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diographs are used instead of inspecting th

ause master paintings frequently have had a n

ack to preserve the original canvas.
a b s t r a c t

A spectral algorithm is described for measuring from radiographs the weaving densities

of the horizontal and vertical threads that comprise a painting’s canvas. A framework

for relating spectra to canvas weave type is presented. The so-called thread density and

angle maps obtained from the algorithm reveal the canvas’s distinctive density

variations and provide insights into how the canvas was prepared. Applying a two-

stage correlation procedure to the density variations allowed determination of which

paintings’ support could have been cut from the same piece of canvas. The first stage

uses a nonparametric test of the similarity of the probability distributions of two

painting’s thread counts. The second stage is a new correlation procedure more

stringent than the usual cross-correlation function. Examples drawn from the paintings

by Vincent van Gogh illustrate the algorithms.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Standard measures of a painting’s canvas support are
its weave pattern – whether it has a plain, twill, herring-
bone or diamond weave – and its thread counts, the
average densities (expressed in threads/cm) of the hor-
izontal and vertical threads. Thread count data are com-
monly used as evidence for dating, linking pictures from
the same canvas roll, and attribution [1–3]. For many
years, art historians and conservators manually measured
from a painting’s radiographs the densities at a few
locations and averaged them.1 The algorithm described
here measures from radiographs the thread densities
(almost) everywhere, thereby providing much more detail
than feasible with manual approaches. As a consequence
of how the algorithm works, we also measure the thread
ll rights reserved.

þ1 713 348 5686.

e painting’s verso

ewer canvas glued
angles at each location, providing much more information
about the canvas and how it was prepared for painting
than was previously available.

Considering how a loom works reveals how to think
about thread count measurements. The vertical threads
(from the weaver’s viewpoint in Fig. 1) are known as the
warp threads that, because of the way looms are con-
structed, are usually well aligned with a fairly uniform
spacing. The weaver threads the horizontal threads,
known as the weft threads, back and forth through the
interlaced warp threads and compacts the weft threads on
each pass to strengthen the cloth. In most cases, the weft
threads show more weaving and thickness variability
than the warp ones. The artist cuts a piece of canvas for
a painting from a larger roll and orients it on the stretcher
in whatever way seems best2; the warp direction may
correspond to either the vertical or horizontal threads in
the painting. The width of the thread count distribution
provides a strong clue as to how the canvas was cut from
2 The stretcher is typically a wooden rectangle to which the canvas is

attached. The carved or molded wooden frame to which the mounted

painting is held for display is known as the frame.

www.elsevier.com/locate/sigpro
www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2012.05.029
dx.doi.org/10.1016/j.sigpro.2012.05.029
dx.doi.org/10.1016/j.sigpro.2012.05.029
mailto:dhj@rice.edu
mailto:johnson@ece.cornell.edu
mailto:erdmann@arizona.edu
dx.doi.org/10.1016/j.sigpro.2012.05.029


Fig. 1. Vincent van Gogh’s drawing Weaver catalogued as F1121 [17]

and JH453 [18] shows a loom’s basic layout. The threads running into

the weaver are the warp threads that the apparatus in front of him

aligns and separates. The weaver manually slides the weft threads back

and forth through the separated warp threads to create the woven

canvas, which is rolled onto the take-up drum directly in front of him.

Drawing published by permission of the van Gogh Museum.

3 Ground refers to a special preparatory layer applied to raw canvas

to smooth the surface and impart a general color tone to the painting.
4 In reality, radiographs of paintings by van Gogh and others can

have segments exhibiting saturation.
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the larger canvas section. One would expect the thread
count having the narrower distribution to be the warp
direction [2, p. 100]. Considered jointly, the horizontal
and vertical thread count statistics – the averages and the
spreads – comprise a crude indicator of whether two
paintings’ supports could have been cut from the same
larger section of canvas. If the thread counts disagree
(even when allowing for canvas rotation), then the can-
vases must have been different. If they agree to some
tolerance level, they could have had a common origin, but
this agreement criterion is very weak. Accurate, compre-
hensive thread counts, along with other forensic and
historical data, allow the art historian to pose strong
hypotheses about how the canvas roll was used for
paintings contemporary with each other [4].

To increase the detail of thread counting measure-
ments and enhance the weave matching criterion, we
developed a signal processing technique used in [4] for
measuring thread counts everywhere across a painting.
Our technique is based on ‘‘short-space’’ Fourier analysis,
the calculation of the two-dimensional Fourier transforms
of overlapping squares (usually 1�1 cm) centered on a
sampling grid (usually 0.5 cm spacing). The idea is that a
canvas’s weave can be considered a doubly, nearly peri-
odic function in two dimensions. Within each square, a
thread count measurement amounts to determining the
weave’s local periodicities. We thus acquire thread count
measurements at every grid point, allowing the visualiza-
tion of what we call the vertical- and horizontal-thread
count maps.

This paper details our thread counting algorithm and
describes its theoretical basis. Once we employed our
procedure on paintings, we discovered that the thread
counts vary slightly across a painting in a characteristic
way that serves as a painting’s ‘‘fingerprints’’ [5,8]. Rather
than uniquely characteristic of a painting, our results
indicate that the ‘‘fingerprint’’ identifies the larger canvas
section from which individual canvases were cut. To find
paintings that had the same fingerprints, we developed a
novel correlation procedure.

2. Theory of weave spectra

Our focus here is on x-ray images that can reveal much
about what is below a painting’s visible surface [1,2]. The
greater the radiographic-absorbing paint and ground3

thickness along an x-ray beam, the greater the opacity
oðx,y,zÞ, meaning that x-ray image intensity variations
correspond to paint chemical composition and thickness.
Letting iðx,yÞ denote imaged x-ray intensity at a point and
z the direction of x-ray propagation:

iðx,yÞpexp �

Z
oðx,y,zÞ dz

� �
ð1Þ

The canvas weave is made visible by the thicker ground
(primer) layer of lead-white paint in the interstices
between canvas threads. As illustrated in Fig. 2, the weave
pattern can be seen and the vertical and horizontal thread
densities can be determined from such images. The small
variations in opacity due to the ground filling the valleys
created by the canvas’s threads, coupled with film non-
linearities that tend to reduce the effects of the exponential
in this expression, result in image value being proportional
to opacity. When the film image is not saturated,4 the
contributions of paint layers, the wood stretcher and tacks
superimpose additively to form the x-ray image of a
painting. Thus, linear processing – measuring spectra in
particular – suits this kind of image well.

Appreciating what the spectra of canvas weave pat-
terns should be under ideal conditions allows developing
a thread-counting algorithm that exploits the predicted
structure. Fig. 2a shows the simplest weave pattern,
known as plain weave. The x-ray reveals that the hor-
izontal and vertical threads intertwine in a simple over/
under way. Fig. 2b shows a typical twill weave, wherein
the threads intertwine in a more complex way. Both
examples are periodic but in different ways.

The weave pattern is produced by the interleaved
pattern of horizontal and vertical threads. A mathematical
description of what the x-ray of a paint-filled ideal
canvas-weave surface should be is difficult to determine,
to say the least. A more phenomenological model is
illustrated in Fig. 2c and d. Here, the vertical and hor-
izontal threads are shown as bars, mimicking the appear-
ance of woven threads. The black rectangles represent
unit-height rectangular prisms with the white back-
ground corresponding to zero. Because of the measure-
ment process’s ultimate linearity, the image’s gain
(contrast) and offset (overall brightness) do not affect
the spectral detail we seek to exploit. The horizontal and
vertical thread separations are Dh and Dv, respectively.
Each horizontal and vertical thread’s thickness and weave
are captured by the widths and heights of the bars. For
example, the horizontal threads have a thickness Hh and a



Fig. 2. The top row shows 2�2 cm swatches taken from x-ray images of van Gogh’s paintings Old Man with a Beard (F205/JH971; left) and Still Life with

Red Cabbages and Onions (F374/JH1338; right). The left radiograph reveals a plain weave while the right is a twill weave. Idealized woven canvas image

models for developing a spectral theory are shown in the bottom row. Our model of the ideal plain weave is expressed in Eq. (2).
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width of Wh. The thicknesses and widths must satisfy
DvZðWhþWvÞ=2 and DhZ ðHhþHvÞ=2. To develop a
mathematical expression for this pattern, define bhðx,yÞ
to be a bar corresponding to a horizontal thread:

bhðx,yÞ ¼
1 9x9o

Wh

2
,9y9o

Hh

2
0 otherwise

8<:
A similar expression applies to the vertical threads but
parameterized by Wv and Hv. The entire weave pattern
can be captured as a convolution of the basic thread
shapes with a field of impulses that locates them. We thus
obtain a general expression for the x-ray image that
describes the plain weave pattern and serves as the basis
for describing other patterns:

iðx,yÞ ¼ bvðx,yÞ �
X

n

dðx�2nDvÞþbhðx,yÞ

"

�
X

n

dðx�ð2nþ1ÞDvÞ

#
�
X

m

dðy�2mDhÞ

þ bvðx,yÞ �
X

n

dðx�ð2nþ1ÞDvÞþbhðx,yÞ

"

�
X

n

dðx�2nDvÞ

#
� dðy�ð2mþ1ÞDhÞ ð2Þ

This complicated expression can be readily deconstructed.
To express the top row of Fig. 2c, the first line in square
brackets uses convolutions to space the vertical-thread
bars bvðx,yÞ 2Dv apart and the horizontal-thread bars
bhðx,yÞ by the same amount but shifted to the right by
the vertical thread separation (Dv). Continuing the first
line, the convolution of this expression with impulses
spaced by twice the horizontal thread separation 2Dh

creates the pattern of every other row. The expression in
brackets on the second line shifts the first line’s bracketed
expression by the vertical thread separation and the outer
convolution repeats it, interleaving it with the first line’s
pattern. A similar expression is developed later for the
twill weave.

As we shall see, the key aspects of the spectra calcu-
lated from x-rays of the canvas weave are captured by this
model. More accurate models would replace the rectan-
gles with smooth, rounded surfaces that represent inter-
woven thread profiles. Such models would replace the
quantities bhðx,yÞ and bvðx,yÞ with more accurate descrip-
tions, leaving (2) sufficiently correct for algorithm design.
We show subsequently that spectral peaks that indicate
the thread densities are due to the weave’s periodic
structure while their amplitudes are modified by the
assumed thread model. Furthermore, we need only con-
sider a continuous-space model for the weave patterns
because the digitization issues are well-understood. We
require radiographs be sampled at sufficiently high fre-
quencies (300–600 dpi) so that aliasing is never an issue.
Furthermore, zero-padded transform lengths are much
larger than the size of square sections extracted from each
painting’s radiograph, which has the effect of over-sam-
pling the spectrum to foster accurate determination of
spectral peak locations.
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Fig. 3. The frequencies at which the canvas weave spectrum shown in Fig. 2c can be non-zero are shown. Note that 1=Dv on the x-frequency corresponds

to the vertical thread count and 1=Dh on the y-frequency axis to the horizontal thread count. The unfilled circles correspond to frequencies that are

identically zero because of the parameter values in the example of Fig. 2c. The spectrum of the swatch shown in Fig. 2a is shown on the right, with

annular regions, within which spectral peak locations searches occur, indicated by the red curves. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)

5 The current spectral thread counting algorithm highpass-filters

the image before calculating spectra to remove the spectral spread a

peak at the origin would induce. In more detail, we apply a zero-phase,

separable (rectangular unit-sample response in each direction) low-pass

filter having a cutoff frequency of a few threads/cm to the radiograph,

then subtract result from the original radiograph before making spectral

calculations.
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2.1. Model of the plain weave pattern

We denote the Fourier transform of iðx,yÞ by Iðf x,f yÞ.
Because the images are real-valued, the Fourier transform is
conjugate-symmetric, meaning the spectral amplitude values
in the third quadrant equal those in the first and those in the
fourth quadrant equal those in the second. The spectral plots
that follow show all four quadrants for completeness. The
Fourier transform of Eq. (2) is easily calculated. The transform
of the sums of impulses become sums of impulses located at
the separation harmonics. The interleaving shifts become
phase terms. Gathering the expression for the spectrum into
terms corresponding to the horizontal and vertical bars:

Iðf x,f yÞ ¼ Bvðf x,f yÞ �
X
m,n

d f x�
n

2Dv

� �
d f y�

m

2Dh

� �"

þe�j2pf xDv e�j2pf yDh

X
m,n

d f x�
n

2Dv

� �
d f y�

m

2Dh

� �#

þBhðf x,f yÞ � e�j2pf xDv
X
m,n

d f x�
n

2Dv

� �
d f y�

m

2Dh

� �"

þe�j2pf yDh

X
m,n

d f x�
n

2Dv

� �
d f y�

m

2Dh

� �#

The spectrum contains impulses located on a rectangular grid
with centers at ðn=2Dv,m=2DhÞ, the half-harmonics of the
basic thread counts (frequencies). Consequently, we need
only evaluate the spectrum at these frequencies:

C
n

2Dv
,

m

2Dh

� �
¼ Bv

n

2Dv
,

m

2Dh

� �
½1þe�jpðnþmÞ�

þBh
n

2Dv
,

m

2Dh

� �
½e�jpnþe�jpm�

¼ Bv
n

2Dv
,

m

2Dh

� �
½1þð�1Þnþm

�

þBh
n

2Dv
,

m

2Dh

� �
½ð�1Þnþð�1Þm� ð3Þ
The expressions for the Fourier transforms of the bars are

Bh
n

2Dv
,

m

2Dh

� �
¼WhHh sinc pn

Wh

2Dv

� �
sinc pm

Hh

2Dh

� �

Bv
n

2Dv
,

m

2Dh

� �
¼WvHvsinc pn

Wv

2Dv

� �
sinc pm

Hv

2Dh

� �
ð4Þ

where sincðxÞ ¼ sin x=x.
To interpret the result shown in (3), note that when the

sum of the indices n,m is odd, the spectrum is zero. Fig. 3
shows the locations in the spectrum that can be non-zero.
The spectra of the bars given by the previous expressions
provide the spectral values at these frequencies. In general,
the larger the frequency indices, the smaller these spectral
values will be. The largest spectral value is located, of
course, at the origin. It provides no information about the
canvas weave but it must be removed to produce accurate
spectral estimates.5

Considering (3), the value, even existence of a spectral
peak, depends on two factors: the value of the spectra (4)
at harmonics of thread count frequencies and the signs
of the indexed terms 1þð�1Þnþm and ð�1Þnþð�1Þm.
The bar spectra depend on horizontal and vertical thread
separations and on the heights and widths of the bars.
For example, in Fig. 2c, Wh=Dv ¼ 1=2, Hh=Dh ¼ 1=5, Wv=

Dv ¼ 2=7 and Hv=Dh ¼ 1=2. The first zero of sincðxÞ occurs
when x¼ p. Consequently, Bhð2=Dv,m=2DhÞ, Bhðn=2Dv,5=
DhÞ, Bvð7=2Dv,m=2DhÞ and Bvðn=2Dv,2=DhÞ all equal zero.
Thus, particular values of thread thicknesses and densities
will cause spectral components to disappear. Further-
more, the first indexed term 1þð�1Þnþm equals either 0



D.H. Johnson et al. / Signal Processing 93 (2013) 527–540 531
or 2; the second, ð�1Þnþð�1Þm, equals �2, 0 or 2. Both
terms equal zero when the sum nþm is odd. The primary
spectral peaks at 1=Dh and 1=Dv, which correspond to the
vertical and horizontal thread counts, respectively, cannot
be zeroed this way. The second term equals �2 when
both indices are odd, which introduces the possibility that
the two terms in (4) could nearly cancel each other. In
particular, the diagonal component at n¼1, m¼1 falls
into this category. In this case,

C
1

2Dv
,

1

2Dh

� �
¼ 2Bv

1

2Dv
,

1

2Dh

� �
�2Bh

1

2Dv
,

1

2Dh

� �

For the plain weave pattern shown in Fig. 2c, the spectral
values at the primary thread count frequencies is almost a
factor of five greater than the diagonal frequency value.
Letting ~Iðn,mÞ ¼ Iðn=Dv,m=DhÞ, with the numbers in par-
entheses being normalized values,

~Ið0;2Þ ¼ 0:14ð1:00Þ ~Ið2;0Þ ¼ 0:14ð1:00Þ ~Ið1;1Þ ¼ 0:03ð0:21Þ

Consequently, we cannot always expect a diagonal spec-
tra peak located at the vector-average of the horizontal
and vertical frequency peaks. Presumably, this situation
occurs in the spectrum shown in Fig. 3a and b and is due
to similar thread characteristics. When the vertical and
Fig. 4. Panel (a) shows a 4:1 twill pattern, wherein each horizontal thread pass

pattern, in which each horizontal thread passes under two vertical threads. Here

in panel (b), Wh ¼ 3Dv , Hh ¼Dh=5, Wv ¼Dv=5 and Hv ¼ 2Dh . Panel (c) shows th
horizontal threads are identical, the prediction is no peak
on the diagonal. This analysis implies that a peak on the
diagonal will occur when the vertical and horizontal
threads have very different characteristics.
2.2. Model of twill weave patterns

The plain weave pattern analyzed in the previous section
corresponds to a weaving pattern wherein each horizontal
thread passes over one vertical thread then under the next
one, etc., with the vertical threads following the same
pattern. Twill patterns vary the plain weave pattern in a
simple way. Each horizontal thread passes over To vertical
threads then under Tu vertical threads. The next horizontal
thread starts its interleaving pattern Ts threads from the
previous. Fig. 4 shows two such patterns that have Ts ¼ 1.
For such twill patterns, the notation for the pattern is
To : Tu. The first pattern shown in panel 4a shows an
over-four/under-one pattern, making it a 4:1 twill. The
second (panel 4b) shows an over-four/under-two pattern,
making it a 4:2 twill. Note that these different patterns
share the same thread counts, differing only in the heights
of the vertical bars and the widths of the horizontal ones.
Each row in both cases repeats horizontally and vertically at
a separation of ðTuþ1ÞDv and ðTuþ1ÞDh, respectively. The
es over four vertical threads, then under one. Panel (b) shows a 3:2 twill

, Dh ¼ 1:2Dv . For panel (a), Wh ¼ 4Dv , Hh ¼Dh=5, Wv ¼Dv=5 and Hv ¼Dh;

e predicted spectral locations for the 4:1 twill pattern.
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northwest-southeast pattern of the vertical threads can run
northeast-southwest. For the derivation here, we consider
the former; handling the second amounts to changing a
few signs.

To describe mathematically twill patterns, we simply
extend the description of plain weave patterns:

iTo :1ðx,yÞ ¼ bvðx,yÞ �
XTo

k ¼ 0

X
m,n

dðx�ðnðToþ1Þ7kÞDvÞ

"

dðy�ðmðToþ1Þ8kÞDhÞ

#

þbhðx,yÞ �
XTo

k ¼ 0

X
m,n

d x� nðToþ1Þ

��"

7k7
Toþ1

2

�
Dv

�
dðy�ðmðToþ1Þ8kÞDhÞ

�
ð5Þ

iTo :2ðx,yÞ ¼ bvðx,yÞ �
XTo

k ¼ 0

X
m,n

dðx�ðnðToþ1Þ7kÞDvÞ

"
dðy�ðmðToþ1Þ8kÞDhÞ

�
þbhðx,yÞ �

XTo

k ¼ 0

X
m,n

d x� nðToþ1Þ7k7
To

2

� �
Dv

� �"

d y� mðToþ1Þ8k�
1

2

� �
Dh

� ��
ð6Þ

The choice of sign in the 7terms depends on the direc-
tion of the diagonal pattern. For the patterns shown in
Fig. 4, we choose the plus sign (and minus sign for the 8
term). Concentrating on this choice and converting to the
frequency domain simplifies this expression considerably.
Looking first at the 4:1 twill,

ITo :1ðf x,f yÞ ¼ Bvðf x,f yÞ
X
m,n

d f x�
n

ðToþ1ÞDv

� �
d f y�

m

ðToþ1ÞDh

� �
sin pðToþ1ÞðDvf x�Dhf yÞ

sin pðDvf x�Dhf yÞ

þe�jpðTo þ1ÞDvf x Bhðf x,f yÞ
X
m,n

d f x�
n

ðToþ1ÞDv

� �
d f y�

m

ðToþ1ÞDh

� �
sin pðToþ1ÞðDvf x�Dhf yÞ

sin pðDvf x�Dhf yÞ

The spectrum can be non-zero only when f x ¼ n=ðToþ1ÞDv,
f y ¼m=ðToþ1ÞDh:

ITo :1
n

ðToþ1ÞDv
,

m

ðToþ1ÞDh

� �
¼

sin pðn�mÞ

sin
pðn�mÞ

ðToþ1Þ

Bv
n

ðToþ1ÞDv
,

m

ðToþ1ÞDh

� ��

þð�1ÞnBh
n

ðToþ1ÞDv
,

m

ðToþ1ÞDh

� ��
ð7Þ

First of all, note that when To ¼ 1, this expression is exactly
the same as the one for the plain weave. The ratio of sines
term is non-zero only when n�m¼ kðToþ1Þ, k any integer,
which corresponds to the grid indicated by the dots shown
in Fig. 4c. Depending on the spectral characteristics of the
vertical and horizontal bars, the spectrum at some grid
locations can be very small compared to others. Further-
more, the value of n determines whether the bar spectra
add or subtract. These spectra are given by the same
formula as (4) but are evaluated at different frequencies:

Bh
n

ðToþ1ÞDv
,

m

ðToþ1ÞDh

� �
¼WhHh sinc pn

Wh

ðToþ1ÞDv

� �
sinc pm

Hh

ðToþ1ÞDh

� �

Bv
n

ðToþ1ÞDv
,

m

ðToþ1ÞDh

� �
¼WvHvsinc pn

Wv

ðToþ1ÞDv

� �
sinc pm

Hv

ðToþ1ÞDh

� �
However, the twill pattern constrains the values of two bar
parameters, ToDv4WhZ ðTo�1ÞDv and 2Dh4HvZDh.

Returning to the case of the 4:2 twill, its spectrum is also
non-zero only when n�m¼ kðToþ1Þ. The expression differs
only in the phase relationship between the bar spectra:

ITo :2
n

ðToþ1ÞDv
,

m

ðToþ1ÞDh

� �
¼

sin pðn�mÞ

sin
pðn�mÞ

ðToþ1Þ

Bv
n

ðToþ1ÞDv
,

m

ðToþ1ÞDh

� ��

þexp �jp nTo�m

Toþ1

� �
Bh

n

ðToþ1ÞDv
,

m

ðToþ1ÞDh

� ��
ð8Þ

Furthermore, the constraints on the bar characteristics
are different—ðTo�1ÞDv4WhZðTo�2ÞDv and 3Dh4HvZ

2Dh—making the bar spectra different as well. A compar-
ison of the spectra for the 4:1 and 4:2 twill patterns (Fig. 4)
reveals that the difference is the values of the spectra when
evaluated on the grid shown in Fig. 4c. The primary
difference between the two is the appearance of large
spectra values on the diagonal n¼m for the 4:2 twill, which
are absent for the 4:1 twill. In both cases, the prediction is
that spectral peaks will appear on the horizontal and
vertical frequency axes that correspond to the thread
counts we seek. However, the vertical-frequency peak is
predicted to be bigger than the horizontal-frequency peak,
especially for the 4:1 twill. Also note the appearance of
larger spectral values near the on-axis grid points for the
4:2 twill case. These spectral peaks make it difficult to find
the vertical-frequency peak and allow for spectral rotation
due to deviation of the weave pattern from an ideal
horizontal/vertical orientation. The spectrum shown in
Fig. 5c of a twill swatch demonstrates the expected diagonal
spectral locations in the second and fourth quadrants. The
presence of strong spectral values on these diagonals
indicates that the twill factor is 4:2, an observation not
easily discerned from visual inspection of the x-ray, at least
for the ones we have examined.

3. From spectra to algorithm

The two-dimensional regularity of the canvas weave
patterns shown here directly point to a spectrally based
algorithm for estimating the two thread counts. As the
theory shows, the peak on the horizontal axis corresponds
to the vertical-thread density, the peak on the vertical axis
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to the horizontal-thread density. Simplistically, we would
search for spectral peaks on the horizontal and vertical
axes, the locations of which corresponds to the thread
densities we seek. The theory predicts that this approach
would work for both the weave patterns considered here.

But in more detail, weave-related spectral peaks cannot
be presumed to be precisely located on the frequency axes.
As Fig. 3b shows, tilting of the horizontal and vertical
threads from alignment to the sampling grid leads to a
corresponding rotation of the spectrum, a property of the
two-dimensional Fourier transform [6]. Thread angles are
also distorted by the phenomenon known to art conserva-
tors as cusping: the displacement of the threads from a
rectilinear pattern caused by attaching raw canvas to the
stretcher or priming frame prior to surface preparation. To
envision cusping, consider vertical threads that lie next to
the edge of a stretcher’s vertical member. When the canvas
is pulled laterally with a point-applied force induced by the
attachment, the vertical threads closest to the edge and the
attachment point are displaced. At horizontal and vertical
locations away from the point force application, little
thread displacement occurs. In this way, the originally
linear paths of threads now show scalloping, which means
locally that the thread count may decrease slightly while
the thread angle swings positively then negatively (or vice
versa) at the attachment points. Possible angular rotation
and the expected range for the thread counts imply that
the search for weave-pattern-related spectral peak loca-
tions can focus on annular wedges centered on the
frequency axes, indicated by the red annular regions in
Fig. 3b. The parameters of these wedges – the two radii and
the angular spread – must be determined on a painting-by-
painting basis. We use a simple graphical user interface to
set the parameters for the nominally vertical and horizon-
tal spectral search regions. In effect, focusing the search
amounts to bandpass filtering the x-ray image to remove
non-weave related ‘‘interference,’’ such as stretcher bound-
aries, tacks and stretcher bars, and the painting itself. This
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interference has no typical spectral signature but in most
cases, but certainly not all, occurs ‘‘out of band.’’ Once the
rotations and expected ranges are used to focus the
spectral analysis, the vertical and horizontal thread counts
are taken to be radii of the nearly horizontal and nearly
vertical spectral peak locations, respectively, that lie in the
annular regions. If multiple peaks occur within a given
region, the algorithm chooses the location closest to
spectral peak locations found in single-peak regions. The
thread angles correspond to the angles of the chosen
spectral peak locations. About 90% of the image excerpts
surrounding the locations of spot hand counts on the
examined paintings by van Gogh have peak locations
within 1 thread/cm of the manual thread count, as do
approximately 80% of examined spots in paintings by
Matisse, approximately 75% of examined spots in paintings
by Vermeer, and about 65% of examined spots in paintings
by Rembrandt [7].

Fig. 6 shows the results of spectral-based thread count-
ing analysis for the example plain-weave painting. As
described in [8], the count maps show variations of thread
Fig. 6. Count maps – displays of departure of thread densities from painting-w

painting F205. The average thread counts are 13.3 threads/cm (horizontal)

spans72 threads/cm. Angle maps – displays of the departure of the thread from

7101. Black areas in the count and angle maps correspond to locations at which

the references to color in this figure caption, the reader is referred to the web
densities characteristic of the original canvas section from
which this painting’s support was cut. Consequently, by
searching for other paintings having a similar pattern, we
could possibly reconstruct the positions of matching paint-
ings on the canvas roll, which could provide dating informa-
tion [4,5]. The horizontal-thread angle map shows strong
cusping along the top but not along the bottom. This result
indicates that a larger canvas was prepared with a common
ground layer and then this painting’s canvas was cut from
that prepared canvas.

Obtaining thread count results for the twill-weave
painting in Fig. 2b is not as straightforward. If only the
(approximately) horizontal- and vertical-axis peaks are
used, inconsistent results are obtained because of weav-
ing variability and a relatively poor-quality x-ray. Obtain-
ing thread counts required exploitation of the twill
weave’s spectral properties. Our spectral theory predicts
that the off-axis trail of spectral peaks in the fourth
quadrant of Fig. 5a and b is completely determined by
the horizontal and vertical thread patterns. Using vector
notation for the spectral peak locations, the nth peak is
2
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located at

f
!

n ¼
ðTþ1�nÞ f

!
h�n f
!

v

Tþ1
, n¼ 0, . . . ,Tþ1

where f
!

h and f
!

v are the sought spectral peak locations
on the horizontal and vertical frequency axes, with n¼0
corresponding to the horizontal frequency location and
n¼ Tþ1 the vertical frequency location. Here, T is the
twill factor, equal to 4 in this case. This system of
equations can be used to determine f

!
h and f

!
v by

measuring the locations of the second-quadrant peaks,
each of which was obtained by establishing annular off-
axis regions for peak location searches. In many cases, not
all of the predicted peaks can be located, which is an
effect due to inaccuracies in our model of threads as
rectangles. Because the set of equations relating measured
values of f

!
n to f
!

h and f
!

v is not invertible and supports
multiple solutions, our algorithm uses a consensus algo-
rithm that finds the L1 centroid of the various solutions for
f
!

h and f
!

v to estimate the thread densities we seek.
Fig. 5c shows that not all of these fourth-quadrant peaks
have a significantly large amplitude. In our example, f

!
3

was not measured; the remaining five peak locations
were used to estimate the thread counts and these results
are shown in Fig. 7. Again, cusping is present only along
the right side, indicating the same canvas preparation as
in the plain-weave example.

Several circumstances contribute to the algorithm’s
inability to obtain a reliable thread density estimate at
certain locations. The bandpass-filtering implicit in the
algorithm cannot remove in-band interference from the
brushstrokes, the wood grain of some stretchers and tacks.
Such interference has no single model, certainly not over
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Fig. 7. Using the same format as in Fig. 6, the count and angle maps for van Gog

thread counts are 22.2 threads/cm horizontal and 22.7 threads/cm vertical. A c
the 1 cm2 squares we typically use in processing. When
multiple peaks occur in-band that cannot be related to
single-peak results, the algorithm does not produce an
estimate for one or both thread counts. Furthermore, even
for plain weave patterns, ‘‘on-axis’’ spectral peaks can be
weak or non-existent. One fallback is to use an approach
similar to that employed for twill: use predicted off-axis
spectral peaks to infer the frequency of the obscured or
missing ‘‘on-axis’’ peaks. As shown in Fig. 3, our theory
predicts a spectral peak will be present at the vector-

average of the desired thread densities f
!

v7 f
!

h. Just as
with twill, all the off- and on-axis spectral peaks judged to

be present are used to infer values for f
!

v and f
!

h.
4. Thread density map matching

Once the horizontal- and vertical-thread count maps
have been measured for two paintings, we want to
determine if their maps match (agree). Before searching
for a match, we found it convenient to relate horizontal
and vertical to warp and weft. In essence, we want to
convert from painting coordinates to canvas coordinates.
Using the convention that each painting’s count and angle
maps are oriented so that the warp-thread direction is
vertical, we mimick the appearance of a loom’s thread
layout from the weaver’s viewpoint (Fig. 1). Paintings
made from canvas cut to the left or right of an analyzed
painting should share the same variation pattern in weft
(always running horizontally after being re-oriented)
while ones cut above or below should share the same
warp-thread density variations. Because of thread count
consistency along the thread direction, shown by the
s
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striping in both the vertical and horizontal count maps
[7], we averaged the vertical and horizontal counts along
their respective thread directions to create what we call
thread count profiles for the vertical and horizontal
threads. We take into account an imperfect alignment of
the canvas with the stretcher by rotating the measured
thread counts by the negative of the average thread angle
before calculating profiles. Thus, for the weft thread
counts, count map values in each row were averaged;
for the warp thread counts, columns were averaged. For
painting locations where no count was made, no value
contributed to the average. We demanded a minimum
number (ten) of counts contribute to the average. Other-
wise, no value was provided for the profile at that point.
With these one-dimensional summaries of thread density
variations, searching for matching x-rays having matching
variations can be accomplished with a cross-correlation
technique. Because painting orientation cannot be pre-
sumed to agree with canvas orientation, taking the
various possibilities into account means correlating eight
combinations of profiles and their reversed versions [8].

Several issues arise when using the usual cross-corre-
lation function normalized to produce a correlation coef-
ficient. First of all, the profiles amount to small deviations
added to a large constant. For example, the warp varia-
tions of F205 shown in Fig. 6 span71 thread/cm about an
average of 13.3 threads/cm. Because the thread density
variations are much smaller than the average, the raw
cross-correlation function will be insensitive to thread
density variations. Second, if each profile’s average is
subtracted to remove the constant term, the normaliza-
tion that is part of computing the correlation coefficient
will not take into account the scale of the deviations.
Because of these issues, a two-stage method was devel-
oped. The first ensured that the histograms of vertical and
horizontal thread densities agreed well as detailed in the
next section. Once agreement was found, the second
stage, described in Section 4.2, subtracted an average
count from the profile and computed a cross-correlation
function with a new method that demands similar count
variations in both space and amplitude.

4.1. Comparing large-scale thread density variations

The problem of determining if the average thread
densities agree must take into account the measurement’s
variability. Our approach was to determine whether the
empirical thread density distributions agree. The hypoth-
esis testing problem for determining if two measurements
x1 and x2 came from the same probability distribution or
from different ones can be formally stated as [9]

H0 : pX1
ðxÞ ¼ pX2

ðxÞ � pXðxÞ

H1 : pX1
ðxÞapX2

ðxÞ

The likelihood ratio solution to this hypothesis test is,
assuming the two measurements are statistically inde-
pendent,

pX1
ðx1Þ � pX2

ðx2Þ

pXðx1Þ � pXðx2Þ
_Z ð9Þ
where pXð�Þ denotes the shared distribution of the two
measurements under hypothesis H0. If the likelihood ratio
evaluated at the measurements is greater than the thresh-
old Z, the data are judged to have come from different
distributions, which would mean in the context of com-
paring thread counts that the paintings could not share a
common canvas.

The main issue is that the probability distributions are
not known. In the following parametric framework, the
form is known (Gaussian) but not the values of crucial
parameters (mean and variance). In a non-parametric fra-
mework, no assumptions are made about the distributions.
The well-known solution to both scenarios is to use max-
imum likelihood estimates of the parameters or of the
distributions calculated separately for the numerator and
denominator since the two hypotheses (models) differ.

Parametric solution: Here we assume that X �N ðm,s2Þ

under all models, with the distributional ‘‘fit’’ determined
by the maximum likelihood parameter estimates. The loga-
rithm of the multivariate Gaussian density with statistically
independent, identically distributed components becomes,
upon substitution of the maximum likelihood estimates,
�ðN=2Þln 2pecs2 , where cs2 denotes the maximum likelihood
estimate of the variance.

For the different-distribution hypothesis H1, we simply
employ this result for both datasets separately. For the
common-distribution hypothesis, the two datasets are
merged to produce single estimates of the mean and
variance. After evaluating the logarithm of the likelihood
ratio (9), which becomes �ðN1þN2Þ=2 ln 2peds2

1;2 after
substituting the maximum likelihood estimate, we obtain
a simple test based entirely on the variance estimates:

�
N1

2
ln cs2

1�
N2

2
ln cs2

2þ
N1þN2

2
ln ds2

1;2_g

The variance estimate ds2
1;2 is computed from the merged

datasets. The resulting mean and variance estimates
become

ds2
1;2 ¼

1

N1þN2

X
i

X1,i�dm1;2

	 
2
þ
X

i

X2,i�dm1;2

	 
2

 !

dm1;2 ¼
1

N1þN2

X
i

X1,iþ
X

i

X2,i

 !
ð10Þ

If they were drawn from different distributions, even if it
is only in the means, the common-distribution term will
differ greatly from the different-distribution terms.

When using maximum likelihood estimates in the like-
lihood ratio, the choice of the threshold becomes very
important. In this case, the sufficient statistic can be shown
to be non-negative, equaling zero when the empirical
estimates agree. Because the sufficient statistic is always
positive, the threshold g must be a positive quantity.
Furthermore, to obtain a test that is insensitive to the
amount of data, we need to divide the sufficient statistic by
N1þN2 because of Stein’s Lemma [10]. In this way, the
threshold will be a constant chosen to reflect a given
performance requirement (like false alarm probability).



D.H. Johnson et al. / Signal Processing 93 (2013) 527–540 537
The test becomes

ln ds2
1;2�

N1

N1þN2
ln cs2

1�
N2

N1þN2
ln cs2

2_g ð11Þ

Another consideration needs to be made before applying
this statistical test to thread count data. Each dataset x1 and
x2 actually consists of two components, the horizontal and
vertical thread counts. These need to be handled separately
in the variance estimates. Moreover, in the common-distri-
bution estimate, we need to determine which counts from
one measurement are best associated with the second set of
counts. In other words, weft measurements need to be
associated with weft measurements, warp with warp. This
requirement amounts to a hidden similarity test, but one that
does not declare which measurements are warp or weft.
Quite simply, the proper choice amounts to yielding best-
case results in terms of the statistical hypothesis test, which
minimizes the variance of the combined datasets.

Non-parametric solution: While the parametric solution to
testing for thread count similarity between two measure-
ments only requires computation of sample variances, it does
rely on the distribution of counts being Gaussian. Most
measured distributions, as estimated by thread count histo-
grams, do indeed appear to be unimodal and approximately
symmetric. But the Gaussian model is not always correct and
detailed examination may well reveal that histograms
appearing to resemble a Gaussian are not. Without a model
for the count distribution, we turn to non-parametric meth-
ods that do not require a model. In particular, a non-
parametric hypothesis testing rule derived from an informa-
tion theoretic standpoint has proven optimality properties
and we employ it here.

The main assumption is the horizontal- and vertical-
thread counts have each been each summarized with a
histogram, thereby portraying which and how often thread
count values occur for each measurement over the entire
painting. With X representing a set of measurements, hXðkÞ

denotes the number of counts from dataset X having values
within the range of the kth bin Dk. We used fixed-width bins
with D¼ 0:1 threads=cm. The following theory, which shows
that the maximum likelihood estimate of a discrete prob-
ability distribution is the empirical histogram, does not
demand fixed-width bins. Assuming the dataset contains
statistically independent, identically distributed components:

Pr½X� ¼
YN
i ¼ 1

Pr½Xi� or log Pr½X� ¼
XN

i ¼ 1

log Pr½Xi�

The logarithm of the joint probability can be re-written as a
sum over the histogram index rather than the data index to
yield [10]

log Pr½X� ¼ �N D hXðkÞ

N

����Pk

� �
þH hXðkÞ

N

� �� �
ð12Þ

DðhXðkÞ=NJPkÞ is the Kullback–Leibler measure of distance
[11,12] between the empirical and theoretical probability
distributions and HðhXðkÞ=NÞ is the entropy of the empirical
histogram.6 Note that this expression applies in general; it
6 Note that although entirely an empirical measurement, hXðkÞ=N is

a probability mass function in that it is non-negative and sums to one.
describes how the probability of a particular dataset depends
on the empirical distribution – the histogram (known in
information theoretic parlance as the type) – and the true
distribution. We can consider this result as a log-likelihood
function, with the Pk, the probabilities of X having a value
within bin k, taking the role of unknown parameters. To find
the maximum likelihood estimate, we want to minimize the
quantity in the bracketed quantity in Eq. (12). Because the
entropy term is fixed, we need only minimize the Kullback–
Leibler term. As the Kullback–Leibler distance term is non-
negative, the smallest it can be is zero, which occurs only

when Pk ¼ hXðkÞ=N, showing that the histogram is the
maximum likelihood estimate of the underlying probability
function.

This key result allows us to determine the optimal
non-parametric decision rule for deciding if two datasets
X1 and X2 have the same probability distribution or
different ones. We assume the datasets are statistically
independent of each other and have statistically indepen-
dent, identically distributed components. As before, we
use the likelihood ratio test.

Pr1½X1�Pr2½X2�

Pr½X1�Pr½X2�
_Z

Because we do not know the distributions, we use the
maximum likelihood estimates of the probabilities in the
likelihood ratio. Using these estimates, the probability
Pr½X� equals 2�NHðhXðkÞ=NÞ, which makes the log likelihood
ratio

log
Pr1½X1�Pr2½X2�

Pr½X1�Pr½X2�
¼ �N1HðhX1

ðkÞ=N1Þ�N2H hX2
ðkÞ=N2

	 

þðN1þN2ÞH

hX1
ðkÞþhX2

ðkÞ

N1þN2

� �
ð13Þ

Because of the convexity of the entropy function, we
know that this quantity is positive. Furthermore, the left
side of (11) can be seen as a special case of this result for
the Gaussian case. The same quantity emerges if we
divide by N1þN2. The more general result of (13) does
not rely on the Gaussian assumption. As described pre-
viously, each painting’s dataset has two components, the
thread counts for the horizontal and vertical threads. We
determine which of the two associations of thread count
results yields the smallest value of the test statistic, then
use that value in the similarity test. We do not attempt to
match pairs of paintings that do not pass this histogram
similarity test.

4.2. Correlating thread density variations

For those pairs of paintings that pass the thread-count
histogram similarity test, the algorithm proceeds by
subtracting the average value from the profile and then
correlating the resulting thread density deviations-from-
average (examples of which are shown in Figs. 6 and 7).
The correlation coefficient is rooted in the Cauchy–
Schwarz inequality: 9/x,yS9rJxJ � JyJ. The problem we
face is that equality, equivalent to the maximal correla-
tion coefficient value of one, occurs when xpy. We need
to demand that maximal correlation occurs when the two
quantities – deviations of the thread counts from their
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average values – are equal, not just proportional. A simple
extension of the bound leads to what might be called the
maximal linear correlation coefficient7:

9/x,yS9rJxJ � JyJrmaxfJxJ2,JyJ2
g

Now, dividing the inner product by the maximum squared
norm yields a value of one only when x¼y. Note that if a
constant is subtracted from each the same result applies:
9/x�m,y�mS9rmaxfJx�mJ2,Jy�mJ2

g. Removing the
average thread count in this way leads to a similarity
measure that focuses on the same waveform and ampli-
tude of count deviations. In the following expression, w is
the average of the two profiles w1ðmÞ, w2ðmÞ combined.
Thus, if the two profile’s averages differ, the maximal
linear correlation coefficient will be reduced. The result-
ing maximal linear cross-correlation function is

Rn
ð‘Þ ¼

P
m½w1ðmÞ�w� � ½w2ðm�‘Þ�w�

maxf
P

k½w1ðkÞ�w�2,
P

l½w2ðl�‘Þ�w�2g

Fig. 8 shows the maximal linear cross-correlation
between two paintings by van Gogh. The count maps for
these paintings match in weft, the less consistent direc-
tion, implying that they were cut side-by-side from the
same canvas roll. However, because of the consistency of
count maps [7], these two paintings could be separated by
an unknown amount of canvas, but must lie within the
roll’s width.8 The maximal linear cross-correlation value
for this case was 0.61. In general, we have found that
cross-correlation functions for warp-direction matches
are far narrower than weft-direction matches and pro-
duce larger correlation values (exceeding 0.95 in some
cases).

To determine a reasonable criterion for the threshold
value, the details must be considered. For a majority of
paintings by van Gogh, the histogram of thread counts has
a decidedly Gaussian appearance. Consequently, we can
describe a thread-count profile (defined to be the average
of thread counts along the thread direction), as a discrete-
time, one-dimensional Gaussian process having some
correlation function Rð‘Þ. Thread count profiles for two
x-rays are cross-correlated to search for weave matches.
The preliminary criterion is that the cross-correlation is
greater than a threshold at some lag. Because of analytic
difficulties presented by the maximal linear correlation
function, we instead consider the more easily analyzed
correlation function to establish thresholds.

Let X1ðnÞ, X2ðnÞ be two zero-mean, stationary, discrete-
time Gaussian processes having correlation functions
R1ð‘Þ, R2ð‘Þ, respectively. The measured cross-correlation
coefficient over N samples at zero lag is defined to be

bR ¼ 1

N

PN�1
n ¼ 0 X1ðnÞX2ðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1ð0ÞR2ð0Þ
p

7 The maximal correlation coefficient between two random vari-

ables X and Y is defined as the maximal value of the covariance

KðfðXÞ,ZðYÞÞ with respect to all possible functions fð�Þ, Zð�Þ [13].
8 Indeed, a painting has been found that has a weft weave match

with both of these and fits between them on the putative canvas roll [14,

pp. 164–165].
This formula assumes that the variances of the two
processes are known. Furthermore, we assume that these
variances are equal since demanding histogram matches
as a precondition for considering the cross-correlation
means nearly equal variances: R1ð0Þ ¼ R2ð0Þ � Rð0Þ.

Assuming the two processes are statistically indepen-
dent, the expected value of this empirical cross-correlation is
zero. To establish a threshold for correlated thread-density
patterns, we seek the probability that this cross-correlation
exceeds a threshold despite the two profiles being unrelated.
We shall assume the quantity

P
nX1ðnÞX2ðnÞ is approxi-

mately Gaussian, which means we only need to evaluate its
variance to estimate the probability the cross-correlation
exceeds a threshold:

E½bR2
� ¼

1

N2R2
ð0Þ

E
XN�1

m,n ¼ 0

X1ðnÞX2ðnÞX1ðmÞX2ðmÞ

" #

¼
1

N2R2
ð0Þ

NR2
ð0Þþ2

XN�1

‘ ¼ 1

ðN�‘ÞR1ð‘ÞR2ð‘Þ

 !

The most interesting case has equal correlation func-
tions. That is, the two profiles have the same statistical
structure but are statistically independent of each other.
After a little simplification that incorporates this assump-
tion, the expression for the variance of the estimated
correlation coefficient becomes

E½bR2
� ¼

1

N
1þ2

XN�1

‘ ¼ 1

1�
‘

N

� �
r2ð‘Þ

" #
ð14Þ

where rð‘Þ is the correlation-coefficient function Rð‘Þ=

Rð0Þ.
To estimate the variance, we computed the term

in brackets for every x-ray in the van Gogh database. In
this database, each thread count is marked as represent-
ing the warp or weft direction. Profiles for warp- and
weft-thread counts were formed and the normalized
correlation functions of each computed. These were
substituted into Eq. (14) and histograms formed of these
values (see Fig. 9). The histogram of the weft thread
pattern’s term tends to be broader than that for the
warp. The variance expression (14) will increase accord-
ing to the width of the normalized correlation function
term rð‘Þ. The wider the correlation function (a greater
low-frequency content in the power spectrum), the
larger the variance. Larger weft-thread count variances
result from the lower-frequency nature of weft-thread
count variations in comparison to warp-thread count
variations. Because of histogram spread, no typical value
portrays the behavior for either warp or weft threads.

With a Gaussian model, the probability an empirical
cross-correlation between two statistically independent
profiles exceeding two standard deviations is very low:
Pr½bR42s� ¼ 0:023. This rule-of-thumb can be used to
determine a threshold the maximal linear cross-correla-
tion must exceed to declare a thread-count pattern
match even though we used the usual cross-correlation
function in the analysis. We found that the threshold
established this way worked well. From Eq. (14), this
threshold depends on two quantities, the value of the
bracketed term (plotted in Fig. 9) and N, the amount of
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Fig. 8. Panel (a) shows the cross-correlation functions between the horizontal and vertical thread-count profiles for van Gogh’s paintings F205 and F260.

A clear correlation peak is evident for the vertical (weft) threads. The threshold for peak correlation for warp matches is indicated by the horizontal
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canvas overlap expressed in multiples of the spatial
sampling grid (here 0.5 cm). Because of the larger value
of the bracketed term for weft in (14), declaring a weft-
thread count pattern match is more demanding on the
data. Either the correlation function must exceed a
larger threshold for the same amount of canvas overlap
or more canvas overlap must be required for the same
threshold value. This analysis indicates why weft
matches tend to be more difficult to discern (many
false-positives occur).
5. Summary

Signal processing has proven to play an important role in
helping to date paintings, providing a better understanding of
the sequence of artists’ production and, to a lesser degree,
determining authenticity. Whereas the signal processing
tools described in [15] consider colors and brushstrokes
evident at the paint surface, the algorithms outlined here
help to fingerprint the different types of canvas picture
supports used. As the size of the database increases to include



Fig. 9. The empirical values of the bracketed term in Eq. (14) for warp and weft thread density variations are shown for the entire database of over 400

paintings by van Gogh. Implicit in this calculation is the spatial sampling grid, here 0.5 cm. While these histograms have significant overlap, they reveal

that the weft-thread density patterns tend to be more variable than those of the weft-direction threads.
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artists’ works spanning four centuries, we are characterizing
the variety of weave and thread density patterns found in
artist canvas. To date, over 600 paintings consisting of about
4000 radiographs have been examined. These patterns have
different spectra [16], most of which are dominated by
horizontal and vertical peaks as demonstrated by our theory.
We can extend our spectral theory to describe rarer canvas
weave patterns employed by master artists (such as herring-
bone and diamond).

The spectrum-based weave estimation and thread-
count-map matching techniques have provided far more
information about the weave than has been possible to
date. This subtle, hidden aspect of a painting can contribute
quantitative information to help understand the artist’s
process. Considered together, chemical and physical mea-
surements coupled with signal processing provide valuable
new insights into the artist’s technical and creative pro-
cesses, complementing the information gained from the
study of historical sources [4].
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