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A B S T R A C T

We begin with a mechanistic model that is considered to be a reasonably good predictor of the real-life system
with a set of parameters determined from prior biophysical studies and expert knowledge. For complex me-
chanistic growth models, it is usually advantageous to numerically estimate a subset of the ‘most important’
parameters (i.e., those that most influence dynamic model behavior) based on data and fix the others at their
estimated a priori values. Determining a reduced-order parameter subset for end-user estimation can be chal-
lenging, often relying heavily on expert knowledge and trial-and-error. A straightforward but oversimplified
method relies on one-at-a-time (OAT) sensitivity of model outputs to changes in individual parameters.
However, this commonly used method fails to account for how simultaneous changes in multiple parameters can
significantly impact model outputs in unpredictable ways due to model nonlinearities. Additionally, hidden
relationships between parameters can prevent consistent identifiability of parameters from different initial es-
timates. Rather than analyzing the effect of individual parameter variation on the model outputs, we evaluate
the importance of parameters to the curvature of the quadratic cost function (sum squared difference between
reference and model output sequences). This analysis is carried out by calculating the matrix of second-order
partial derivatives of the cost function (aka Hessian matrix) with respect to the model parameters. Calculating
the cost function Hessian allows analysis of changes in multiple parameters simultaneously. The method is
presented as an analytic, reproducible procedure for determining a ranking for parameter importance. The
procedure is demonstrated on a limited version of the Yield-SAFE predictive agroforestry growth model. For the
analysis, 12 model parameters are considered with their nominal values set to those given in a published im-
plementation of Yield-SAFE. The Hessian was calculated at 212 (= 4096) locations systematically selected in the
neighborhood of the nominal parameter setting, each generating a parameter ranking determined by the relative
contribution of each parameter to the cost function curvature. The top ranked 6 parameters were the same for
4091 of 4096 locations, suggesting that this procedure has potential to guide modelers in recommending the
most important parameters for estimation given reasonably good initial parameter estimates and real data.

1. Introduction

An increasing number of tree growth models are very complicated
(Weiskittel et al., 2011; Pretzsch et al., 2015). When modeling in-
traspecific interactions between trees or trees and crops grown in close
proximity (e.g., in tree polycultures and agroforestry), complexity can
increase significantly beyond individual or monospecific tree growth
models due to the interactions between species (Monteith et al., 1991;
van der Werf et al., 2007). In tree modeling as well as in biophysical
modeling of natural processes in general, model complexity can become
problematic, particularly when accurate prediction of outcomes is of
primary importance (Ljung, 1999; Cox et al., 2006; Sivakumar, 2008).

For agroforestry and other crop growth modeling in general, outcomes
prediction has become particularly timely. Agroforestry is increasingly
seen as an important means to regenerate degraded lands and address
climate change challenges while producing economically viable crops
(Verchot et al., 2007; Jose, 2009; Jat et al., 2016; Hillbrand et al., 2017;
Toensmeier, 2016; Schoeneberger et al., 2017; Elevitch et al., 2018).
Predictive modeling can extend existing knowledge into novel crop
combinations in new environments and justify investment in agrofor-
estry for both producers and policymakers (Malézieux et al., 2009).

Problems encountered in model predictive accuracy include pro-
pagation of model error between interconnected model components,
uncertainty in parameter (model constant) values, and inadequate data
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for parameterization and validation (Beck, 1983; Young and Ratto,
2009). When accurate prediction is of primary importance to the
modeler, reduction in the number of estimated parameters is desirable
(Sjöberg et al., 1995; Gupta and Sharma, 2019). The number of para-
meters estimated can be reduced if variations in some parameters (or
combinations of parameters) contribute little to the model output(s).
The degree of contribution is a combination of richness of the fre-
quencies in the inputs and parameter sensitivities of the model structure
(Yao et al., 2003; Gutenkunst et al., 2007; Crout et al., 2009; Li and Vu,
2013). Additionally, the model structure (including interactions be-
tween submodels) can inadvertently render some parameters uni-
dentifiable (Bellman and Åström, 1970; Beck, 1983; Young, 1983;
Hengl et al., 2007; Vilela et al., 2009).

In order to reduce complexity in predictive models, many model
reduction schemes have been developed. In general, model reduction
methods approximate the most important dynamics of the system by
considering the relationship between inputs and outputs (Schilders,
2008). Methods for reducing the complexity are well-studied and
straightforward for linear models, less straightforward for linear ap-
proximations of nonlinear models, and most challenging for reducing
nonlinear models to simpler nonlinear models (Ljung, 2010). Mechan-
istic models are usually in the latter category, engendering a range of
model reduction approaches.

Model reduction techniques such as Proper Orthogonal
Decomposition (POD) project high dimensional data onto a lower di-
mensional space to derive low dimension models that capture most of
the dynamics of the full model (Hinze and Volkwein, 2005; Kerschen
et al., 2005; Schilders, 2008). Although POD can be applied to non-
linear models, it yields an approximating linear manifold, which may
be considered a serious limitation in its application to nonlinear models
(Kerschen et al., 2005). Also based upon analysis of dynamic modes,
Young and Ratto (2009) present a seven-phase strategy for reducing the
complexity of mechanistic models termed Data-Based Mechanistic
(DBM) modeling. After implementing a computational version of the
model, the process begins with stochastic analysis using Monte-Carlo
simulations to determine the relative importance of different submodels
in explaining the dominant model behavior. From this step, a process
called “dominant mode analysis” is performed over a user-defined
parameter range to determine a low order approximation of the original
model. This process generates a mapping of the unreduced model to a
reduced-order model called the Dynamic Emulation Model (DEM) that
can replace the full model over a range of parameter values (Young,
2011). All of the analysis is done in the absence of experimental data,
with the original model serving as a surrogate for the ‘true system.’ A
disadvantage of this approach is the lack of a biophysical interpretation
of the resulting DEM model.

Recognizing that many process-based models are “over-
parameterised [and] may have poor predictive performance,” Cox et al.
(2006) followed by Crout et al. (2009) and others approach model re-
duction by setting signals in the model to fixed nominal values and
evaluating how well each model version performs. The signals con-
sidered are chosen by the modeler, but generally have a mechanistic
interpretation. An exhaustive search of all possible combinations of
signal replacements with constant values are assessed in order to de-
termine which model dynamics may be excluded from the model
without significantly degrading performance. According to Crout et al.
(2009), “The work of Cox et al. (2006) is distinct from the data based
mechanistic modelling of Young et al. (e.g. Young, 1998, 1999) in that
it operates directly on the formulation of the original model, rather than
synthesizing a simplified linearised stochastic model using data sets
generated from the original process based model.”

Of these model reduction approaches, the method presented here is
most similar to that of Cox et al. (2006) and Crout et al. (2009) in that it
preserves the mechanistic model structure. However, rather than con-
sidering signals within the model, analysis is done with respect to input-
output behavior of the whole model, where inputs are the measurable

exogenous drivers of the mechanistic model and outputs are only those
signals that we are interested in predicting accurately and which can be
readily measured. This approach may conflict with other modeling
preferences such as maintaining the biophysical interpretation of in-
ternal model signals or parameter values, in exchange for accurate
prediction of outputs. Such input-output analysis has been carried out
in developing models for highly complex systems such as industrial
processes and machines for the purpose of control since the 1970′s
(Balakrishnan and Peterka, 1969; Åström and Eykhoff, 1971; Eykhoff,
1981). In this field, models may be described as ‘black box’ which are
composed of well-understood mathematical expressions or ‘grey box’,
composed of mechanistic descriptions of the physical processes, which
are frequently nonlinear and not well understood mathematically
(Ljung, 1996).

As for control systems where accurate prediction is essential, ac-
curate prediction may be the primary goals of the modeler. For ex-
ample, accurate prediction of tree and crop growth has practical im-
portance in developing and evaluating crop combinations, management
planning, and risk assessment for agroecosystems with wide-ranging
potential benefits in mitigating risks associated with climate change
(Malézieux et al., 2009). In this framework, submodel parameters are
estimated using empirical data related to the whole system (Landsberg
and Sands, 2011). Such numerically estimated parameters are seen only
as a means to adjust model fit and may lose their physical interpretation
(Ljung, 1999).

Others have also acknowledged a shift away from physically inter-
pretable parameters in developing complex models. Valentine and
Mäkelä (2005) state, “In principle, the values of … parameters may be
estimated by lower-level process models. Alternatively, the physiolo-
gical and morphological parameters combine, under reasonable as-
sumptions, into a set of aggregate parameters, whose values can be
estimated from inventory data with a statistical fitting procedure.” In
other words, the individual parameters may lose their physical inter-
pretation through the fitting to empirical data, but the suite of identi-
fied parameters combine into ‘aggregate’ parameters that are used to
more accurately model the overall system dynamics.

To summarize, this system identification framework that underlies
the approach taken here

• Output prediction is of primary importance (rather than the un-
derstanding of internal mechanisms).

• Signals within the model are no longer necessarily assumed to have
physical interpretations.

• Biophysical parameter interpretations may no longer be valid.

Given these relaxations from an input-output predictive modelling
perspective, we use input-output system analysis approaches to develop
a procedure to rank parameters in terms of their importance to model
output prediction. Additionally, the procedure presented here includes
tests for parameter identifiability in the reduced parameter set.

2. Approach

The procedure presented here begins with a number of assumptions:

1 The mechanistic, predictive model of interest is trusted based on
prior studies.

2 There exists an ‘nominal’ parameter setting that gives an acceptable
fit to data (even sparse data).

3 The primary objective is accurate prediction of outputs.
4 Model developers wish to recommend a minimum number of model
parameters for estimation to model users that will result in a good fit
to measured data.

In other words, we begin with a mechanistic model that we consider
to be a good representation of the real system whose outputs we wish to
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predict, and we have a parameter setting where the model is believed to
perform well. Because of nonlinearities, it is important to note that the
analysis is only valid for the neighborhood of a specific parameter
setting, as parameter importance to the output may change across the
feasible range of parameter values.

2.1. Model class, Hessian, and goodness-of-fit

The procedure presented here was developed for application to
mechanistic models constructed from deterministic descriptions (sub-
models) characterizing the underlying growth dynamics considered by
the modeler to be of importance such as interception and conversion of
solar energy, biomass growth, and transpiration (Buck-Sorlin, 2013).
Each submodel is a well-studied dynamic process with its own inputs
and outputs described by a set of differential or difference equations.
Submodel outputs are often inputs to other submodels (Buck-Sorlin,
2013) and the same parameters may occur in multiple submodels (Cox
et al., 2006). Mathematical representations for the dynamic processes
within and between submodels are drawn from the extensive body of
work in environmental physics (e.g., Campbell and Norman, 2012;
Monteith and Unsworth, 2013), quantitative agronomy (e.g., Vries and
de, 1989; Villalobos and Fereres, 2016), and other fields.

We represent a model by

=y n f u n θ( ) ( ( ), ) (1)

where f (•) is the mechanistic model, y n( )is a vector of outputs, u n( )
is a vector of inputs, θ is a vector of m parameters, and n is time. When
the model parameters are set to a nominal setting (accepted by mode-
lers and determined by numerical estimation from data, prior studies of
component submodels, and expert knowledge), the parameter vector is
denoted by θ0 and the output denoted by y n( )0 . For the purposes of
analysis, we also introduce the identifier, which is identical to the
model in mathematical structure but with parameters set to a priori
estimates ≠θ θj 0, denoted by

=y n f u n θ( ) ( ( ), )j j (2)

As a reminder, we are assuming that the model with nominal
parameters θ0 is a reasonably good predictor of reality according the
modelers, i.e., that we can take y0 to be a surrogate for the real system, a
reference output sequence, an approach taken by others (e.g., Young,
2012). Therefore the error between the reference model and the iden-
tifier at time n for the analysis is

= −r n y n y n( ) ( ) ( )j0 (3)

leading to the average quadratic cost function over N steps (from
time − +n N 1 to time n)
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The matrix of second partial derivatives of V n( )N with respect to the
model parameters is called the Hessian. Under conditions of continuity
of a function f , the Hessian can be determined analytically, yielding an
expression that can be calculated at any time n. The Hessian matrix of
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We are interested in the average Hessian of (4), which contains
information about how parameters affect the curvature of the cost

function over N steps, an ×m m matrix
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where the xk are the individual parameters. The eigenvalues and
eigenvectors of H V( )N , which are important in ranking parameter im-
portance to the cost function curvature in the neighborhood of the
nominal parameter setting, are determined by the solution to

(7) =H X X D* *
where D is the ×m m diagonal matrix of eigenvalues λk and X is an

×m m matrix whose columns are the corresponding eigenvectors Xk.
With the Hessian calculated a method to order the importance of the

parameters to the cost function curvature is needed. In addition to the
magnitude of the eigenvalues, we are interested in the projections of the
eigenvectors onto the parameter axes multiplied by their associated
eigenvalues (Johnson, 1988). Based on this reasoning, the measure for
ranking the importance of parameters to the Hessian curvature is as-
signed to be the 1-norm of the projections of the eigenvectors onto each
parameter axis multiplied by their respective eigenvalues. That is, the
combined magnitude of the eigenvector projections on the parameter
axes for the ith parameter Λi is defined as
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where Xi is the ith column of the eigenvector matrixX .
Finally, the normalized root mean squared error (NRMSE) goodness-

of-fit measure will be used in the procedure below to compare the fit of
an estimated output with the reference output (MathWorks, 2018)
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where y i( )0 is the reference sequence, y i( ) is the comparison se-
quence, and N is the number of data points. The possible range of
NRMSE values is 100 % (perfect fit) to − ∞. The threshold NRMSE
value for an acceptable fit depends upon the context and, ultimately,
user preferences. A user may consider a> 90 % fit is good enough in a
certain setting, while another calls for a> 99 % fit (as applied in the
example of Section 3.2).

2.2. Input class

Model inputs include environmental data such as solar radiation,
temperature, rainfall, wind speed, relative humidity, and soil nutrients.
Historical weather data are available for locations around the world
from various databases (https://www.ncdc.noaa.gov/cdo-web/, http://
koeppen-geiger.vu-wien.ac.at/shifts.htm, http://archive.ceda.ac.uk/).
However, data may not be available for the duration (many years) or
the sampling interval (e.g., day, month, year) required by the model. A
range of stochastic weather data generators has been developed for
climate studies that are available for generation of synthetic weather
data. Such synthetic data are widely used for crop growth modeling
purposes (Ailliot et al., 2015) and have been made widely available
(e.g., Palma, 2017).
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2.3. Consistent identifiability

A model is uniquely identifiable if for any parameterization θ*, the
model has identical outputs for any input and time to the model
parameterized by θ̂ if and only if =θ θ* ˆ (Walter, 2012). One may begin
characterizing the problem of determining identifiability by estab-
lishing the model class, input class, and a criterion for comparison
(Åström and Eykhoff, 1971). Identifiability has been well-studied for
linear systems (Ljung, 1999; Walter, 2012) and classes of nonlinear
systems (e.g., Vilela et al., 2009).

Due to the complex nonlinear nature of many mechanistic models
and frequently noisy data, theoretical identifiability may be much less
of a concern than practical identifiability, the ability to uniquely
identify parameters in practice (Walter, 2012). For our purposes, a
model-specific concept is introduced: consistent identifiability. We
begin with the a priori parameters θj and numerically estimate a subset
of parameters χj based upon input-output data resulting in estimated

parameters θ̂j. χj is consistently identifiable if numerical estimation with

the same input-output sequences yields θ̂j for any initialization in the
neighborhood of θj. Since it is not possible to test every point within a
certain distance of θj, in practice one can vary each parameter in χj
plus/minus a small percentage away from their θj values and run the
numerical estimation from those initializations.

2.4. The Hessian-informed Reduced-Order Parameter Estimation (HIROPE)
procedure

This procedure for determining a reduced-order space for parameter
estimation is based upon analytic evaluation of the average Hessian of
the quadratic cost function at an a priori parameter setting θj in the
neighborhood of an accepted nominal setting θ0. The conceptual basis
of the HIROPE procedure for a linear model and the simple 3-parameter
logistic equation is presented in detail in Elevitch (2018, Chapter 2).

2.4.1. Model prerequisites
Application of the procedure has the following prerequisites

a Full deterministic process equations are defined.
b Conditions on parameters are determined, including mathematical
and ‘realism’ constraints. This may be set by modelers (e.g., all
parameters are positive real), or by model itself (e.g., prohibiting
output of negative biomass).

c If model input-output equations are not twice continuously differ-
entiable with respect to the parameters of interest, acceptable dif-
ferentiable analytic approximations are substituted.

d The general class of model inputs is known and ample input data at
the model time step can be accessed.

e A parameter optimization algorithm is implemented.

A list of symbols used in this analysis and associated notes for the
example described in detail in Section 3 (for the Yield-SAFE model) is
given in Table 1.

2.4.2. Steps of the HIROPE procedure
The steps of the model reduction procedure are outlined here (for a

detailed description see Elevitch, 2018, Chapter 2). The procedure is
summarized graphically in Fig. 1. Note that in this analysis, we have
nominal parameters θ0 and the a priori estimates θj are selected in the
neighborhood of θ0. For convenience, here we assume that all elements
of θj are± 5 % away from θ0.

Step 1. Compare goodness-of-fit of y0 with the estimated output
yj. For inputs ui, compare output y0 for a parameter set θ0 with the
output yj for the a priori θj parameter set using the NRMSE goodness-of-
fit measure (9). If the fit meets the criterion, move to Step 6 (valida-
tion).

Step 2. Compute Hessian Hi j, and its eigenvectors and eigen-
values. Compute Hi j, for θj using data sequences ui, y0, and yj from si-
mulation of Step 1 and determine its eigenvectors and eigenvalues.

Step 3. Generate Λk parameter ranking. From the computed
Hi j, ,rank parameters using the formula (8), which leads to reduced-
order parameter sets χj k, .

Step 4. Confirm consistent identifiability. Beginning with highest
ranked reduced-order parameter set χj,1 containing only one parameter,
optimize the parameter value from two nearby locations (e.g., ± 5 %
from its a priori value), with all other parameters in θj fixed to their
original estimated values to calculate a θ̂j.

Step 5. Check goodness-of-fit of y0 and ŷj. Using the current θ̂j,
generate ŷj and calculate the NRMSE value relative to y0. If fit criterion
(NRMSE≥ 99 %) is met, then move to the next step for validation. If
optimization on the first candidate parameter set does not meet the
NRMSE criterion, then repeat Step 4 for the next candidate parameter
set, and so on, until either the fitting criterion is met for the optimi-
zation and validation inputs (success) or not (failure of procedure). In
case of failure, revise fit criterion or model.

Step 6. Validation. Validate the optimized parameter set using a
number of different input sequences from the same location and cal-
culating their NRMSE values. If the validating input data also results in
an acceptable NRMSE value, then the model optimization procedure is
considered successful, otherwise return to Step 4. One may proceed to
the next candidate parameter set if one wishes to see if there is im-
provement.

3. Results

This section demonstrates the HIROPE procedure applied to the
Yield-SAFE model (van der Werf et al., 2007). The Yield-SAFE model
may be the most widely used multistory agroforestry model designed
for predictive purposes. It was developed as “a very parameter sparse,
yet process-based model” providing “the best chance that robust para-
meter values can be identified” (van der Werf et al., 2007). Despite
Yield-SAFE’s parsimoniousness, it is recognized that only a subset of
parameters can reasonably be estimated (Palma et al., 2017).

Developed by the Silvoarable Agroforestry for Europe (SAFE) pro-
ject during the 2000′s, the Yield-SAFE model estimates biomass yields
of tree rows integrated with arable crops (Dupraz et al., 2005;, van der
Werf et al., 2007; Graves et al., 2010). The model consists of mechan-
istic descriptions of tree and crop growth in a two-story planting con-
figuration driven by environmental inputs (solar radiation, tempera-
ture, and precipitation), i.e., it is an input-output model that includes
both plant growth and interactions between trees and crops. Recently,
Yield-SAFE was augmented with several new submodels, including
vapor pressure deficit input (to predict transpiration), modified water
uptake, and the effect of the trees on temperature and wind speed,
among others (Palma et al., 2016, 2018b). As an initial case study, the
analysis below is based upon the original version of Yield-SAFE de-
scribed in van der Werf et al. (2007) and implemented in Microsoft
Excel (Burgess et al., 2014). The analysis is expected to be extendable to
the recently introduced more complex versions of Yield-SAFE as well as
other process-based models that meet the procedure criteria.

The Yield-SAFE model is described in detail in van der Werf et al.
(2007). The model includes seven state Eq. (1) tree biomass; (2) tree
leaf area; (3) number of shoots per tree; (4) crop biomass; (5) crop leaf
area index; (6) soil water content; and (7) heat sum. The model runs on
a daily time step and is driven by exogenous inputs of solar radiation,
temperature, and precipitation. For the purposes of the present analysis,
water and soil nutrients will be considered sufficient and non-limiting
to potential growth, which is consistent with the initial parameter ca-
libration assuming non-drought stress conditions undertaken by the
Yield-SAFE team (van der Werf et al., 2007; Keesman et al., 2011;
Palma et al., 2017). This type of simplification often applied to crop
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growth model analsis is based upon Liebig’s Law of the Minimum,
which states that plant growth is limited by the scarcest resource (van
Ittersum and Rabbinge, 1997; van der Ploeg et al., 1999). The growth
equations used here are based upon the Excel implementation by
Burgess et al. (2014) without management interventions such as tree
thinning and pruning (or the water and soil modules, as previously
mentioned). See Fig. 2 for a graphical depiction of the tree-crop com-
bination model with tree parameters listed in Table 2 and crop para-
meters in Table 3.

3.1. Yield-SAFE project’s parameterization methods

Due to lack of input-output data for two-story agroforestry config-
urations, the Yield-SAFE developers have parameterized their model
based on yield tables, other models (such as STICS, see Brisson et al.,
2003), and field data for monocultures (single-species plantings) of the
tree and crop species of interest. Van der Werf et al. (2007) described
how parameters are determined through a two-step process

Table 1
Symbols used for models, parameterizations, parameter initializations, and inputs with notes related to model simulations in Section 3.

Symbol Description Notes for simulations of Section 3 (Yield-SAFE model)

M The model as described by the modelers Models for tree (Mt), crop(Mc), tree/crop combination (Mtc), denote Yield-SAFE models
N Number of time steps in simulation (days for Yield-SAFE)
Θ Vector of model parameters considered for estimation (symbols) Dimension 1 x d. d=12 for Mtc

θ0 Nominal parameter values Dimension 1 x d. d=12 for Mtc

θj A priori parameter values with each element located at +5% or –5% of its
nominal value

Dimension 1 x d. j=1, 2, …, 2d

θ̂j A priori parameter values with some or all parameters optimized, and
others fixed at their θj values

Dimension 1 x d. j=1, 2, …, 2d

θ̂̂j
A priori parameter values that meet model fit criterion with some or all
parameters optimized, and others fixed at their θj values

Dimension 1 x d. j=1, 2, …, 2d

ui Inputs First column is solar radiation (MJ m−2) and second is temperature (°C). Index i is
associated with location Li. A 2 x N array.

y0 Nominal or reference model output(s) Biomass (g tree−1 for Mt; g m-2 for Mc; both outputs for Mtc), with θ0 and reference input ui,
2 x N for Mtc.

yj A priori output(s) Generated with θj and reference input ui, 2 x N for Mtc.

ŷj A priori output(s) with some or all parameters optimized Generated with θ̂j and reference input ui, 2 x N for Mtc.

ŷ̂j
A priori output(s) that meet model fit criterion with some or all
parameters optimized

Generated with θ̂̂j and reference input ui, 2 x N for Mtc.

V Loss function V u θ y y( , , , )N i j j0 (defined in (4)) Value computed from analytical expression using ui, θj, y0, and yj over N steps. A scalar

quantity.
Hi j, Hessian of loss function H V u θ y y( ( , , , ))N i j j0 (defined in (6)) Derived from analytical expression of V u θ y y( , , , )N i j j0 . Values computed over N steps.

Dimension is d x d.
Xk Eigenvectors of Hi j, Dimension is d x 1.
λk Eigenvalues of Hi j, A scalar.
Λk Ranking value for parameter k (defined in (8)) Computed from Hi j, by ranking parameters by summing the 1-norm of the eigenvector

projections scaled by their respective eigenvalues onto each parameter axis. A scalar
quantity.

χj k, Candidate reduced parameter sets (k) for optimization from a priori
parameter set θj

Computed from parameter rankings for all parameters in Θ. Dimension is d x d.

Fig. 1. The 6-step Hessian-informed reduced-order parameter estimation (HIROPE) procedure.
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1) Curve fitting to accepted yield tables for tree monocultures and
accepted model yields for arable crop monocultures (using least
squares optimization and manual adjustments).

2) Fine-tuning of certain parameters for a specific site based upon
monoculture growth data.

In later publications regarding Yield-SAFE parameterization, no
specific, reproducible methods for parameter estimation are given
(Keesman et al., 2011; Palma et al., 2017). A reproducible procedure is
presented here for determining a lower dimensional subspace for
parameter estimation that may benefit model users who would like to
parameterize the model for new crops and environments.

3.2. Inputs and validation

In order to acquire the needed input data, the Yield-SAFE devel-
opers draw on simulated climate data to drive their model, and have
developed the web portal CliPick (“Climate Change Web Picker,”
http://home.isa.utl.pt/∼joaopalma/projects/agforward/clipick/) to
access climate data generated by a number of climate modeling projects
(Palma, 2015, 2017; Palma et al., 2018a). The data sets available
through CliPick include a number of future climate scenarios as well as
climate data simulated based upon historical measurements of atmo-
spheric aerosols (van Meijgaard et al., 2012). As Palma et al. (2017)
state, “There are indications that the simulated climate can be used for
calibration purposes with minor loss of quality in comparison to real
data.” The basis for using historical data to simulate climate data is
documented in Lamarque et al. (2011). Various data sequences ex-
tracted from a historical climate scenario were used for the optimiza-
tion and validation simulations conducted here (Table 4). Typical
input-output sequences for a 20-year period are depicted in Fig. 3.

Fig. 2. Yield-SAFE tree-crop combination model, non-water-limiting case.

Table 2
Parameters used in Yield-SAFE tree growth model in the non-water limiting
case and accepted parameter values given for poplar in Yield-SAFE Excel im-
plementation (Burgess et al., 2014).

Symbol Description Units Poplar1
(Graves 2010)

εt Radiation use efficiency g MJ−1 1.4086
α Attrition rate of standing biomass day−1 0.0001
Lm Maximum leaf area m2 500
Bt(0) Initial biomass per tree g tree−1 100
N(0) Initial number of shoots per tree tree−1 0.6225
R ‘Ratio’ related to leaf and shoot

maxima
– 200000

τ Time constant of leaf area growth days 10
kt Light extinction coefficient – 0.8
ka Light extinction “a” coefficient – 10
kb Light extinction “b” coefficient – 0.4
DOYbudb Day-of-year of bud burst – 100
DOYleaff Day-of-year of leaf fall – 300
ρ Tree stand density (user-assigned

constant based on planting
configuration)

trees m−2 0.0156
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3.3. Yield-SAFE model implementation and parameter estimation

The tree and crop combination growth model was implemented in
the MATLAB® System Identification Toolbox™ to take advantage of
advanced optimization routines and the ability to easily run multiple
simulations. Nominal parameters θ0 for poplar and annual grass (Tables
2 and 3) and input u1,1 (Table 4 model object defined the model
equations and the nlgreyest parameter estimation function was used
with the default optimization settings. The default optimization algo-
rithm used is the Trust-Region Reflective Newton method for nonlinear
least-squares (Ljung, 2018).

The analytic Hessian was derived from the cost function expression
(see Elevitch, 2018 for full details). A twice continuously differentiable
symbolic expression for the cost was first coded in MATLAB, using
approximations for discontinuous functions in the growth equations
where necessary. The Hessians of the symbolic cost function expres-
sions (for a certain time step) were then derived using MATLAB’s hes-
sian function with respect to the parameters of interest. The eigen-
structure of the calculated Hessian for the nonlinear models was
determined using the eig function.

3.4. HIROPE applied to Yield-SAFE combination model

Application of the HIROPE procedure to the separate tree and crop
models is presented in detail in Elevitch (2018, Chapter 3). Here we
present the main results for the combined tree and crop model (in the
non-water limited case). For the example presented here, the a priori
parameter values θ1 are set –5 % away from their nominal values
(Table 5).

Table 3
Crop model parameters and initial conditions for the crop in the non-water
limiting case (Burgess et al., 2014).

Symbol Description Units Annual grass

εc Potential growth g MJ−1 0.3
T0 Temperature threshold °C 0
P0 Partition to leaves at emergence – 0.8
S1 T-sum at which partitioning starts to

decline
°C days 1600

S2 T-sum at which partitioning to leaves= 0 °C days 1840
σ Specific leaf area m2 g−2 0.021
kc Radiation extinction coefficient – 0.4
DOYsow Day-of-year of sowing – −107
DOYharv Day-of-year of harvest (if threshold not

reached)
– 243

S0 Temperature sum to emergence °C days 150
Sh Temperature sum to harvest °C days 3200
Bc(0) Initial crop biomass g m−2 0
Lc(0) Initial leaf area m2m−2 0.1

Table 4
Input sequence source from Norwich, UK (Lat: 52.6628 Long: 1.2283) used for
simulations. All data were imported through the CliPick portal.

Symbol Source data set Start date Length (days)

u1,1 Hist KNMI-RACMO22E 31-12-51 7306
u1,2 Hist KNMI-RACMO22E 31-12-66 7306
u1,3 Hist KNMI-RACMO22E 31-12-86 7306
u1,4 A1B - HadCM3Q0 31-12-51 7306
u1,5 A1B - HadCM3Q0 31-12-71 7306

Fig. 3. Solar radiation and temperature inputs u1,1 (top), and combination model outputs y0 for tree growth (bottom left) and crop growth (bottom right) with θ0 for
Poplar and annual grass.
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Table 5
Nominal parameters θ0 and a priori settings θ1 for combination model.

Tree Parameters Units θ0 θ1 Crop Parameters Units θ0 θ1

εt g MJ−1 1.4086 1.33817 εc g MJ−1 0.3 0.285
α day−1 0.0001 0.000095 T0 °C 0.5 0.475
Lm m2 500 475 P0 – 0.8 0.76
Bt(0) g tree−1 100 95 S1 °C days 1600 1520
N(0) tree−1 0.6225 0.591375 S2 °C days 1840 1748
R – 200000 190000 kc – 0.4 0.38

Fig. 4. Outputs y0 and y1 for tree (left) and crop (right, n=1400–2100) models driven by u1,1. The NRMSE values are 79.09 % and 73.45 %, respectively, indicating
parameter must be adjusted to achieve an acceptable fit.

Table 6
Eigenvectors and eigenvalues of the HessianError! Reference source not found.. The eigenvector directions Xi are labelled according the parameter axes, ordered
by their relative eigenvalues (in absolute value) λi.

Eigenvalue

λ1 λ2 λ3 λ4 λ5 λ6

−7.25e+05 6.61e+05 1.52e+05 9.38e+04 −3.28e+04 1.72e+03
Eigenvector

Axis X1 X2 X3 X4 X5 X6

εt −0.3786 0.8203 −0.0001 0.4257 −0.0003 −0.0000
R 0.8749 0.1659 −0.0000 0.4521 0.0022 −0.0000
Lm −0.3020 −0.5469 −0.0001 0.7791 0.0019 −0.0000
kc 0.0008 −0.0005 −0.8790 0.0010 −0.4764 0.0069
εc 0.0013 −0.0008 0.4767 0.0021 −0.8788 0.0037
α −0.0102 −0.0227 0.0000 −0.0862 −0.0002 0.0000
S2 0.0000 −0.0000 −0.0050 0.0000 −0.0135 −0.6487
S1 0.0000 −0.0000 −0.0041 −0.0000 −0.0155 −0.5327
P0 0.0000 −0.0000 −0.0021 −0.0000 −0.0192 0.5435
Bt(0) 0.0005 0.0002 −0.0000 0.0060 −0.0001 −0.0000
N(0) −0.0005 −0.0002 0.0000 −0.0061 0.0001 0.0000
T0 0.0000 −0.0000 −0.0000 0.0000 −0.0000 −0.0003

Eigenvalue
λ7 λ8 λ9 λ10 λ11 λ12

−7.15e+02 −6.25e+02 4.54e+02 −2.93e+02 2.80e+02 8.76e-09
Eigenvector

Axis X7 X8 X9 X10 X11 X12

εt −0.0000 0.0058 0.0116 −0.0000 −0.0501 −0.0000
R −0.0001 0.0065 0.0111 0.0000 −0.0504 −0.0000
Lm −0.0001 0.0078 0.0100 0.0000 −0.0507 −0.0000
kc 0.0173 0.0001 −0.0001 −0.0034 −0.0000 0.0000
εc 0.0213 0.0002 −0.0001 −0.0032 −0.0000 0.0000
α −0.0001 0.0582 0.2687 −0.0000 −0.9573 −0.0000
S2 −0.2213 −0.0002 0.0000 0.7280 0.0000 0.0003
S1 −0.5508 −0.0006 0.0000 −0.6424 0.0000 0.0003
P0 −0.8043 −0.0009 0.0001 0.2395 0.0000 −0.0000
Bt(0) 0.0011 −0.9944 −0.0684 0.0000 −0.0802 −0.0000
N(0) −0.0002 0.0873 −0.9606 0.0000 −0.2637 −0.0000
T0 −0.0002 −0.0000 0.0000 −0.0000 0.0000 −1.0000
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3.4.1. Step 1 compare goodness-of-fit of y0 with the estimated output y1
For this 2-output model, each output is compared with the re-

ference. The goodness-of-fit measures are well below the cut-off of 99 %
(Fig. 4).

3.4.2. Step 2 Compute Hi j, and its eigenvectors and eigenvalues
Parameter scaling was employed prior to differentiation and the

analytic Hessian with respect to the 12 parameters of interest was de-
rived using MATLAB’s hessian function. The average Hessian calculated
for N=5475 (15 years) was calculated, with its eigenvalues and ei-
genvectors given in Table 6.

3.4.3. Step 3 generate Λ parameter ranking
Based on Table 6 and Eq. (8), the Λ values and associated parameter

ranking for θ1 setting are shown in Table 7.
This leads to a set of candidate parameter vectors χ k1, for estimation

(Table 8).

3.4.4. Step 5 check goodness-of-fit of y0 and ŷ1
To compress the procedure steps for presentation here, the optimi-

zation algorithm was run from θ1 for the first seven χ k1, and the model
fit for each was evaluated. Fig. 5 shows the goodness-of-fit measure
NRMSE for the first seven χ k1, . Both outputs meet the>99 % fit cri-
terion for χ1,5–χ1,7. Since the reduced-order set χ1,7 gives a bigger
margin above 99 %, we proceed with this optimized parameter set.

3.4.5. Step 4 confirm consistent identifiability
χ1,7 has seven estimated parameters, therefore, consistent iden-

tifiability is tested from 27 or 128 a priori±5 % variations of the θ1

parameter values. All estimates converge to the same location θ̂̂1 within
0.00464 %, as shown in Table 9. This confirms consistent identifiability
for χ1,7.

3.4.6. Step 6. Validation
Validation of θ̂̂1 with other four other inputs from the test location

was successful (Table 10).

3.4.7. Comprehensive ranking all 4096 θj
To systematically extend the analysis to the space around θ1, Λkare

calculated for all 212 (4096) combinations of a priori parameters set
at± 5 % of their nominal values. Table 11 shows the parameter

Table 7
Λi values and their associated ranking based upon Hessian eigenstructure.

Ranking Parameter Submodel Λ

1 εt tree 8.57e+05
2 R tree 7.86e+05
3 Lm tree 6.54e+05
4 kc crop 1.50e+05
5 εc crop 1.03e+05
6 α tree 3.09e+04
7 S2 crop 2.69e+03
8 S1 crop 2.64e+03
9 P0 crop 2.53e+03
10 Bt(0) tree 1.77e+03
11 N(0) tree 1.67e+03
12 T0 crop 1.44e+00

Table 8
χ k1, candidates for reduced-order parameter estimation for combination model.

Par. Sub-model χ1,1 χ1,2 χ1,3 χ1,4 χ1,5 χ1,6 χ1,7 χ1,8 χ1,9 χ1,10 χ1,11 χ1,12

εt tree X X X X X X X X X X X X
R tree X X X X X X X X X X X
Lm tree X X X X X X X X X X
kc crop X X X X X X X X X
εc crop X X X X X X X X
α tree X X X X X X X
S2 crop X X X X X X
S1 crop X X X X X
P0 crop X X X X
Bt(0) tree X X X
N(0) tree X X
T0 crop X

Fig. 5. NRMSE values for unoptimized parameters (shown at 0) and the first
seven χ1,k optimized parameter sets. Both outputs meet the> 99 % criterion for
χ1,5–χ1,7.

Table 9
Step 4 for the first three candidate parameter sets.

Units Optimized on χ1,7 A priori
values

Nominal

θ̂̂1 (for all 128 a priori
sets with± 5% values)

θ1 θ0

Max % param.
diff.

0.00464 % – –

εt g MJ−1 1.3860 1.3382 1.4086
α day−1 9.0478e-05 9.5000e-05 0.0001
Lm m2 495.86 475.00 500
Bt(0) g tree−1 95 95 100
N(0) tree−1 0.59137 0.59137 0.6225
R – 189840 190000 200000
εc g MJ−1 0.30055 0.28500 0.3
T0 °C 0.475 0.475 0.5
P0 – 0.76 0.76 0.8
S1 °C days 1520 1520 1600
S2 °C days 2060.7 1748 1840
kc – 0.41551 0.38 0.4
NRMSE tree 99.96 % 79.09 % 100 %
NRMSE crop 99.51 % 73.45 % 100 %
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rankings across all parameter sets. The top six parameters are the same
for 4091 of 4096 θj (with kc and Bt(0) switching places 5 times), sug-
gesting robustness of parameter choice for the highest-ranking para-
meters. The rankings of the next five lower ranked parameters are
mixed. The lowest ranked parameter is the same for all θj.

It is interesting to note that OAT parameter sensitivity analysis
carried out by the Yield-SAFE modelers led to somewhat different re-
sults. Of the 12 model parameters considered here, Keesman et al.
(2011) found tree model εt, Lm, and N(0) to be dominant, while εc and
kc were dominant for the crop model. Of these five parameters, four are
in the top five ranking carried out through the HIROPE procedure.
Parameter N(0) is one of the lowest ranked parameters according to our
analysis. It should also be noted that the Keesman et al. (2011) OAT
analysis was carried out on data for monocultures of trees and crops,
rather than trees and crops grown together in a multistrata planting,
which may account for the difference in results.

Figs. 6 and7 show graphically the Λi values for the top eight ranked
parameters (selected by the previous analysis of θ1).

4. Conclusions

Reduced-order parameter estimation based on the Hessian of the
cost function in this early investigation uses foundational systems
theory, straightforward mathematics, and off-the-shelf simulation and
optimization software, and is by no means a state-of-the-art im-
plementation. Rather, the research presented here is meant to illustrate
the value of a priori investigation of parameter identifiability through a
conceptual framework. The potential of a systematic, reproducible ap-
proach to determining the importance of parameters in a complex
model illuminates an area of model development that can otherwise be
shrouded in guesswork and trial-and-error. Although the OAT analysis
by the Yield-SAFE modelers led to somewhat similar ranking of the
most important parameters (Keesman et al., 2011), the HIROPE pro-
cedure gives a higher confidence in the ranking as it accounts for the
effects of simultaneous changes in multiple parameters, while also
adding confirmation of consistent identifiability.

Initial tests of the HIROPE procedure on the Yield-SAFE model

described here gave a consistent parameter ranking in the neighbor-
hood of a nominal setting for the 12-parameter, non-water limiting tree-
crop combination model. Additional investigation is needed to test the
procedure on more complex implementations of Yield-SAFE (with other
connecting submodels included) and with other plant growth models
before any definitive conclusions can be made about the applicability of
HIROPE. Further refinement of the procedure will be needed.
Additionally, the definition of the ranking metric Λ proposed here
proved to be an effective measure for relative parameter influence on
the cost function, however, this formulation deserves further study,
especially as the number of parameters increases. Also, as the number

Table 10
Fit measures with validation inputs from the test location for θ̂̂1 optimized on
χ1,7.

Tree model output Crop model output

Input Use NRMSE Cost g2 tree−2 NRMSE Cost g2 m−2

u1,1 Optimization 99.96 % 5.3672e+04 99.51 % 4.5973e-01
u1,2 Validation 99.93 % 9.2455e+04 99.50 % 5.0933e-01
u1,3 Validation 99.96 % 3.4066e+04 99.41 % 7.7433e-01
u1,4 Validation 99.81 % 5.1725e+05 99.09 % 9.7463e-01
u1,5 Validation 99.77 % 6.6030e+05 99.06 % 9.8339e-01

Table 11
Occurrence of parameter ranking for all 4096 a priori estimates θj.

Ranking

Par. Sub-model 1 2 3 4 5 6 7 8 9 10 11 12
εt tree 4096 0 0 0 0 0 0 0 0 0 0 0
R tree 0 3967 61 28 40 0 0 0 0 0 0 0
Lm tree 0 0 3925 65 58 48 0 0 0 0 0 0
kc crop 0 113 42 2560 914 462 0 5 0 0 0 0
εc crop 0 0 60 84 2375 1577 0 0 0 0 0 0
α tree 0 16 8 1359 709 2004 0 0 0 0 0 0
S2 crop 0 0 0 0 0 0 481 386 1253 1285 691 0
S1 crop 0 0 0 0 0 0 892 534 1793 626 251 0
P0 crop 0 0 0 0 0 0 110 528 718 822 1918 0
Bt(0) tree 0 0 0 0 0 5 2283 476 162 868 302 0
N(0) tree 0 0 0 0 0 0 330 2167 170 495 934 0
T0 crop 0 0 0 0 0 0 0 0 0 0 0 4096

Fig. 6. The Λk values (log10 scale) for the highest ranked six parameters of the
combination model are consistent across all 4096 a priori estimates θj.

Fig. 7. 6 (Close up of Fig. 6) Λk for highest ranked six parameters of the
combination model across 100 a priori estimates θj.
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of model parameters increases, the Hessian computational demand in-
creases quadratically. An iterative or ‘successive’ method of reducing
the number of parameters for the analysis such as suggested by Cox
et al. (2006) may be considered.

The procedure proposed here is only a small part of model devel-
opment (although it does involve a considerable amount of work). Real
data are required to validate model predictions and give a model
credibility. Even more important, one should confirm which output
measurements are needed for model parameterization before under-
taking field study. Analysis of consistent identifiability such as that
included in HIROPE may suggest which output measurements are
needed for parameter identification.
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