/signal pro-
cessing to count threads, create weave maps, and match the striped patterns that result-
ed.4 This allowed for the virtual reconstruction of the bolts of canvas used by van
Gogh.5
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In his Dutch and late French periods, van Gogh ordered canvas in rolls and, for
small to moderate-sized paintings, would cut out sections from the bolt for individual
paintings. The working hypothesis is that paintings from the same canvas roll should
possess common thread count (density) variations horizontally and vertically. By ex-
tension, paintings on canvas from the same roll were probably painted at about the
same time. Unattributed paintings can more confidently be identified, if they are
found to match a particular canvas roll.

In van Gogh’s day, artists typically prepared their canvases with a painted under-
coat (called the ground layer) containing lead white pigment. The purpose of the
ground was to smooth out the woven fabric in preparation for painting. When
applied, the liquid ground naturally settled into the interstices of the woven canvas.
When these paintings are X-rayed, the lead-based ground blocks the transmission of
the rays; conversely, the less dense threads of the canvas allow for the passage of the
rays, as shown in Figure 1. By examining the regular screen-like pattern produced in
an X-radiograph of the canvas, a thread density measurement is calculated by
humans, with the use of a magnifying headset, by counting the number of threads in
short vertical and horizontal strips at scattered locations in X-radiographs mounted
on a lightbox. It would be impractical, if not impossible, for manual thread counts
to be done across the entire canvas. The general approach was to calculate the
average thread count of a limited number of spots counted.6 When the average
thread counts of two canvases differ substantially, they cannot have been manufactured
in the same roll. But average thread counts alone, no matter how close, are not enough
to establish that two canvases were cut from the same roll of canvas.

TCAP sought to produce reliable, accurate techniques that would allow thread
density to be measured with minimal human intervention using a digitized composite
X-radiograph of the entire painting. With the advent of computer methods, it is now

Figure 1. Thread count or density is determined by counting the number of warp and weft threads in a prede-
termined square area using an X-radiograph. It can be measured by humans or by computerized image/signal
processing.
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possible to “count” the threads at every location in a canvas. The computational tech-
nique used to automate thread counting of the digitized X-radiograph relies on the ap-
proximate regularity of the canvas weave across small (0.5 cm to 2 cm square)
evaluation “tiles.” Counting the number of threads in one centimeter (threads/centi-
meter) provides a measure that is the inverse of the frequency (centimeters/thread)
of the periodic shift from light to dark and back in a horizontal or vertical strip
from the grayscale image of the X-radiograph. Fortunately, as numerous engineering
problems involve the determination of the frequency of a periodically fluctuating
signal, a variety of computational algorithms exist for extracting the frequency from
approximately periodic signals. A fundamental approach to frequency estimation
relies on Fourier analysis, which is a tool taught to undergraduate electrical engineers.
In the thread counting application, the “signal” is the grayscale intensity fluctuations
corresponding to the threads visible in the X-radiograph.

The next step was to merge all the individual thread count tiles taken across the
painting to form one composite image of the entire canvas. The choice made was to
color each tile of thread counts according to density – that is, a more closely woven
section would be one color and a looser one would be another color. This procedure
produced “weave maps,” as seen in Figure 2.

The striking feature of weave maps is the appearance of multicolored striped pat-
terns, which are attributable to the mechanics of the weaving process. These variations
often extend over the width and length of the canvas roll. A weave match occurs when
the weave maps from two different canvases have the same pattern of stripes. This has
proven to be compelling forensic evidence in establishing rollmate status between two
separate canvases.7 When two canvases have similar patterns of stripes, such as the two
by Vermeer shown in Figure 2, they are regarded as rollmates and can be presumed to
have a common origin, thus placing the canvases (and potentially the paintings) in the
same place at the same time.

When combined with information about a painter’s studio practice, as well as ma-
terial data (e.g. the range of ground layer materials used by the artist) and documenta-
tion (e.g. letters, financial transactions, and memoirs), canvas weave matches can assist
in authentication, dating, and inference of artist’s intent, as recognized six years ago in
several paintings by Vermeer.8 That same year, document-rich studies incorporating
weave matches appeared concerning paintings by van Gogh9 and Diego Velázquez
(Spanish, 1559–1660).10 In the case of Vermeer, for whom documentation is
lacking, the eight weave match pairs discovered so far11 raise unanswered questions
as well, in particular regarding dating. When a weave match is found between canvases
typically dated via stylistic analysis as several years apart, this challenges the prevailing
assumption that an artist would be unlikely to hoard canvas for such a long period. As-
sembling a weave match study across the entire oeuvre of a painter can provide valuable
data regarding chronology. Expanding to a comparison of weave maps for paintings by
different artists from the same period and place could help in establishing patterns of
interaction among artists.

In the decade since the creation of the first fully automated thread counting pro-
cedures, the utility of weave maps of thread density and angle has been shown for Eu-
ropean paintings from the fifteenth to the early twentieth century. Striped weave maps
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have also been produced for twelfth- and thirteenth-century Chinese Southern Song
Dynasty silk paintings.12 The extension to other fabrics with periodic weave patterns,
such as clothing, flags, and other woven cultural heritage objects, is both alluring

Figure 2. Left: Johannes Vermeer, Study of a Young Woman, (L23) (1665–1667). Right: Johannes Vermeer,
Woman in Blue Reading a Letter, (L17) (1662–1665). Paintings are placed above their corresponding weave
maps of horizontal thread densities. The weave maps were computed using software written by W.A. Sethares,
which appears in C.R. Johnson, Jr. and W.A. Sethares, eds., “Counting Vermeer: Using Weave Maps to Study Ver-
meer’s Canvases,” RKD Studies (2017), countingvermeer.rkdmonographs.nl/.
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and possible, providing the fabric can be reproduced at a resolution sufficient for a
human to count the threads.

Historic Photographic Paper Classification (HPPC) Project

Building on the successful imaging of previously undetectable or unreadable patterns,
this project demonstrated the feasibility of automatic computer-based classification of
historic embossed silver gelatin photographic papers using “texture maps” – digital
images that record the topography of the surface of the work undergoing
examination.13

Surface texture is a design variable in the manufacture of photographic papers and
is a major factor in their marketing and use. Starting in the early twentieth century,
manufacturers manipulated texture to differentiate their products and satisfy the aes-
thetic desires and work practices of photographers. The identification of a proprietary
texture associated with, for example, the Eastman Kodak Company, provides scholars
with valuable information regarding a photographer’s intention and practice. It also
serves as an aid in attribution and dating. Currently, the determination of texture of
a specific commercial product is accomplished by comparison of a sample with a
known reference using raking light, a strong source of illumination cast parallel to
the surface of the work undergoing examination. Raking light can reveal the surface
texture of these papers by producing a high-contrast rendering of highlights and
shadows, as seen in Figure 3. Despite successful documentation of surface features of
historic photographic papers, the sheer number and diversity of their textures prohib-
ited any attempt to sort, compare, and match them by hand. Begun in 2010 as part of
research surrounding the Thomas Walther Collection of photographs belonging to the
Museum of Modern Art, New York, the goal of the HPPC project was to advance schol-
arship about dating and characterization techniques for twentieth-century photograph-
ic materials and establish a new model for collaborative research, interpretation, and
interdisciplinary dialogue.14 To aid in their comparison, the raking light photographs
were converted to 16-bit grayscale, cropped to 1024 × 1024 pixels, flat field corrected,
sharpened slightly using an unsharp mask, and contrast enhanced by histogram equal-
ization to produce images as in Figure 4. A set of 120 standardized raking light images

Figure 3. Raking light photographs capture the subtle and unique surface texture of vintage photographic papers.
(Photo: P. Messier)
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made from a reference set of historic silver gelatin papers was submitted to four uni-
versity teams who applied different signal processing strategies for automatic feature
extraction and degree of similarity quantification. Their results demonstrated an en-
couraging degree of success in sorting the papers and successfully detected strong affin-
ities, as well as outliers built into the dataset. The teams had no prior knowledge of the
distributions of samples and the inclusion of exceptional examples when they created
and deployed their algorithms. To cite just one finding, surprising paper pairings were
discovered between photographs by Alfred Stieglitz (American, 1864–1946) and
Edward Weston (American, 1886–1958), which suggests that their meeting in 1922
may have had not only inspirational, but practical ramifications. Such intriguing
results suggest that computerized classification of historic silver gelatin photographic
papers based upon raking light texture maps is feasible and should be pursued.

Figure 4. Raking light images of historic textured photographic papers are standardized to grayscale images prior
to automatic feature extraction and degree of similarity quantification via image/signal processing. TP04 and TP08
are a match. (Photo: P. Messier)

Computational Connoisseurship 131



Given the success of the HPPC project, attention turned to applying image/signal
processing to the smoother, but still distinctive surfaces of so-called “wove” papers,
those lacking the internal grid pattern of antique “laid” papers. Samples were selected
from Specimens, a 1953 publication of the Stevens-Nelson Paper Corporation which
contains 107 predominantly mold-made papers from some of the oldest paper mills
in Europe.15 Many of these papers were popular with twentieth-century artists includ-
ing Pablo Picasso (Spanish, 1881–1973), Henri Matisse (French, 1869–1954), and
Fernand Léger (French, 1881–1955), whose work has been widely copied and sold as
authentic. Initial results of this study demonstrated that, as a concept, the computation-
al and automated matching of the wove paper surface textures is achievable.16

Chain Line Pattern (CLiP) Marking and Matching Project

The Chain Line Pattern (CLiP) Marking and Matching Project, begun in 2012, demon-
strated the potential of image/signal processing to mark and measure unique chain line
intervals in antique laid papers.17 This allows for the matching of papers made from the
same papermaking mold, even those lacking watermarks.

The study of prints by Rembrandt has occupied scholars for more than two cen-
turies. With several thousand in existence today, the papers the artist used to print
upon have received much attention. Rembrandt’s prints were predominantly executed
on laid paper, which is formed on molds, or porous screens, fabricated from finely
spaced horizontal rows of laid wires held into position by thicker, widely spaced vertical
chain wires. The grid-like configuration of the laid and chain patterned screen was rep-
licated in the sheet of paper produced, as seen in Figure 5. Each mold was made by
hand and, while at first glance two molds may appear to be identical, small variations
exist between the exact intervals of chains from one mold to the next. Two papers
having identical laid and chain line patterns can occur only if they have been formed
on the same mold – hence, they are called moldmates. When there exists a large
body of one artist’s work on paper, as is the case with Rembrandt, the identification
of moldmates can help in establishing chronology, suggest paper preferences, and in-
dicate periods of intense activity.

To date, moldmates have been identified primarily by the ability to superimpose
their watermarks exactly. Stitching a thin wire bent to form a shape onto the surface
of the mold forms watermarks. As with the chain and laid lines, the wire influences
pulp density and results in a pattern detectable in the paper using transmitted light.
The watermark in Figure 5 is located in the upper left corner, but it is difficult to deci-
pher due to interference from the black printing ink. A significant drawback in iden-
tifying moldmates is the prevalence of non-watermarked papers. Indeed, among
Rembrandt prints, approximately two-thirds lack a watermark or even a fragment of
one.18 Because images of watermarks are typically captured using beta radiography,
which penetrates dense printing ink, as seen in Figure 6, and hundreds of beta radio-
graphs of Rembrandt prints already exist, theoretically one could visually match papers
using chain line intervals through superimposition.19 Once again, however, the sheer
number of images, not to mention the four possible orientations of a series of
simple parallel lines in each image, made the task impossible to carry out by hand.
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Therefore, the possibility of using algorithms to automatically identify moldmates by
marking, measuring, and matching only chain line intervals was explored.

Using sheets found in a blank ledger produced by the Austrian Kremsmunster
mill dating from the 1570s or 1580s,20 this project showed that closely related
molds, even those used by a single maker in alternating sequence, could be recognized

Figure 5. Rembrandt’s etching Christ at Emmaus, 1654, (B87) is seen over transmitted light. The vertical chain
lines, with the exception of the center chain line, are highlighted in yellow. Their intervals, as indicated by the blue
arrow, vary slightly across the sheet. The watermark is partially visible in the black oval; however, it is obscured by
the dense black printing ink. (Photo: L. Aikenhead)
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as unique. Applied to the hundreds of images taken of Rembrandt prints from several
collections, CLiP matching identified two newly discovered moldmates, affecting
dating and attribution as well as providing fresh insight into Rembrandt’s printmak-
ing practices.

Watermark Identification in Rembrandt’s Etchings (WIRE) Project

Begun in 2015, the Watermark Identification in Rembrandt’s Etchings (WIRE) Project
is an ongoing multidisciplinary collaboration among museums, university faculty, and
students. Based at Cornell University, its aim is to promote Rembrandt scholarship
through digital access to his printmaking papers. The chief innovation of WIRE was
the development of an automated decision tree for the differentiation of watermarks,
which incorporated an interactive and expandable online identification aid illustrated
with images of all known Rembrandt watermarks.21

Users of WIRE are prompted to answer questions about the visible features of a
particular watermark. The questions posed about these features, the answers to
which guide the user through the decision tree, need to be answerable with high con-
fidence in order to keep the user from taking the wrong branch due to an incorrect

Figure 6. A beta radiograph of Rembrandt’s etching,Man in a Coat and Fur Cap Leaning Against a Bank, c. 1630,
(B151) captures precise variations in paper density without interference from dense printing ink. The watermark
depicts a “foolscap.” (Photo: L. Aikenhead)
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assessment. The string of questions and the associated answers leading to a specific wa-
termark label provide a finite set of visible features that uniquely define that watermark
and distinguish it from all others.

In this way, users are quickly moved through a decision tree to reach the appropri-
ate sub-variant level designation taken from E. Hinterding’s taxonomy of watermarks
found in Rembrandt’s etchings.22 An example of one decision tree “branch” for a fools-
cap watermark with a five-pointed collar is seen in Figure 7.23 Given the enormous
number of variants of foolscap watermarks found in Rembrandt’s prints, the advantag-
es of automation are obvious.24

Not surprisingly, as of this writing, WIRE has brought to light 15 new watermarks
in Rembrandt’s papers.25 Additional data, especially full-sheet-sized images of prints
and drawings from Rembrandt and his circle from as yet untapped collections, will
hopefully be provided by the Watermark Imaging Box (WImBo) Project (described
below), which will significantly enhance the decision tree through many more
images of greater clarity and completeness. Accumulating more images may also
assist efforts to date papers lacking watermarks through chain line pattern (CLiP)
matching.

Figure 7. The decision tree branch diagram for Foolscap with Five-Pointed Collar watermark developed by
Louisa Smieska and Alison McCann (Lines of Inquiry: Learning from Rembrandt Etchings [Ithaca, NY: Herbert
F. Johnson Museum, Cornell University, 2017], 32).
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Future Directions

Potential areas for further material studies are limitless, but all will require large data-
sets of images, such as radiographs, photographs, or other yet to be tried images, such
as rubbings, taken under identical conditions, which can then be transformed into
analogous digital images. To date, these datasets have either existed already or were
readily compiled. Today, many known collections of computer-readable images of se-
lected paintings (X-radiographs), etchings (beta radiographs), and photographic papers
(raking light) have been accessed and analyzed. The difficulty of achieving the two crit-
ical requirements of a dataset – quantity and consistency of images – threatens to stall
current investigations and prohibit others from starting.

Facilitating Data Collection across Collections

One final initiative, described below, is intended to simplify and standardize proce-
dures for gathering images for computational analysis. We hope that this simplified
procedure will decrease the chances that ongoing image/signal processing projects
will stagnate due to the time, expense, and skill required to produce satisfactory
images for analysis.

The Watermark Imaging Box (WImBo) Project

The Watermark Imaging Box (WImBo) Project is an inter-institutional collaboration
to develop a low-cost portable system for imaging watermarks and chain lines in
papers, with a special focus on the prints of Rembrandt and his pupils.26 It is an exten-
sion of the two foundational projects described above, Chain Line Pattern (CLiP)
Marking and Matching and Watermark Identification in Rembrandt’s Etchings
(WIRE).

Watermarks and their adjacent chain lines can provide scholars with important in-
formation about the origins of prints and their interrelationships. A significant effort
has been devoted to the characterization of these attributes, yielding valuable insights
for scholars, archivists, and conservators. However, existing imaging procedures have
serious limitations – specifically the labor, time, and skills that are necessary to assem-
ble a sufficient quantity of usable images. WImBo addresses these challenges through
the development of a low-cost, easily used, portable system for imaging watermarks
and chain lines in paper. The watermark imaging box (WImBo) would be delivered
to collections of any size and enable untrained staff to rapidly produce satisfactory
images from their print collections. These data, shared and networked, not only will
provide a more comprehensible catalog of existing watermarks, but will also produce
a dataset for the development of an automatic classification scheme. A step-by-step
procedure for recording digital images of watermarks is being developed using
papers taken from a seventeenth-century printed atlas by Joan Blaue (Dutch, 1599–
1673) as a template. Figure 8 shows a beta radiograph of a page from the Blaue Atlas
Major of 1662. We hope that the easier and faster production of digital images will
result in richer datasets of images for future computational analysis. One intriguing di-
rection might be to expand the reference set to include works by artists known to be
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working in the same studio, or to include related materials, for example papers used for
Rembrandt’s drawings as well as those used in his prints.

Conclusion

Through a look back at four case studies, this article addresses the lessons learned and
the insights gained from more than a decade of collaboration between image/signal
processing engineers, conservators, curators, art historians, university faculty, and stu-
dents. We have found these cross-disciplinary collaborations somewhat unusual and
not without difficulty. Visual arts-oriented participants need to acquire an appreciation
of the range and limitations of the signal processor’s tools in order for useful, viable,
and novel tasks to be identified. Signal processing experts must learn to describe
their skills without resorting to the language of mathematics, and to appreciate the in-
tellectual depth of materials-based expertise. Computer-based tools, in particular the
application of image/signal processing algorithms to digitized images, promise to

Figure 8. A beta radiograph of a page from the Joan Blaue’s Atlas Major of 1662, selected for the test paper to be
sent to imaging teams, depicts the internal paper structure to be documented for future image/signal processing.
(Photo: L. Aikenhead)

Computational Connoisseurship 137



extend the reach of traditional connoisseurship studies into heretofore unimagined
areas of investigation and beyond. Hence, connoisseurship is strengthened rather
than subverted by the use of computer technology.
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