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Hunting for Paper Moldmates among Rembrandt’s
Prints

C. Richard Johnson, Jr., William A. Sethares, Margaret Holben Ellis, and Saira Haqqi

Early paper manufacturing used sieve-like molds through
which paper pulp was drained. Two pieces of paper are
called moldmates if they were made using the same mold.
When there exists a large body of one artist’s work on
paper, the identification of moldmates can help in establishing
chronology, suggest paper preferences, and indicate periods of
intense activity of the artist. Rembrandt is an especially good
example. With several thousand prints in existence today, the
study of Rembrandt’s prints has occupied scholars for over
two centuries, and the study of his printing papers occupies a
prominent place within this scholarship [1]. This paper exam-
ines the feasibility of moldmate identification via chain line
pattern matching, and conducts a series of experiments that
demonstrate how accurately the measurements can be made,
how straight and how parallel the lines may be, and provides
a rule-of-thumb for the number of chain lines required for
accurate moldmate identification using a simplified model. The
problem of identifying moldmates among Rembrandt’s prints
is presented as a pair of image/signal processing tasks; our
strategy is to provide basic solutions to these tasks and to
then reveal the shortcomings of these solutions in the hopes of
encouraging future work in the signal processing community.
With the support of the Morgan Library & Museum and the
Metropolitan Museum of Art, we have made high resolution
data available [2] to facilitate this quest.

LAID LINES, CHAIN LINES, MOLDMATES, AND
WATERMARKS

Before the introduction of the papermaking machine in the
early 19th century, handmade paper was created by dipping a
mold – a porous screen surrounded by a removable wooden
frame – into a vat of mascerated and suspended pulp. Prior
to 1750, the screen was fabricated from fine densely spaced
horizontal rows of laid wires held into position by thicker,
widely spaced vertical chain wires. When the mold was
plunged into the vat and lifted out, these wires acted as a sieve,
retaining the paper pulp in thinner and thicker accumulations
as the water drained away. A modern re-enactment of this
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method of paper making can be found online [3]. The grid-
like configuration – called a laid and chain line pattern –
formed by the interference of the wires, is replicated in the
final sheet and is easily visible when the blank paper is viewed
via transmitted light or imaged via radiography. For example,
Fig. 1 shows one of Rembrandt’s prints and a beta-radiograph
of the same print in the region around the watermark. The
chain lines are the whitish vertical features spaced slightly
more than 2 cm apart. The laid lines are the closely spaced
(and barely perceptible) horizontal lines. Each mold was made
by hand and, while at first glance, two molds may appear to
be identical, small variations exist between the exact intervals
of chains from one mold to the next. Papers having identical
laid and chain line patterns are commonly presumed only to
occur if they have been formed on the same mold – hence
they are called moldmates.

Figure 1. Rembrandt’s etching “Medea, or the Marriage of Jason and Creusa,”
(Bartsch 112iv) is shown in visible light and as rendered, in a detail, by beta-
radiograph. The area near the watermark is shown in the beta-radiograph
where the chain lines are the vertical features that are spaced a little less than
one inch apart (see the top ruler). Thanks are extended to Reba Snyder for
providing the beta-radiograph of B112. (Etching Photo Credit: The Morgan
Library & Museum, New York. RvR 178. Photography by Graham S. Haber,
2014.)

Often a watermark designating the paper’s manufacturer,
size, or function was stitched onto the heavier chain lines
using a wire bent into a simple shape, for example, a star,
shield or monogram. Just like the chain and laid lines, the
watermark wire affected the rate and quantity of pulp as it
drained through the mold, and left behind a characteristic
impression on the paper. Typically, images of watermarks are
captured for art historical research using beta-radiography or
low-energy x-radiography [1]. For example, the watermark in
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Fig. 1 is known as a “foolscap” and depicts the head of a jester
wearing a five-pointed ruff surmounting a cross emerging from
three spheres. Twenty-one variants of foolscap watermarks
found on Rembrandt’s prints are cataloged in [1], one of which
has nine subvariants, with one of these appearing in Fig. 1.
This particular subvariant can be found in sixteen different
prints by Rembrandt according to [1]. Papers having identical
watermarks may also be presumed to be moldmates.

Watermarks have received considerable attention in print,
drawing, book, and manuscript connoisseurship, with scholars
carefully recording watermarks in the works of Shakespeare,
Beethoven, Jane Austin, Dürer, and other artists and writers.
To date, moldmates have been identified primarily by compar-
ing watermarks. However, extracting and comparing water-
marks using computer-generated algorithms is a challenging
proposition, as they have complicated shapes (as shown by
the foolscap) and can assume many forms and have many
variations. Another drawback to the use of watermarks for
moldmate identification is that not all prints under consider-
ation have watermarks. Indeed, only approximately one-third
of the extant impressions of Rembrandt’s etchings include a
full watermark or even a fragment[1]. Accordingly, the use of
the chain line pattern has been suggested as way to identify
papers made on the same mold [4]-[5]. The difficulty in man-
ually pursuing moldmate identification via chain line pattern
matching has prompted the consideration of its automation
[6]-[8], though no automated scheme has yet been universally
adopted.

CHAIN LINE PATTERN MATCHING AND SIGNAL
PROCESSING

The approach taken here is to characterize the problem of
identifying moldmates among Rembrandt’s prints – and by
extension any handmade laid and chain line patterned papers
such as those found in manuscripts, printed books, archives,
and collections of prints and drawings – as a basic pair of
image processing tasks.1 The first task is to locate the chain
lines in images such as Fig. 1; the second is to use the chain
line patterns to identify potential moldmates. Our strategy is to
provide basic solutions to these two tasks that are sufficient to
convince the user community to collaborate in a future imaging
campaign providing full sheet images to maximize the extent
of the chain line pattern associated with each piece of paper. To
help encourage members of the signal processing community
to contribute to this topic of paper moldmate identification we
point out here some of the limitations of our basic solutions
and note that – with the support of the Morgan Library &
Museum and the Metropolitan Museum of Art – we have made
high resolution images available [2], which will be needed for
developing improvements.

Our algorithmic approach to this computational art history
task is similar to the strategy in [7], which uses image pro-
cessing tools (in particular Fourier and Radon transforms) to
extract from a suitable image the average chain line separation

1While considerable progress has been made in the application of signal
processing to the technical analysis of canvas supports for paintings [9]-[13],
there has been much less focus on the application of signal processing to
handmade laid paper.

distance, chain line orientation, number of chain lines, and
the sequence of chain line separation distances. As stated in
[7]: “All these features are detected under the assumption that
the lines are straight and equidistant with respect to each
other.” [Here equidistant means parallel.] In [7], the average
chainspacing and the chainspace sequence are combined with
the laid line density in a similarity measure. Our approach
in the present paper differs in that we drop the extraction
and use of laid line density as most of our images are of
insufficent clarity to assess this feature. Plus, we abandon the
assumption that the chain lines are parallel; while we retain
the assumption that they are straight. The lead author of [7]
modified the straightness assumption to piecewise straightness
in [8], with a commensurate increase in the necessary signal
processing.

In this paper, we test the straightness of the chain lines in
the images in our dataset and find that numerically adequate
near-straightness occurs in approximately 90% of our images.
Thus, in our quest to establish the ability of chain line pattern
matching of a sufficient number of adjacent chainspaces by
itself to offer a reduction in a broad library to a manageable
number of potential matches for further investigation we
assume chain line straightness. We also test our dataset for
the occurrence of chain line patterns with at least one non-
parallel chain line with a relative angle greater than 0.12
degrees. This is a sizable portion of our dataset (see Fig. 5
for details). We chose to include the possibility of handling
images with non-parallel chain lines, for which the location
of the measurement of chainspacing on the image relative to
its location on the mold needs to be computed, because of the
fundamental simplicity of this task. The end result is that we
agree with [7] in that the chainspace sequence is “the most
discriminative feature”.

Locating Chain Lines

A semi-automatic method of chain line extraction in beta-
radiographs is shown in Fig. 2. This begins in (a) with a
manual trimming (b) to remove any labels, ruler markings,
and blank areas from the source image. The trimmed image
is input into a Radon transform (c) and the angle at which
the chain lines are (closest to) vertical is given by the column
with the greatest variation. The graph (d) shows the standard
deviation of the elements in each column, and the angle θ∗

with the maximum value gives the angle of rotation. In (e),
the trimmed image is rotated by −θ∗ to give the straightened
image (f). This is then filtered using an aggressive vertical
filter (g) which is 1/3 the image height and 3 pixels wide,
resulting in the filtered image (h). A Hough transform (i) then
locates the most prominent lines, and the result is shown in
(j), superimposed over the straightened image.

Observe that although the positions and orientations of the
lines can be determined automatically in this procedure, both
the preparation of the image and the final verification are
done manually. It is difficult to control the exposure of beta-
radiographs, since under- and over-saturation can occur based
on the properties of the paper, which may not be fully known
at a the time of exposure. As a result, it is common to adjust
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Figure 2. A semi-automatic method of chain line extraction.

the contrast on the images and to trim unwanted portions of the
raw data. The images commonly contain a ruler (as in Figs.
1 and 2(a)) which is needed to verify physical dimensions,
and there may be regions of all-black or all-white (such as the
wedge shaped region in 2(a)) that need to be cropped. While it
may be possible to automate some of these actions, mistakes
in the preprocessing almost guarantee that the chain lines will
not be found properly.

Once the procedure (b)-(c)-(e)-(g)-(i) of Fig. 2 has been run,
it is necessary to check that the output is sensible. Typical
errors in the algorithm would include failing to find some of
the lines or finding too many lines. In either case, the algorithm
can be rerun with different thresholds and settings within the
filters and transforms. Clearly, the method suggested in Fig.
2 is but one possibility. See [7] for another that begins by
exploiting the shadow around the chain lines rather than the
chain line itself.

As all approaches will, our method makes several assump-
tions about the chain line patterns. First, it assumes that all the
lines are more-or-less parallel (because otherwise the Radon
transform cannot locate a single preferred direction for the
step (e) derotation). Second, it assumes that all the lines are
genuinely straight, since curved or segmented lines cannot be
located by the Hough transform reliably. The open problem of
finding more automated, more general, more accurate, and/or
faster algorithms is one task we are promoting here to signal
processing specialists.

Rather than pursuing an improved or more general algorithm
here, consider the question of accuracy. It is easy to look at
the superimposed output of Fig. 2(j) and to see that it “looks”
correct. It has detected the correct number of lines and they
are located plausibly. But what is the “real” answer, and how
close does the algorithm come to this answer? Indeed, this
becomes crucial when comparing different algorithms, since
only by comparing with a ground truth can the accuracy of
different candidate algorithms be compared.

Experiment #1: A Test of Accuracy

To see why the task of locating the chain lines may not be
as straightforward as it might seem, Fig. 3 enlarges the beta-
radiograph B112iv twice. While the left and middle images
clearly show the chain lines as vertical linear features, the
right hand image shows that these are not simple geometric
lines. Rather, they are composed of uneven and blurry patches,
they are not of uniform width (often extending several pixels
to either side), and they may be interrupted repeatedly.

Figure 3. A small region containing a portion of a chain line is extracted
from the beta-radiograph in Fig.1. This is then enlarged twice. What appears
to be a fairly clear vertical line in the left dissolves into a blur of pixels on
the right. Where exactly is the “line”?

To investigate, we asked a group of engineering students
at Cornell University taking a course on signal processing
algorithms for analyzing art supports [14] to manually identify
the chain lines in several beta-radiographs. The subjects were
given marking software (a simple graphical user interface built
in Mathematica) which allowed placement of marks near the
endpoints of the chain lines. A semi-transparent line connected
the two endpoints so that the subjects could visually verify
their marking. Such manual markings can be used to establish
the ground truth of “where the lines really are” and can also
be used to assess the agreement (or disagreement) among the
subjects.

Since the subjects could choose where to mark, it was not
possible to compare the marked locations themselves. Rather,
the lines formed by joining the two marked endpoints were
parameterized in distance/angle form

ρ = xi cos(θ) + yi sin(θ) (1)

where the (xi, yi) are the Cartesian coordinates of the two
endpoints, ρ is the distance from the origin and θ is the
angle of the line. With two marked points, (1) is a system
of two equations and two unknowns, and hence can be solved
for (ρ, θ). The (ρ, θ) values for each of the lines marked by
each of the subjects were tabulated. Altogether, there were
twelve subjects who worked with 24 beta-radiographs chosen
randomly from our larger set. Each subject measured 4-5 lines
on 8 different beta-radiographs and so each chain line was
measured independently four times. Over this data set, the
mean of the ρ values was 1.06 and the standard deviation was

σe = 0.009, (2)

which corresponds to about 5.3 pixels at a nominal resolution
of 600 dpi. This shows that despite the patchy nature of the
chain lines, subjects can locate the chain lines with reasonable
consistency. It also provides a way to assess the quality of an
algorithm. Indeed, applying the semi-automatic procedure of
Fig. 2 to the same beta-radiographs gives values of ρ that are
within one standard deviation of the measured values.

Experiment #2: A Test of Straightness

Both the algorithm of Fig. 2 and the discussion of the
geometry of moldmates in Fig. 4 presume that the chain lines
are straight. Staalduinen [8] observes that some chain lines
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may be bent, and develops a method that attempts to locate
the piecewise segments of such bent lines. Our observation was
that the majority of chain lines did not appear to bend, and
so we wanted to quantify the straightness of the chain lines.
Towards this end, we asked the subjects to manually find the
smallest bounding box that encloses the centered spine of each
chain line. The subjects and image data were the same as in
Experiment #1. The subjects now used the software to mark
three points for each chain line, from which the bounding
boxes can be calculated. These three points were to be placed
in the horizontal center of the vertically-oriented chain line
with one each near either end and one at some point of extreme
departure from the straight line connecting the marked end
points. Again, each bounding box is measured four times,
by four different subjects. Fig. 5 shows a histogram of the
widths of the chain line bounding boxes. The average width
is 7.0 pixels, and the median is 5.3. Both of these numbers
are comparable to (2), which is the accuracy to which the
measurements are made – hence, over half of the chain lines
have width smaller than can be reliably measured.
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Figure 4. A paper mold is shown in schematized form where the non-
parallel chain lines have been exaggerated. The paper has been cut into three
pieces labelled A, B, and C. Given a large collection of papers, the goal of
moldmate identification is to find those papers that come from the same mold.
The geometry of two non-parallel chain lines is shown on the right.

On the other hand, there are isolated chain lines which have
bounding boxes with nontrivial width. In this data set [2], the
largest is the leftmost chain line in the image 17.37.75, which
is measured as 52.7, 27.48, 29.83, and 30.97 pixels by the four
subjects. While these values are not particularly consistent,
they are all well above the measurement error, indicating a
significantly bent chain line. The second largest values are
from the left-most chain line of image 17.37.75 (2), which
were reported as 40.13, 32.08, 39.5, and 36.2. Interestingly,
these two distinct images from our dataset, included in the
grouping of [2], are of the same of piece paper and should
provide a very close match. However, they did not for the
software we subsequently developed, which assumed chainline
straightness. They were assessed as somewhat similar but not
the closest match.

Experiment #3: A Test of Parallelism

A common assumption is that the chain lines in a single
print are parallel [7]. To test this assumption, this third experi-
ment uses a set of N = 205 beta-radiographs we received from
the Morgan Library & Museum, the Metropolitan Museum of

Art, and the Rijksmuseum to measure the degree to which
the lines are parallel, by looking at the difference between
the angles of the chain lines. Fig. 5 shows a histogram of
the maximum angle that occurs in each print. The mean and
median values are 0.4 and 0.36 degrees, so overall the lines
tend to be fairly parallel. As will be discussed in succeeding
sections, when the lines are not parallel, this can be quite
useful as an identifying feature of the print.
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Figure 5. The left hand image shows a histogram of the measurements of
the widths of the bounding boxes about the chain lines. The majority of chain
lines appear straight, though there are outliers. The methods of this paper will
not be effective for these outliers. The right hand image shows a histogram
of the maximum angle found between the chain lines in each print gives a
measure of how parallel the chain lines are. The majority of papers have fairly
parallel chain lines; those that do not may be more readily identified by the
methods of this paper.

The Geometry of Moldmates
The dimensions of the molds used in paper making were

typically much larger than the sizes of final folded sheets as
used for pages in a book or unfolded as stand-alone sheets.
Fig. 4 shows an exaggerated schematic of a mold with eight
chain lines that has been divided into three sheets labeled
A, B, and C. It is worth making a few observations. First,
chain line matching cannot show directly that papers A and
B come from the same mold since they have no chain lines in
common. Second, measurements of chain spacings (inter-chain
distances) may show a close match between B and C (because
the corresponding lines are parallel), but they will not show a
close match between A and C (because the lines have different
angles). Third, given two pieces of paper with many chain
lines, it is necessary to check all possible subsets for matches.
For example, only the final four lines of C can match with
the lines of B. Though not obvious from the figure, it is also
worth mentioning that it is typically unknown a priori whether
a paper has been flipped left-right, top-bottom (or both) when
taking the beta-radiograph; thus it is also necessary to check
all four orientations when attempting to find matches. Finally,
the more chain lines that overlap, the more certain one can be
that two papers do (or do not) match.

Using the distance/angle form (1) for the detected chain
lines allows a geometric calculation to compensate for the
angle discrepancy. Essentially, this estimates the distance β
in Fig. 4, though it may be pictured geometrically as sliding
the chain lines of paper A up and/or down until they best
match the chain lines of paper C. The geometry of two non-
parallel chain lines is illustrated in the right hand side of Fig.
4. The distances d1 and d2 are two measurements of how far
apart the lines are, and are related via

d1 = d2 + β sin(ψ). (3)
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Because segments 1© and 2© are parallel, angle α equals angle
δ. (Counterclockwise angles are positive while clockwise an-
gles are negative.) Thus, because α = 90◦−θ and δ = 90◦−φ,
θ = φ. Furthermore, because γ + ψ = 90◦ and γ − φ = 90◦,
ψ = −φ = −θ. A key observation is that the angle off
horizontal of the shortest distance line to the right line from
any measurement point on the leftmost line is the same.

Given a collection of N laid papers each with M chain
lines (presumed to be straight but not necessarily parallel),
the first step is to measure (automatically, semi-automatically,
or manually) the positions of the chain lines. Using the
distance/angle parameterization (1), the M chain lines in paper
i can be represented by the vector

{ρi, θi} ≡ {ρi1, ρi2, ..., ρiM , θi1, θi2, ..., θiM} ∈ R2M , (4)

where ρik and θik represent the distance and angle of each chain
line k with respect to the origin of the ith paper. For ease of
notation, these are partitioned into vectors ρi and θi, each in
RM .

Consider two pieces of paper i and j that are separated by
an unknown distance β on the same mold (for example, paper
A and the first four chain lines of C in Fig. 4). Applying the
logic of Eqn. (3) to each of the successive pairs of chain lines
suggests estimating β using a Least Squares procedure

min
β
||


ρj1 − ρi1
ρj2 − ρi2

...
ρjM − ρiM

− β


sin(
θj1+θ

i
1

2 )

sin(
θj2+θ

i
2

2 )
...

sin(
θjM+θiM

2 )

 ||. (5)

Though the measurements θj` and θi` are similar, they are not
identical, which is why they are averaged. Rewriting (5) using
Yi,j for the first vector and Xi,j for the second, the β that
minimizes the least squares error ||Yi,j − βXi,j ||2 = (Yi,j −
βXi,j)

T (Yi,j − βXi,j) is β∗i,j = (XT
i,jXi,j)

−1XT
i,jYi,j .

Identifying Moldmates

The geometric analysis of the previous section aligns the
chain lines of two papers (as well as possible) by offsetting
them a distance β∗i,j . Moreover, the value achieved at this
optimum

dβ∗(i, j) = ||Yi,j − β∗i,jXi,j ||2 (6)

provides a measure of the dissimilarity between the chain lines
of the papers i and j. A value of zero would mean that the
shifted versions overlay exactly while a large value implies
that the two sets of chain lines are very different. Moldmates
should have small dβ∗(i, j) while unrelated papers should have
larger values.

Initial experiments showed that applying (6) directly to the
problem of finding moldmates can lead to some undesirable
false matches. Fortunately, many of these can be removed by
considering more than just the value of dβ∗(i, j). We have
found four such modifications useful. First, if the difference
between any of the angles is too large, any small value of
d(i, j) is accidental; such accidents can be removed from
consideration by placing a threshold on max |θj−θi|. Second,

if all of the individual angles are small, then the computation
of β∗ is irrelevant, and the distance

d(i, j) = ||ρj − ρi|| (7)

is more appropriate. Third, a β∗ value that is larger than about
18 in (a typical size for the frame) is impossible; any such false
matches can be removed by placing a threshold on β∗. Finally,
if the maximum of all the |ρj−ρi| is small, a distance of zero
is reported to encourage consideration of this potential mold
match. These can be written succinctly in two parts:

if max
j
|θj | < 0.005,

δ(i, j) =

 ∞ max |θj − θi| > 0.02
0 max |ρj − ρi| < 0.01

d(i, j) max |ρj − ρi| > 0.01

if max
j
|θj | ≥ 0.005, (8)

δ(i, j) =


∞ β∗i,j > 18
0 max |ρj − β∗i,j sin(Xi,j)ρ

i| < 0.01
dβ∗(i, j) max |ρj − β∗i,j sin(Xi,j)ρ

i| ≥ 0.01

where Xi,j is defined as in (5). The various thresholds (0.005,
0.01, 0.02, etc.) are representative and may require fine tuning
for specific data sets. The threshold on the differences in angle
and distance are set so they are larger than the differences
resulting from manual marking errors. The range of measure-
ment point separation is set by typical mold dimensions. The
threshold for declaring the chain lines parallel (so that beta
need not be estimated) depends on the shift causing changes
in the distance/spacing vector that exceeds the threshold that
designates a match. For a modest β of 10 inches and a
reasonable distance threshold of 0.02 inches, the sine of the
relative angle should be less than 0.002. For such small values,
this corresponds to the angle threshold for declaring non-
parallelism of 0.002 radians or 0.12 degrees. By this measure
a large fraction of our images contain non-parallel chain lines.

HOW MANY CHAIN SPACES?

The objective in moldmate identification is not to return
a single answer with the most likely fit, since this is not
what the paper conservator or art historian would find most
useful. Rather, the goal is to reduce a large library of chain
line pattern images to a small number so that the expert user
can investigate further, with the expectation that if a match
exists, it will likely be in this smaller set. One issue is how
many adjacent chain spaces are needed to achieve this goal.
Currently, the majority of the beta-radiographs available to us
are limited to the vicinity of watermarks, which typically do
not cover the entire print. This is due to the earlier emphasis
on watermark matching and the technical limitations of beta-
radiography [15]. An assessment of the required number of
adjacent chain spaces to achieve reliable matching would be
helpful to persuade museums to undertake the expense in
equipment and personnel costs to mount a campaign to acquire
full-print images revealing its entire chain line pattern. This
section addresses that need by building a simple statistical
model of the chain-line process and assessing the probability
of error of the model as a function of the number of chain
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Figure 6. A histogram of the mean chain line spacing of the N sheets in
the database is reasonably modeled as a Normal probability distribution with
mean µ = 0.977 and standard deviation σm = 0.082, as shown in green.

spaces. Specifically, the analysis calculates the probability that
a sheet of interest will be confused with one or more of
the existing sheets and the results provide guidelines for the
number of chain lines that need be present in order to reliably
detect moldmates. This provides a rule-of-thumb for the real
problem.

In the past, attempts have been made to use the average
inter-chain spacing as a way of characterizing sheets of laid
paper for the purpose of identifying mold-mates [6]. This
section begins by conducting a statistical analysis of this
procedure (using data gathered as in the previously discussed
experiments) to show why the mean value alone is unlikely to
provide a useful characterization, which agrees with observed
behavior in experiments reported in [7]. The analysis is then
extended to consider the use of M + 1 chain lines (M inter-
chain spaces), and a simple rule-of-thumb is derived that
suggests how large M must be in order to reliably distinguish
mold-mate matches to a candidate sheet of paper from among
a universe of N >> M sheets.

The database of images of chain line patterns in laid papers
(provided by the Morgan Library & Museum, the Metropolitan
Museum of Art, and the Rijksmuseum and used in these
experiments) includes N = 205 sheets. The mean chain
spacing, calculated as ρi+1 − ρi where i ranges over all the
chain lines in a given image, is µ = 0.977 inches with standard
deviation σm = 0.082. Considered as a collection of random
samples, this is plausibly Gaussian, as can be seen in the
histogram of Fig. 6. To model the question of interest, consider
a collection of N random variables m̄i ∼ N(µ, σ̄2

m) each of
which is measured in the presence of some small error

mi = m̄i + εi where εi ∼ N(0, σ2
ε ). (9)

A new candidate element m∗ ∼ N(µ, σ2
m) is measured from

the same distribution as the mi, and we wish to know how
many of the mi lie close to this candidate m∗. (These will
be the potential moldmates that must be subjected to closer
examination.) This also requires quantifying “close to.” For
simplicity, consider two elements close if they lie within `
standard deviations of the measurement error, that is, if they lie
within ±`σε. This is shown schematically in Fig. 7, where the
shaded region S lying between the lines defined by m∗− `σε
and m∗ + `σε represents the probability that elements of the
data set lie close to the measured m∗.

Let

f(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (10)

N(µ,σ2

 
)m

µ

N(m*,σ2

 
)ε

m*

S

Figure 7. The means of the chain spacings are considered as elements of
m̄i ∼ N(µ, σ2

m). The region S shows the region in which elements are “close
to” the test element m∗ and the probability pS represents the percentage of
elements in the database close to the candidate.

be the normal density function. The probability represented by
the shaded region S is

pS(m∗, σm, `σε) =

∫ m∗+`σε

m∗−`σε
f(x, µ, σm)dx (11)

=
1

2
[Erf(

m∗ + `σε√
2σm

)− Erf(
m∗ − `σε√

2σm
)].

Some observations:
(i) The probability pS is independent of µ since both the

data set and the new candidate element are assumed to
have the same mean.

(ii) As the measurement error σε → 0, the probability of
being close goes to zero. In words, the more accurately
the measurements can be made, the greater the distin-
guishing power of the method. Conversely, larger σε
cause pS → 1.

(iii) The probability pS does depend on the particular m∗.
For m∗ << µ or m∗ >> µ, pS is small.

(iv) Conversely, m∗ = µ implies that pS = Erf( `σε√
2σm

). With
an eight-to-one ratio of σm to `σε, this is 0.1.

Case (iv) may be interpreted to say that roughly 10% of the
elements of the database will be considered close to the candi-
date. Since each must be considered in four orientations, this
approximately quadruples (to 40%) the percentage of sheets
that will be considered potential matches. One ameliorating
factor is that the measurement of the mean values are not
independent of the number of chain spacings M ; larger M
cause smaller effective σε. If each independent chain line is
measured with an error σε∗ , the average of M is effectively
drawn from N(µ, 1

M σ2
ε∗) and the effective standard deviation

is σε = σε∗√
M

. Perhaps the best use of the mean value of the
chain spacings is in the cases described by (iii) where m∗

deviates from the mean µ. In these cases, pS will be small
and there will be fewer possible matches to consider. From
another point of view, these estimates suggest that the mean
value may be better used as a method of ruling out mold
matches (in those cases when pS is small) than as a method
of locating mold matches in general.

Fortunately, more information is available in the chain
spacings than just the mean value. The simplest way to model
the chain spacings is to presume that the sequence of interchain
intervals is

¯̄mi = {mi,1,mi,2, . . . ,mi,M} for i = 1, 2, . . . , N, (12)
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where each component mi,j is independent of mi,k for j 6= k
and where ¯̄mi is independent of ¯̄mj for i 6= j. Following the
logic of (9)-(11), the probability pS( ¯̄m∗, σm, `σε) of accidental
matches from the database to a candidate vector m∗ is

pS(m∗i,1, σm, `σε) pS(m∗i,2, σm, `σε) · · · pS(m∗i,M , σm, `σε)

= (pS(m∗, σm, `σε))
M . (13)

Unfortunately, this exponential decay of 0.1M represents an
overly optimistic scenario in which each chain-space element
is independent of the others even within a single sheet.

A more realistic model observes that each chain space
sequence has a mean value m∗ and a small variance σ2

m̂ about
that mean. Let m∗ be the mean value drawn from N(µ, σ2

m)
as before. The chain spacings are then

{m∗ + m̂1,m
∗ + m̂2, . . . ,m

∗ + m̂M} (14)

where m̂i ∼ N(µ, σ2
m̂) and where the standard deviation σm̂ is

the variation in the chain spacings within a given sheet (which
is less than the variation in the complete data set). Assuming
again that the m∗ is independent of the m̂i and that m̂i is
independent of m̂j for i 6= j, the desired probability pS(m∗)
can be factored as

pS(m∗, σm, `σε) pS(m̃2, σm̃, `σε) · · · pS(m̃M , σm̃, `σε)

= pS(m∗, σm, `σε) (pS(m̃, σm̃, `σε))
M−1. (15)

Since σε < σm̃ < σm, the probability pS(m∗) is larger than
in (13), giving a more pessimistic (though also more realistic)
assessment. Using the value σm̃ = 0.034 (the average of the
standard deviations), `σε ≈ 0.01 (the average measurement
error from (2)), this is

pS = (0.1)(0.25)M−1. (16)

By M = 3 (four chain lines), there is about 4pS chance of
false matches. The factor 4 occurs because of the need to
inflate the number of sheets by four to consider all the possible
rotations and reflections. By M = 4, 4pS drops to 1% and
continues to decrease exponentially as M increases, reducing
the number of potential false matches by a factor of four with
each additional chain line. This leads us to seek matching
patterns of 5 (or more) adjacent chain lines with 4 (or more)
chainspaces. A comparison of the predictions of the three sets
of modelling assumptions is given in Table I.

model fraction
#1 average chain line spacing 0.4
#2 independent sequence of chain lines 4(0.1)M

#3 dependent sequence of chain lines 4(0.1)(0.25)M−1

Table I
THE THREE MODELS MAKE INCREASINGLY MORE REALISTIC

PREDICTIONS OF THE FRACTION OF IMAGES THAT WILL BE REGARDED AS
“CLOSE,” AS A FUNCTION OF THE NUMBER OF CHAIN LINES

A PAIR OF MOLDMATES IDENTIFIED VIA A CHAIN LINE
PATTERN MATCH

Applying the distance measure δ(i, j) of (8) to the dataset
of [2], we observed that there was a potential match between

Rembrandt’s Medea, or the Marriage of Jason and Creusa,
dated 1648 (B112iv, Fig. 1) and a left-right flipped version of
The Artist’s Mother in Widow’s Dress and Black Gloves, B344.
A reproduction of the etching and its beta-radiograph are
shown in [16]. What is particularly intriguing about this match
is that the latter print’s authorship has been questioned for
many years. Most scholars after Adam Bartsch, the indefati-
gable 18th century cataloguer of Rembrandt prints, agree that
B344 is by a pupil of Rembrandt, who was most likely copying
an earlier print, dated circa 1631, The Artist’s Mother Seated at
a Table, Looking Right (B433). This chain line pattern match
of papers in restrikes from around 1650, provides support for
the conclusion that the pupil’s print originated in Rembrandt’s
studio. Presuming creation of B344 around 1635 narrows the
list of potential copyists to pupils in Rembrandt’s studio at
that time. The close match between the (shifted) chain lines
of these two images (with the proper flips) is shown in detail
in [16]. Though this match was identified solely from the close
similarity of their chain line patterns, it can be verified [1] by
the match of the watermarks, though B344 has only a fragment
of the watermark that is fully contained in B112iv.

CONCLUSIONS AND OPEN QUESTIONS

This paper has highlighted the problem of moldmate iden-
tification of laid paper, and provided a basic argument for
the feasibility of the project. The potential for automated
procedures to identify moldmates among collections of similar
handmade laid papers is exciting to paper conservators and
graphic art curators. Using our first-pass signal processing
strategies and even with a modestly sized database, we were
able to identify a moldmate pair of Rembrandt prints that was
previously unrecognized by the owner.

This paper has attempted to clearly display the moldmate
problem as a set of signal processing tasks with the goal
of making the problem accessible to the signal processing
community where those who are not expert in the technical
analysis of paper may contribute. One key to this is a de-
scription of the various signal processing tasks that must be
completed. The other major component is making the images
and datasets publicly available [2] to help “fuel” this cross-
disciplinary effort.

Some of the problems highlighted in this paper are straight-
forward applications of signal processing techniques while
others may require significant effort to realize. For example, a
wonderfully complex problem is the automated extraction and
comparison of watermarks (such as that in Fig. 1). Such shapes
are much more complex than the simple straight-line we have
chosen to attempt to extract and the automated comparison
between such unparameterized shapes is not straightforward.
On the other hand, there are many tasks that might benefit
from more advanced signal processing techniques, more clever
implementations of the algorithms, and/or more thoughtful
metrics. For instance, the proposed algorithm for chain line
extraction (in Fig. 2) can no doubt be improved, both in its
accuracy and in its range of applicability, reducing the manual
portions with automated extraction techniques. Similarly, the
distance measure (8) can no doubt be expanded or improved.
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As shown in [16], such chain line pattern matching software
can also be used to assess concerns paper experts have regard-
ing the possibility that differences in the wetting, pressure,
and drying of intaglio printing and conservation treatments
encountered separately by moldmates can distort the chain
lines into distinctly different patterns.

The analytic contribution of this paper is to propose a simple
model where the statistics of the chain line dataset can be used
to estimate the number of chain lines needed to distinguish laid
papers. For example, three or four chain lines are inadequate
to reliably locate moldmates, and the rule-of-thumb relates the
certainty of any such identification with the number of chain
lines, given the experimental and computational errors inherent
in locating the chain lines.
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