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Stationary and Nonstationary  Learning 
Characteristics of the LMS Adaptive  Filter 

Abstrort-This paper descn’bes the pexfonrmnce chvpcteristics of the 
LMS adaptive filter, a digital fdter composed of a tapped deky line and 
adjustable  weights,  whose  impulse response is controlled by an adaptive 
plgorithm. For stationary stocbrstic inputs, the meanquare m, the 
difference between the filta output and an externally  supplied  input 
called the ‘‘desired  response,” is a quodntic function of the weights, a 
paraboloid with a  single  fmed minimum point  that can be sought by 
gradient techniques. The w e n t  e-stimation process is shown to intro- 
duce noise into the weight vector that is proportional to the speed of 
adaptation and numbex of weights.  The effect of this noise is expressed 
in  terms of a dimensionless quantity ‘‘&adjustment”  that is a mea- 
sure of the deviation  from optimal Wiener pedonnance. Analysis of a 
simple nonstationary case, in which the minimum point of the emor 
surface is moving  according to an assumed fnstordez Markov process, 
shows that an additional contriiution to misadjustment arises from 
‘‘lag’’ of the adaptive process in tracking the moving minimum point. 
’ilk contriiution, which is additive, is proportional to the numbex of 
weights  but invesely proportional to the speed of adaptation. The s u m  
of the nhdjustments can be minimized by choosing  the speed of 
adaptation to make equal the two contributions. It is further shown, 
m Appendix  A,  that for stationary inputs the LMS adaptive algorithm, 
based on the  method of steepest  descent, approadm the theoretical  limit 
of efficiency in t e r m s  of misadjustment  and speed of adaptation 
when the eigenvalues of the input correhtion matxix are equal or close 
in d u e .  When the eigmvalues are highly  disparate (hma,/k- > lo), 
an algorithm similar to LMS but based on Newton’s method would 
approach this theoretical  limit very closely. 

I .  INTRODUCTION 
UR PURPOSE IS to derive relationships  between  speed 
of adaptation  and  performance of adaptive  systems. In 
general, faster  adaptation leads to more noisy  adaptive 

“misadjustment” is defined  and used to establish design 
criteria for an adaptive  predictor.  Extension of the  concept to 
the analysis of a  useful but relatively simple form of nonsta- 
tionary  adaptation leads to criteria governing optimal  choice of 
speed of adaptation. 

The  results  reported  here have been  gradually  developed in 
our laboratory  during  the past 15 years  and  are being extended 
and  applied  by  ongoing  research. 

11. AN ADAPTIVE FILTER 

The  filter  considered  here  comprises  a  tapped  delay  line, 
variable  weights  (variable gains) whose input signals are the 
signals at  the delay-line taps,  a  summer to add  the weighted 
signals, and  an  adaptation process that  automatically seeks  an 
optimal  impulse  response  by  adjusting the weights.  Fig. 1 il- 
lustrates  the adaptive  filter  as used in  modeling  an unknown 
dynamic  system. 

In addition to the usual input signals, another  input signal, 
the “desired response,”  must be supplied to  the adaptive filter 
during the  adaptation process.  In Fig. 1, essentially the same 
input is applied to  the adaptive  filter as to  the  unknown sys- 
tem to be modeled. The  output of this  system provides the 
desired response for  the adaptive  filter.  In other applications, 
considerable  ingenuity  may be required to obtain  a  suitable 
desired response for an adaptive process. 

111. THE PERFORMANCE SURFACE 
processes.  When the  input  environment of  an adaptive  system 
is statistically stationary, best steadystate  performance results 
from slow adaptation. However,  when the  input  statistics are 
time variable, best  performance is obtained  by  a  compromise 
between  fast adaptation (necessary to track  variations in  input 
statistics)  and  slow adaptation (necessary to contain  the noise 
in the adaptive process). These issues will be studied  both 

The analysis of the adaptive  filter is developed  by  considering 
the  “adaptive  linear  combiner” of Fig. 2, a  subsystem of the 
adaptive  filter of  Fig. 1, comprising its  most significant part.’ 

In Fig. 2, a  set of input signals is weighted and  summed to 
form  an  output signal. The  inputs occur  simultaneously  and 
discretely in time.  The jth  input vector is 

analytically  and  by  computer  simulation. The  context of this xj = [ X , j ,   x 2 j ,  * * , X l j ,  * * * , X , j I  T . 
study will be restricted to adaptive digital filters  “driven”  by 
the LMS adaptation algorithm of Widrow and  Hoff [ 11, [ 2 ] .  The  set of  weights is designated by  the  vector WT = 
This algorithm  and similar algorithms have been used for  many [ W , ,   W 2 ,  ’ * ’ , wl,  * * * , w, I .  The  jth  output signal is 
years  in  a wide variety of practical  applications [3]-[  261. 

adaptation.”  This is a very difficult  subject  and the present 
work  should be regarded as .only a beginning. Stability  and 
rate of convergence are analyzed fmt,  then gradient  noise  and The  input signals and desired response are assumed to be  sta- 
its  effects  upon  performance are  assessed. The  concept of tionary  ergodic processes. Denoting  the desired response as 

We are attempting to formulate  a  “statistical theory of y j  = f W l X 1 j  = W T X j  = X T W .  (1) 
I=1 
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phased  array antenna to make an adaptive  antenna [5)-[9], or to a 
,This combinational  system can be  connected to the  elements  of  a 

quantizer to form an adaptive  threshold  element  (“Adaline” [ 1 1, [ 31 or 

It can also be used as the  adaptive  portion of certain  learning  control 
TLU [2]) for use in  adaptive logic and  pattern-recognition  systems. 

systems [ 101. [ 11  1; as a  key  portion of adaptive  fdters for channel 

adaptive  systems  identification [ 191-[26]. 
equalization [12]-[16]; for  adaptive noise cancelling [17],  [18];or for 
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SAMPLED 

Fig.  1. Modeling an unknown system  by a  discrete adaptive filter. 
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Fig. 2. Adaptive  linear combiner. 

di,  the  error  at  the  jth time is 

~i = di - y i  = di - W T X i  = di - XTW. ( 2 )  

The  square of this  error is 

f$ = df  - 2diXfW + WTXiXTW. ( 3 )  

The  mean-square  error E ,  the expected value of €7, is 

f 4 E [ E ? ]  = E [ d f ]  - 2E[d iXT]  W + WTEIXiXTIW 

= E [ d j  ] - 2PTW + WTRW (4 1 
where the cross  correlation  vector  between the  input signals 
and the desired response  is  defined as 

p j x l j l  

L d i X n d  

and  where the symmetric  and  positive  definite input correla- 
tion  matrix R of the  x-input signals is defined as 

L ‘  
It may be observed  from (4) that  the meanquareerror (me) 

performance  function is a  quadratic  function of the weights, a 
“bowl-shaped”  surface; the adaptive  process will be continu- 

ously  adjusting  the  weights,  seeking the  bottom of the bowl. 
This may be accomplished by steepest  descent methods [ 2 7 ] ,  
[ 281 discussed below. 

In the  nonstationary  case,  the  adaptive  process  must  track 
the  bottom of the bowl,  which may be moving. An analysis of 
a  simple  nonstationary case is presented  in  Section XI. 

Iv. THE GRADIENT AND THE WIENER SOLUTION 

The method of steepest  descent uses gradients of the  perfor- 
mance  surface in seeking its minimum.  The  gradient at any 
point on the performance  surface may be obtained  by  dif- 
ferentiating  the mse function,  equation (4), with  respect to  the 
weight  vector.  The  gradient  vector is 

0 = - 2 P + 2 R W .  (7)  

Set the gradient to zero to find the  optimal weight vector W*: 
W* = R-’P  (8) 

which is the Wiener-Hopf equation in matrix  form. 
The  minimum mse is obtained  from (8) and (4): 

fmin =E[d] ] - PTW*. (9) 

Substituting  (9)  into (4) yields  a  useful  formula for mse: 

f = fmin + (W - W*)T R (W - W*). (10) 

Define Y as the difference  between W and the Wiener solu- 
tion W*: 

v p  ( W -  W*). ( 1  1) 

Therefore, 

f = tmin + VTR Y .  ( 1 2 )  

Differentiation of ( 1 2 )  yields  another  form  for  the  gradient: 

V = 2 R Y .   ( 1 3 )  

The input correlation  matrix, being symmetric  and  positive 
definite,  may be represented as 

R = QAQ-’ = Q A Q ~  ( 1 4 )  

where Q is the  orthonormal  modal  matrix of R and A is its 
diagonal  matrix of eigenvalues: 

~ = d i a g [ h l , A ~ ; ~ ~ , h p , . . . , h , 1 .  ( 1 5 )  

Equation (1 2 )  may be reexpressed as 

= tmin + V ~ Q A Q - ’  Y. ( 1 6 )  

Define a  transformed version of Y as 
V ’ 4 Q - l  Y and V = Q V ‘ .  ( 1  7) 

Accordingly,  equation (1 2 )  may be  put in normal  form as 

5 = Emin + Y f T A Y ‘ .  (18) 

The  primed  coordinates  are  therefore  the  principal  axes of  the 
quadratic  surface.  Transformation (17) may be applied to  the 
weight vector  itself, 

W‘=Q-l W and W = Q W ‘ .  (19) 

v. THE METHOD OF STEEPEST DESCENT 
The  method of steepest  descent makes each change in  the 

weight  vector  proportional to  the negative of the gradient 
vector: 

Wj+l = W j  + p(-V$. (20) 
Authorized licensed use limited to: Cornell University Library. Downloaded on August 01,2020 at 22:34:09 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Feedback  model of steepest  descent. 

The scalar parameter p is a convergence factor  that  controls 
stability  and  rate of adaptation.  The  gradient  at  the jth itera- 
tion is V i .  Using (13), (14), and (1 7), equation ( 2 0 )  becomes 

V;+l - (I - 2 p A )  V; = 0. (21) 

This homogeneous  vector  difference  equation is uncoupled. 
It has  a  simple  geometric  solution in  the primed  coordi- 
nates [SI: 

V i  = (I - 2 p A ) j Y o   ( 2 2 )  

where V6 is  an initial  condition: 

vl, = wl, - w*’. ( 2 3 )  

For convergence, it is necessary that 

l/~*aX > P  > 0 ( 2 4 )  

where A,, is the largest eigenvalue  of R .  From (221, we see 
that  transients  in  the primed  coordinates will be geometric;  the 
geometric ratio of the pth coordinate is’ 

rp  = (1 - 2pA, ) .   ( 25 )  

An exponential  envelope can be  fitted to a  geometric  sequence. 
If the basic unit of time is considered to be the  iteration  cycle, 
time  constant 7, can be  determined as follows: 

The case  of general  interest is slow adaptation; i.e., large T ~ .  

Therefore, 

1 
r p  = ( 1  - 2pAp)= 1 - - 

7, 

01 

Equation (27) gives the  time  constant of the  pth mode. 
Steepest  descent  can be regarded as a  feedback  process  where 

the  gradient plays the role of vector error signal. The  process, 
if stable,  tends to bring the gradient to zero.2 Fig. 3 shows  a 
feedback  model  for a stationary  quadratic mse surface being 
searched by  the  method of steepest  descent. The  model is 
equivalent to the following set of relations. 

wj = wj+l ldelayed  one  iteration 

Wj+l = wj + p(-vj) 

V j = 2 R ( W j -   W * ) = 2 R V .   ( 2 8 )  

This feedback  model is used subsequently  in  a  study of non- 
stationary  adaptation.  Notice an input  not  mentioned earlier, 

‘This hs9 been called performance feedback 111, [ 2 9 ] .  

“gradient  noise.” Because gradients are estimated  at  each 
iteration cycle with  finite amounts of input  data,  they will  be 
imperfect  or noisy. 

VI.  THE LMS ALGORITHM 
The LMS algorithm  is an implementation of steepest  descent 

using measured or  estimated gradients: 

wj+1 = wj + p ( - v j ) .  
A 

( 2 9 )  

The  estimate of the  true gradient is V. 

square of a single error  sample.  Thus 

A 

The  gradient  estimate used by LMS takes the gradient of the 

A vi = - 2 EjXj. ( 3 0 )  

wj+1 = wj + 2pEjXj.   (3 1) 

The LMS algorithm can  be written as 

If  we assume that Xi  is uncorrelated over time (i.e., that 
E[XjX&l]  = 0, V I  # 0), an assumption  common  in  the field of 
stochastic  approximation [ 301, [ 3 1 1,  then  the  expected value 
of the gradient  estimate  equals the  true  gradient,  and  the 
weight-vector  mean  is convergent to  the Wiener solution of (81, 
as shown  in [4 ]  and [ SI. 

Condition ( 2 4 )  is necessary and  sufficient for convergence of 
the LMS algorithm. However, in practice, the individual 
eigenvalues are  rarely  known so that ( 2 4 )  is not always  easy to 
apply. Since tr R is the  total  input power to the weights, a 
generally known  quantity, and since tr R > Am, as R is  posi- 
tive def i i te ,  a  sufficient  condition for convergence  is 

l / tr  R > p > 0 .  ( 3 2 )  

VII. THE IXARNING CURVE AND ITS TIME CONSTANTS 
During adaptation,  the  error ~j is nonstationary as the weight 

vector  adapts  toward W*. The mse can be def ied  only on  the 
basis of ensemble averages. From  (18), we obtain 

f j  = fmin + ViTAVj’. ( 3 3 )  

Imagine an ensemble of adaptive processes, each having indi- 
vidual stationary  ergodic  inputs  drawn  from  the  same  statisti- 
cal  population,  with all initial weight vectors  equal. The mse 
f j  is a function of iteration  number j ,  obtained  by averaging 
over the ensemble at  iteration j .  

Using ( 2 2 ) ,  but assuming no noise in  the weight vector, 
equation ( 3 3 )  becomes 

fmin + VATA(I- 2pA)”V; 

= f m i n  + Vr(Z- 2 p R ) j R ( I -   2 / ~ R ) j V o .   ( 3 4 )  

When the adaptive  process  is  convergent, it is clear from ( 3 4 )  
that 

and that  the geometric  decay in f j  going from f o  to Emin will, 
for  the  pth  mode, have a  geometric  ratio of r; and  a  time 
constant 

The  result  obtained  by  plotting  mse against number of 
iterations is called the “learning  curve.” Due to noise in  the 
weight vector,  actual  practice will show to be  higher than 
indicated  by (34) .  
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V I I I .  GRADIENT AND WEIGHT-VECTOR NOISE 
Gradient noise  will affect the adaptive process both during 

initial  transients  and  in  steady  state.  The  latter  condition is of 
particular  interest here. 

Assume that  the weight vector is close to the Wiener solu- 
tion. Assume, as before, that Xi  and dj are  stationary  and  er- 
godic  and that Xi is uncorrelated  over  time; i.e., 

E [ X j X i + k ]  = 0 ,  k # 0. (36) 

The LMS algorithm uses a  gradient  estimate 
A 
V = - 2 ~ j X j = V j + N j  (37) 

where Vj is the  true  gradient  and Nj is a zero-mean gradient 
estimation noise vector. When W j  = W*, the  true gradient is 
zero,  but the gradient would  be estimated  according to  (30) 
and is equal to the gradient  noise: 

Nj = - 2 ~ j X j .  (38) 

According to Wiener filter  theory, when W j  = W*, ej and X i  
are  uncorrelated, If they are assumed  zero-mean Gaussian, 
ej and Xj are  statistically  independent. As such,  the covariance 
of Ni is 

cov [*I = E [ N j N T ]  = 4E[t$ X j X T ]  

= 4E[$ I  E[XjX#!-l 

= 4 E [ e j l R .  

When Wj = W*, E[€;  ]  = Emin. Accordingly, 

(39) 

cov [Nil = 4 tmin R . (4 0) 

As long as W j  5 W*, we assume that  the gradient noise  co- 
variance is given by (40) and that this noise is stationary  and 
uncorrelated over time. The  latter assumption is based on 
(36) and (38). 

Projecting the gradient  noise, 
N !  = e - 1 ~ ~  

J (41) 
its covariance  becomes 

cov [ N j ]  = E[N,!NjT] = E [  Q-’  NjNTQI = Q-’ COV [Nil Q 

= 4 tmin Q-’RQ 

however, that (45) closely approximates  measured weight- 
vector covariances under a  considerably wider  range  of condi- 
tions  than  the  assumptions  above  imply. 

Ix. MISADJUSTMENT DUE TO GRADIENT NOISE 
Random noise in the weight vector causes an excess  mse.  If 

the weight vector were noise  free  and converged such  that 
W j  = W*, then  the mse  would  be tmin. However, this  does not 
occur in actual  practice so that  the weight vector is on the 
average “misadjusted”  from its  optimal setting. 

An expression for mse in terms of Vi is given by (33),  from 
which we obtain an expression for excess  mse: 

(excess  mse) = V i T A  Vi. (46) 

The average excess mse is an important  quantity: 

E [ V i T A  Vi1 = 2 XpE[(v;j)’ 1 (4 7) 
p = 1  

where ubi is the  pth  component of Vi. After  adaptive  tran- 
sients  die  out, E [  $ 1  = 0. Therefore,  from (45) we  have 

E[(Ubj)’ I  = ptmin,  VP. (48 1 
Substitution into (47) yields the average  excess mse, 

E [  ViTA V i ]   = p t m i n  f: X ,  =p.$,in tr R .  (49) 
p = l  

We defme  the  “misadjustment” due to gradient  noise as the 
dimensionless ratio of the average  excess  mse to the minimum 
mse, 

average excess rnse 
M A  ( 5 0 )  

tmin 

For  the LMS algorithm, under  the  conditions assumed above, 

M = p t r R .  (51) 

This formula  works well for small values of misadjustment, 25 
percent or less, so that  the  assumption 

W i  5 W* 

Wj+l 1 -  - Wi’ + p(-V$ = Wi’ + p ( - V j  +Nil). 
A 

(43) 
n 

p =1  
M=C(  hp=C(”&ve 

IWS equation can t+e written in terms of as 

$+I = Vi + p(-ZAq +Nil). (44) where A w e  is the average of the eigenvalues. From ( 3 9 ,  

Near the minimum  point of the  error surface in steady-state, 1 1  X p  = - (-) or bve = L ( 2 )  . (54) 
the  mean of Vi  is zero  and  the covariance of the weight-vector 4 p  TPmse 4p Tpmse ave 
noise is [ 18,  appendix D, section B ]  

cov [ $1 = &dn1 (45) Substituting into (53) yields 

where the  components of the weight-vector noise  are of equal 
variance and  are  mutually  uncorrelated. It  has been found, 
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ADAPTIVE 
FILTER 

The special  case where all  eigenvalues are  equal is an important 
one.  The  learning  curve  has  only  one  time  constant rmse, and 
the  misadjustment is given by 

When the eigenvalues are  sufficiently similar for  the learning 
curve to be approximately  fitted  by  a single exponential, its 
time  constant  may  be  applied to (56) to give an  approximate 
value of M .  

Since transients  settle  in  about  four  time  constants,  equa- 
tion (56) leads to  an approximate  “rule of thumb:”  the mis- 
adjustment  equals  the  number of weights  divided by the 
settling  time. A Ispercent misadjustment  would  be  satisfac- 
tory  for  many engineering designs. Operation  with  10-percent 
misadjustment  can generally be achieved with an adaptive 
settling  time  equal to ten  times  the  memory  time  span of the 
adaptive  transversal  filter. 

X. A DESIGN EXAMPLE/CHOOSING NUMBER OF 
FILTER WEIGHTS FOR AN ADAPTIVE PREDICTOR 

Fig. 4 is a  block diagram  of  an adaptive p r e d i ~ t o r . ~  Its 
adaptive  filter  converts the delayed input X ~ - A  into xi as best 
possible.  If the adaptive-filter weights are  copied into  an 
auxiliary  filter having a tapped delay-line structure  identical 
to  that of the adaptive  filter  and the  input xi  is applied to this 
auxiliary  filter, the resulting output will be  a  linear  least 
squares  estimate of X ~ + A  (limited  by  finite  filter  length  and 
misadjustment). 

A computer  implementation of the adaptive  predictor was 
made using a  simulated input signal xi  obtained  by  bandpass 
filtering  a  white Gaussian signal and  adding  this to another 
independent  white Gaussian signal. Prediction was one  time 
sample  in the  future, i.e., A = 1, using an  adaptive  filter  with 
five  weights, all initially  set to zero. 

Fig. 5 depicts  three  learning curves. For  each adaptive step, 
the mse .!$ corresponding to the  current weight vector Wi was 
calculated  from (1 0) using known values of R and (min, giving 
the “individual  learning curve.” The  smooth “ensemble aver- 
age learning  curve” is simply the average of 200 such  individual 
curves and  approximates  the adaptive behavior in the  mean. 
The  third curve calculated  from (34) shows  how the process 
would evolve if perfect  knowledge of the gradient were  avail- 
able at each  step. It is  a noiseless “steepest  descent  learning 
curve.” 

Of  particular  interest is the residual  difference  between the 
ensemble  learning  curve  and the  steepest descent  learning curve 
after convergence. The  latter, of course, converges to Emin. 
The  difference is the excess  mse due to gradient  noise,  in  this 
case, giving a  measured  misadjustment of 3 percent.  The 
theoretical  misadjustment was M = 2.5 percent.  The  minor 
discrepancy is due  mainly to  the fact  that  the  input samples 
are  highly correlated  in  violation of the  assumption  that 
E[XiX,&] = 0, V k  # 0, used in the derivation of misadjust- 
ment  formula (56). 

The  ensemble average learning curve has  an  effective mea- 
sured  time constant rmse of about 50 iterations  since  it falls to 
within 2 percent of its converged  value at  around  iteration 200. 

used  for  data  compression and speech  encoding [ 32 ] and for  “maximum 
’This same  predictor was described by Widrow  in [ S  1; it has been 

entropy”  spectral  estimation [ 331. 

OUTPUT 

Fig. 4. An adaptive  predictor. 
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Fig. 5. Learning curves for adaptive  predictor. 
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Fig.  6. Performance  versus  number of weights and adaptive  predictor 

time  constant. 

When all eigenvalues  are equal,  equation (3  5) becomes 

1 n 
7,se = - - -- 

4pA 4p t rR  ’ 

Using (57) in the present case (although  the eigenvalues  range 
over  a IO to 1  ratio)  yields Tmse = 50, which agrees with  ex- 
periment.  Equation (57) gives a  formula  for  an  “effective 
time  constant,” useful even when the eigenvalues are highly 
disparate. 

The  performance of the adaptive  filter  may  improve  with  an 
increase in  the  number of weights.  However, for a  fmed  rate of 
convergence, larger numbers of  weights increase misadjust- 
ment. Fig. 6 shows  these  conflicting  effects.  The  lowest curve 
for rmse = 00 represents  idealized noise-free adaptation, provid- 
ing the minimum rnse Emin(n) for  each value of n .  The  other 
curves include average  excess  mse due to gradient noise. We 
define the “average  mse” to be the s u m  of the minimum mse 
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TABLE I 
COMPARISON OF THEORETICAL A N D  EXPERIMENTAL ADAPTIVE PREDICTOR  PERFORMANCE 

NUMBER 

WEIGHTS 
Theoretical/Experimental Theoretical/Experimental TIME CONSTANT OF 

t!ISAOJUSTMENT AVERAGE MSE APPROX 

T~~~ 
I ,  

5 

.769 25 5 

.751 50 5 
,742 100 

,794 15 5 
10 100 .737 
10 50 .755 

an-d the average  excess  mse. Thus 
(average mse) = [ 1 +MI tmin(n). ( 5 8 )  

Using this  formula,  theoretical curves  have been plotted in 
Fig. 6 for  approximate values of T,, of 100, 50, 2 5 ,  and  15 
iterations.  It is apparent  from  these curves that increasing the 
number of weights does not always  guarantee  improved  system 
performance.  Experimental  points derived by computer simu- 
lation have compared very  well with  theoretical values  pre- 
dicted by (58). Typical  results  are  summarized in Table I. 

XI. RESPONSE OF THE LMs ADAPTIVE FILTER IN A 
NONSTATIONARY ENVIRONMENT 

Filtering  nonstationary signals is a  major area  of application 
for adaptive  techniques, especially when the  stochastic  proper- 
ties of the signals are unknown u priori. Although the  utility 
of adaptive  filters  with  nonstationary inputs  has been  demon- 
strated  experimentally, very little of this work has  been 
published,  perhaps  due to the  inherently  complex  mathematics 
associated  with  such  problems [ 3 4  J ,  [ 351. The  nonstationary 
situations to be studied  here  are highly simplified, but  they 
retain the essence  of the  problem  that is common to more 
complicated  and realistic situations. 

The  example  considered  here involves modeling or  identify- 
ing an unknown time-variable system by an adaptive LMS 
transversal filter.  The unknown system is assumed to be a 
transversal filter of same length n whose  weights (impulse 
response values) undergo  independent  stationary  ergodic  first- 
order Markov  processes, as indicated  in Fig. 7. The  input 
signal xi  is assumed to be  stationary  and ergodic. Additive 
output noise,  assumed to be  stationary, of mean  zero,  and of 
variance [,,,in, prevents  a  perfect match between the  unknown 
system  and the adaptive  system.  The  minimum mse is, 
therefore, trnin, achieved  whenever the weights  of the adaptive 
filter Wi match those of the  unknown system. The  latter are at 
every instant  the  optimal values for  the corresponding weights 
of the adaptive  filter  and are designated W,?, the subscript  indi- 
cating that  the  unknown  “target” to be tracked is time variable. 

According to  the scheme of  Fig. 7, minimizing mse  causes 
the adaptive weight vector Wi to attempt  to best match  the 
unknown W,? on  a  continual basis. The R matrix,  dependent 
only  on  the  statistics of xi, is constant even as Wy varies. The 
desired response of the adaptive  filter di is nonstationary, 
being the  output of a time-variable system.  The  minimum mse 
tmin is constant.  Thus  the mse function, a  quadratic  bowl, 
varies in position while its eigenvalues, eigenvectors,  and ,$,,,in 
remain  constant. 

In order to study this  form of nonstationary  adaptation  both 
analytically  and by  computer  simulation,  a  model  comprising 
an ensemble of nonstationary  adaptive processes has  been 
defined  and  constructed as illustrated in Fig. 8. The  unknown 

.751 

.754 

.781 
,824 
.745 
.764 

ADDITIVE  WHITE NOISE, 
1 VARIANCE = Cmin 

UNKNOWN TIME VARIABLE 

n-WEIGHTS 

LMS ADAPTIVE FILTER 

Fig .  7. Modeling an unknown  time-variable  system. 

INDEPENDENT 

P 

SIGNAL 
I N W T  t 

- 2  g-l z 1, 

I I  
INPUT 

SIGNAL, 

Fig. 8. An ensemble of nonstationary  adaptive  processes. 

filters to be modeled are all identical  and have the same  time- 
variable  weight vector W,? throughout  the ensemble.  Each 
ensemble member has its  own  independent  input signal  going 
to  both  the  unknown system  and the corresponding  adaptive 
system. The  effect of output noise in  the  unknown  systems is 
obtained  by  the  addition of independent  noise of variance 
Emin. All of the adaptive  filters are  assumed to start with the 
same  initial weight vector Wo ; each develops its own weight 
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vector over time  in attempting to pursue the Markovian 
target W f .  

For a given adaptive  filter, the weight-vector tracking  error 
at  the  jth  instant is (Wj - Wf). This error is due to  both  the 
effects of gradient noise and  weight-vector lag, and  may be 
expressed as 

(Weight-vector error)j = (Wj - W,?) Fig. 9 

= (Wj - E [ W j ] )  + (E[WjI - Wf). ( 5 9 )  
v ’- L 

e??, GRADIENT NOISE 

* 

VECTOR VECTOR . Feedback diagram of steepest  descent  showing  sources of weight 
tracking  error. 

weigtit-vector weight-vector sponse of the adaptive  process to the  random  variations of 
noise 1% WT. It will  be shown  that increasing the  time  constant of the 

The  expectations  are averages  over the ensemble. The  compo- 
nents of error are  identified in  (59). Any  difference  between 
the ensemble  mean of the adaptive weight vectors  and the 
target value Wf is due to lag in  the adaptive process,  while the 
deviation of the individual  adaptive weight vectors about  the 
ensemble  mean is due to gradient noise. 

Weight-vector error causes an excess  mse. The ensemble 
average excess mse at  the jth instant is 

E [ ( W j -  W,? )TR(Wj-  W,?)] .  (60) 

Using (59),  this can  be  expanded as follows: 

+ E [ ( E [ W j ]  - W,?)TR(E[WjI- W,?)] 

+ 2 E [ ( W j - E [ W j ] ) T R ( E [ W j ] - W i * ) ] .  (61) 

Expanding  the last  term of (61)  and simplifying  since W,? is 
constant over the ensemble, 

2 E [ W 7 R E [ W j ]  - WfRWf - E[WjlTRE[Wjl   +E[Wj]=RW,?]  

= ~ [ E [ W ~ I ~ R E [ W ~ I  - E [ W ~ I ~ R E [ W ~ I  

- E [  Wj lTR W,? + E [  Wj lTR W,?] 

= 0. ( 6 2 )  

Therefore,  (61)  becomes 

+ E [ ( E [  W j ]  - W f ) T R ( E [  W j ]  - W f ) ] .  (63) 

The average excess mse is thus a  sum of components  due to 
both gradient  noise  and lag: 

= E [ ( E [ W j ]  - W,?>=R(E[Wj] - W?)] 

= E [ ( E [  W i ]  - WT’)TA(E[ W j ]  - W:’)] (64) 

average excess 

(gradient  noise)j 
mse due to = E [ ( W j  - E[Wj])TR(Wj  - E [ W i ] ) ]  

= E [ ( W j -  E[W;])TA(Wi  - E [ W i ] ) ] .  (65) 

Fig. 9 is a  feedback diagram adapted  from Fig. 3, illustrating 
the  two sources of weight-vector error.  From  the  feedback 
diagram, it can be  seen  that  the  “output” Wj attempts to track 
the  time variable “input” WT. Tracking error (Wj - W?) is 
caused by the propagation of gradient  noise  and by  the re- 

adaptive process diminishes the propagation of gradient noise 
but simultaneously increases the lag error  that  results  from 
the  random changes in W f .  

The  gradient-noise covariance for  the  stationary case (40) is 
a  function of R. Since R is constant,  equation  (40) is a good 
representation of covariance for  the  type of nonstationarity 
under  study.  Furthermore, Fig. 9  shows that  the propagation 
of gradient noise in the linear  feedback  system  representing 
the adaptive  process is not  affected  by  variability of W f .  
Therefore,  equation (49) can be used to provide  an evaluation 
of (65),  the excess  mse from  gradient noise. The  next  step is 
an evaluation of (64),  the excess  mse due to lag. Statistical 
knowledge of ( E [  W i ]  - W,?’) will be required. In finding lag 
effects, we may  eliminate  gradient noise from  consideration so 
that E [  W i ]  = Wi. Knowledge of (Wj - W,?’) will  be sufficient. 

Without  gradient  noise, the  method of steepest  descent  and 
the LMS algorithm are represented by (13) and ( 2 0 ) .  With 
variable W f ,  they become 

Wj+l - ( I -  2 p R ) W j = 2 p R W f .  (66) 

Premultiplying both sides by Q-’ transforms  (66)  into  the 
primed  coordinates, 

Wi+l - ( I -  2pA)Wi) = 2pAW7’.  (67) 

We have  assumed for  our present study  that all components of 
W? are  stationary,  ergodic,  independent,  and  first-order 
Markov; they all have the same variances and  the same auto- 
correlation  functions. Since W,?’ = Q-’ W,? and Q-’ is ortho- 
normal, all components of W f ‘  are independent  and have the 
same  autocorrelation  functions as the  components of W,?. 
Therefore,  equation  (67), being in  diagonal  form  and having a 
driving function whose components are independent, may be 
treated as an  array of n independent  first-order  linear  differ- 
ence  equations. 

Let the z transform of Wi be @’(z) .  The z transform of (67) 
is then 

Z ~ ’ ( Z )  - ( I -  2 p A ) a ’ ( ~ )  = 2pAB*’(z). (68) 

Solving (68) yields the  transform of Wi: 
B’(z)  = 2/A(zZ - I + 2pA)-’ B *’(z). (69) 

The weight tracking  error (Wi - W,?’) is of direct  interest.  Its 
transform is obtained  from  (69) as 

b ‘ ( z )  - Ib *’(z) = [ ~c(A(zZ - I + 2pA)-’ - I ]  @*’(z). (70) 

The  transfer  function  connecting Wf‘ to the weight tracking 
error is thus 

2pA(zZ - I + 2 p  A)-’ - I .  (71) 

Since (7 1) is diagonal, the scalar  transfer function of its  pth 
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diagonal element  may be written as t 

2pXp(z - 1 + 2PXp)-l - 1 = 
(z-l - 1) 

1 - (1 - 2pXp)z-' * 
(72) 

This transfer function has a zero  at z = 1  and a pole  whose 
impulse response has  a  geometric  ratio of (1 - 2pXP) = r p .  

Fig. 1Ma)  shows the origin of the  vector Wf as a first-order 
Markov process and its  propagation  into  the weight tracking 
error. WT is assumed to originate  from independent  stationary 
ergodic white-noise excitation  (of variance 0' )  to  a bank of 
one-pole filters, all having transfer  function  1 /( 1 - az-' ). The 
pth channel of this process is  shown in Fig. 10(b). Its scalar 
transfer  function is 

(z-l - 1) - (z-1 - 1) - 
( l - a z - l ) ( l - ( l -  2pXP)z-') ( ~ - a z - ~ ) ( l - r ~ z - ' )  

- - (E) + (E) 
(1 - az-l)  (1 - rPz-l) * (73) 

The  sampled  impulse response of this  transfer function is ob- 
tained  by inversion of (73) into  the  time  domain.  From  it, 
the variance of the lag error of the  pth  component of the 
primed weight vector  can be computed as the  sum of the 
squares of the  samples of the  impulse response multiplied  by 
u2. The  sum of squares is given  by 

In cases of interest, r, is large so that rp  5 
1  1 

r p = - = - .  1 - rp  2& 

MISADJUSTMENT WE TO 
GRADIENT NOISE 

P* P 

Fig. 11. Net misadjustment versus LMS convergence  factor p. 

The value  of p is set so that  the response times of the  adaptive 
weights are short  compared to the  time  constant of nonsta- 
tionarity.  Under  these  conditions,  equation (74) reduces to 

Using this relation, the  covariance of the lag error  is  obtained 
as 

rrl 0 1  

Making  use of (641, 

t 
2( 1 - a)(rp - 1) 

2 .  
2 p=1 4P 

(1 - arp) (average excess mse due to lag) = - 1 rp X, = '*. - (80) 

(74) 
Because  of the  ergodic  properties of WT, this average is not 

1. From (27), time variable. The  misadjustment  due to lag is 

tionarity r ~ .  is also large, so that  a 5 1  Under usual operating  conditions,  the  misadjustment  due to 

1 
1 - a  

lag is inversely proportional  to p. 

Wi does  not  track Wf but merely assumes the value of its  time 
average. As r p  + 1,  equation (74) reduces to 

7w*= -. (76) Set p to a very small value so that  the  adaptive weight vector 

A common  operating region would be where 

7W. >> r,, vp .  (77) (sum squares),, = 3 T W O .  (82) 
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Fig. 12. Weight  tracking in a  nonstationary  environment.  (a)  Plots 

weight  noise as a  function  of p. 
demonstrate  weight lag as  a  function  of p. (b)  Plots demonstrate 

The  misadjustment due  to lag turns  out  to be 

A U2 (NS)  = ( M L ) p m o  = - TW* tr R .  (83) 
2tmin  

Since there is no tracking, the misadjustment for  this case is a 
measure  of the  “nonstationarity,” NS,  of the  randomly moving 
hyperparaboloidal bowl. 

An interesting special  case  is that of all equal eigenvalues. 
Combining (81)  with  (83), 

This result  has  intuitive  appeal.  The  misadjustment  equals the 
product of nonstationarity  and  the  ratio of the adaptive 
time  constant to  the time  constant of nonstationarity. 

From  (63),  the average  excess  mse is the sum of components 
due to gradient noise and lag. The  total misadjustment  is, 
therefore,  the sum of two misadjustment  components. Making 
use of (51)  and  (81), 

Optimizing the choice of p results  in  minimum Msum when the 
two  right-hand  terms are equal. The speed of adaptation is 
optimized  when  the loss of performance  due to gradient noise 
equals the loss in performance  due to weight-vector  lag? The 
optimal p is 

A typical  plot of Msum versus p is shown in Fig. 1 1,  indicating 
the  tradeoffs involved in  adjusting p for minimization of 

tion of W: has a  uniform low-pass power  spectrum. In this  case, the 
‘Another case has been analyzed by Widrow [29 J where  the  fluctua- 

misadjustment  due to lag is proportional t o  the  square of p ;  the  speed 
of adaptation is optimized  when  the  gradient-noise  loss  equals  twice  the 
loss  due to lag. The misadjrstment  due to  lag turns out toebe  quite 
sensitive to  the  spectral  characteristics of the  fluctuation of Wp 

Msu,. In practice, p* might  need to be approximated  by  trial 
and  error,  particularly when data are unavailable for applica- 
tion of (86). 

The  theory developed in  this  section  has  been  tested  exten- 
sively by computer  simulation based on an ensemble of 
adaptive processes, as illustrated  in Fig. 8. Every mathematical 
quantity discussed in  this  section  has  been  measured.  Typical 
experimental  results are presented below. 

Fig. 12  illustrates weight tracking  and the associated  errors. 
The  adaptive  filter  had four weights. Responses  are  shown 
only  for weight number  one.  The  effects of  weight  lag are 
demonstrated by comparing the ensemble average of weight 
number  one  plotted over time against  weight number  one of 
W f .  Averages  were taken over 128 ensemble  members.  The 
lag effect is highly evident  in the first  experiment  with 
p = 0.003 125. In  the  third  experiment,  with p = 0.05, the lag 
is quite small  decreasing in  proportion to p. 

The  effects of gradient noise  are demonstrated  with  the same 
experiment.  The  ensemble mea:’  of weight number  one is 
plotted as a function of time j .  Theoretical  one-standard- 
deviation lines for weight  noise  are shown about  this mean. In 
addition, weight number  one of Wi of a single ensemble  mem- 
ber is plotted to indicate  what  occurred  in an individual 
situation.  It is clear that weight-noise power increases in 
proportion to p. 

In these  experiments,  the  inputs were white and of unit 
power, so that R = I .  The  additive output noise power was 
tmin = 1. Equation (85) has  been used to obtain  theoretical 
values  of misadjustment  and its  components.  Tables 11, 111, 
and IV summarize the results of three  experiments,  comparing 
theory  and  experiments  for  three values of p,  and  fixing every- 
thing else. The  input  data were the same for all three  experi- 
ments.  Initial  transients were  allowed to die out before 
measurements were taken.  Experimental values of misadjust- 
ment  and  its  components were obtained  by  ensemble average 
measurements using (60),  (64), and (65), normalizing  with 
respect to Emin, which in this case  was 1. Theoretical  and 
experimental  results  compared well, expect  for lag misadjust- 
ment in the f i t  experiment. In this case, where p is very 
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TABLE I1 
FIRST EXPERIMENT, p = 0.003125 

T~~~ = 80 data  samples 
Due  to  Due  to 

T~,* = 125  data  samples 
Weight Lag Gradient  Noise 

(NS) = 24.9% 

Theoretical 1 .25% 32.0% 

Experimental 1.5% 13.5% 

TABLE I11 
SECOND EXPERIMENT, p = 0.0125 

n = 4 weights Hisadjustment Misadjustment 
T~~~ = 20 data  samples Due  to Due to 
T,,* = 125 data  samples Weight Lag Gradient  Noise 
(NS) = 24.9% 

Theoretical 5.0% 8.0% 

Experimental 5.6% I 5.7% 

TABLE IV 
THIRD  EXPERIMENT, p 0.05 

n = 4 weights 
Misadjustment 

Due  to 

Hisadjustment 

Due to T,,,~~ = 5 data  samples 

T~~ = 125 data  samples 

(NS) = 24.9% 
Weight Lag Gradient Noise 

- 

Theoretical 20.0% 2.0% 

Experimental 28.3% 1.8% 

small,  equation (78) is inaccurate since 7 ~ .  is no  longer  much 
larger  than T ~ .  

Much more work needs to  be done in the  study of non- 
stationary  adaptive  behavior. We have presented  a  simplistic 
but meaningful beginning. 

APPENDIX A 
THE EFFICIENCY OF ADAPTIVE ALGORITHMS 

We have analyzed the  efficiency of the LMS algorithm  from 
the  point of  view  of misadjustment  versus  rate of adaptation. 
The  question arises, could another  algorithm be devised 
that would  produce  less  misadjustment  for  the same rate of 
adaptation? 

Suppose  that an  adaptive  linear  combiner is fed N inde- 
pendent  input n X 1 data  vectors XI, X2, * * * , X, drawn  from 
a  stationary  ergodic  process.  Associated  with  these  input vec- 
tors  are  their scalar desired responses d l ,  d z ,  + * , d ~ ,  also 
drawn from  a  stationary  ergodic  process. Keeping the weights 
fixed,  a  set of N error  equations  can  be  written as 

Let the  objective be to find  a weight vector  that minimizes 
the sum of the squares of the  error values  based on  a sample of 
N items of data. 

Equation (A.l) can be written in matrix  form as 

C = D - X W   ( A . 2 )  

where is an N X n rectangular  matrix 

x 8  [XIX* * .X# (A.3) 

6 -  A [EIEZ " ' E N 1  . 
and  where 6 is an N element  error  vector 

T (A.4) 

A unique  solution of (A.l), bringing 6 to zero,  exists  only if 
x is square and nonsingular. However, the case of greatest 
interest is that of N >> n. The sum of the  squares of the 
errors is 

g T 4  = D ~ D  + wTXTXw - ~ X W .  (A.5) 

This  sum  multiplied  by 1/Nis an  estimate p of the mse E .  Thus 

p=z6T& 1  and lim f = E .  (A.6) 
N-- 

Note  that p is  a  quadratic  function of the weights, the parame- 
ters of the  quadratic  form being  related to  properties  of  the N 
data  samples. ( X T % )  is square  and  positive  semidefinite. fmin 
is the  smallsmple-size mse function, while E is the large- 
sample-size mse function.  These  functions  are  sketched in 
Fig. 13. 

The  function f is minimized by  setting  its  gradient t o  zero: 

Q t = 2 X T X W  - 2XTD. (A.7) 

The  "optimal" weight vector based only  on  the N data  samples 
is 

is* 4 (X?€)-' Po.  (A.8) 

This  formula gives the  position of the minimum of the small- 
sample-size bowl. The  corresponding  formula  for  the  large- 
sample-size bowl is the  yiener-Hopf  equation (8). 

We could  calculate W* by  a  training  process,  a  regression 
process, LMS, or some other  optimization  procedure.  Taking 
the f i i  block of N data samples, we 2btain  a small-sample- 
size function F1 whose minimum is at W:. This  could be re- 
peated  with  a  sezond  data  sainple, giving a functionj2 whose 
minimum is at W:, etc.  Typically, all the values of W *  would 
differ  from  the  true  optimum W* and  would,  thereby, be 
misadjusted. 

To analyze the  misadjustment, assume that N is large and 
that  the  typical small-size curve  approximately  matches  the 
large-sample-size curve. Therefore, 

p = E  and ( t - f l k d t .  64.9) 

The  true large-sample-size function is 

E = Emin + VtTAV'. 

The  gradient of this function expressed  in the primed CO- 

ordinates is 

VI= 2AV' .  

A differential  deviation in the gradient is 

(0') = 2 A ( d V ' )  + 2  (dA)V' .  (A. IO) 

This  deviation  could  represent  the  difference in gradients be- 
tween  small-  and large-sample-size curves. 

Refer t o  Fig. 13, Let W' = W*',  then Y' = 0. The  gradient 
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such 

w*, $4 W’ 

Fig. 13. Small- and Large-sampleaize mse curves. 

of 5 is zero, while the  gradient o f f  is %’ = d e .  Using (A.10), 

( d V ’ )  = 2A(dV’).  (A.11) 

From  (A.l  l),  the deviation  in  gradient  can be linked to  the 
deviation in position gf the small-sample-size curve  minimum 
since ( d V ‘ )  = (W*‘ - W*’). Taking averages of (A.l l )  over  an 
ensemble of small-sample-size curves, 

cov [ d V ’ ]  = 4Acov [ d V ’ ]  A .  (A.12) 

Equation ‘(42) indicates  that  the covariance of the gradient 
noise  when W’ = W*’ is given by 4tminA. If the  gradient were 
estimated  under the same conditions  but using N independent 
error  samples, 

cov [ d V ’ ]  = - - f h n A .  
4 
N 

Substituting  this  into  (A.  12) yields 

(A.  13) 

1 
N cov [ d V ’ ]  = - tminA-’. (A.14) 

The average excess mse, an  ensemble average, is 

( )  = E [ ( d V ’ m W ‘ ) I .  (A.15) 

(ex&s )=;tmin. (A.16) 

Equation  (A.14)  shows cov [dV’]  to be diagonal, so that 

average 

The  misadjustment is, therefore, 

n (number of weights) 
N (number of independent  training  samples) * 

M=-= (A.17) 

This formula was f i t  presented  without  detailed  proof  by 
Widrow and Hoff [ 11 in  1960.  It  has  been used for  many 
years  in  pattern  recognition  studies.  For  small values of M 
(less than 25 percent),  it  has  proven to  be very useful. A 
formula  similar to (A.17),  although based on somewhat dif- 
ferent  assumptions, was derived by Davisson [ 36 ] in 1970. 

Although  equation  (A.  17)  has  been  derived  for  training  with 
finite  blocks of data,  it can be used to  assess the efficiency of 
steady-flow  algorithms.  Consider  an  adaptive  transversal  filter 
with  stationary  stochastic  inputs,  adapted  by  the LMS algo- 
rithm.  For  simplicity,  let ail eigenvalues of R be equal. As 

The LMS algorithm  exponentially  weights  its  input  data  over 
time  in  determining  current weight values. If an  equivalent 
uniform averaging window is assumed equal to  the adaptive 
settling  time,  approximately four time  constants,  the equi- 
valent  data  sample  taken at any  instant  by LMS is essentially 
Nes = 47,,, samples. Accordingly  for LMS, 

M=-. (A.18) 

A comparison of (A.18)  and  (A.17) shows that when eigen- 
values are equal, LMS is about as efficient as a  least  squares 
algorithm  can be.’ However, with  disparate  eigenvalues,  the 
misadjustment is primarily  determined  by  the  fastest  modes 
while settling  time is limited  by  the slowest  modes. To sustain 
efficiency  with  disparate eigenvalues, algorithms similar to 
LMS have been devised based on Newton’s method  rather  than 
on  steepest  descent [ 381, 1391.  Such  algorithms  premultiply 
the  gradient  estimate  each  iteration cycle by an  estimate  of  the 
inverse of R : 

n 
N e s  

or 

Wj+’ = wj + 2pR%jXj. 
h 

(A.19) 

This  process  causes all adaptive  modes to  have essentially the 
same time  constant.  Algorithms based on  this principle  are 
potentially  more  efficient  that LMS but  are  typically  more 
difficult to implement. 
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Abtrob-The eqnrlizedcrrm CEE”) tnining procedure, mtroduced 
m this paper, is a new nonparametric tnining procedure for tinem 
drasiEiers in a moltiplfeature s&dustic envieonmat. This procedure 
isaformofstochumc 
m- 

a approxinuticm that minimizEs the sum of the ex- 
’ firstmomentsofthefddychssifiedpattemvec- 

tom about the decision hyperplrme. This sum is the “EE loes function.” 
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The llliaimiptioa is achieved by 8 simply implemented recursive equa- 
tion. We s h ~  that the sequence of dedsion hypeapknes geaezated by 
this recmive equation converges in mean 4- and with probability 
oaetoahyparpknethatminimizestheEEhfunctiorL 

We provide pnliminny qualitative and quanti- evidence that the 
EE tniaing procedure converges rapidly and achieves low asymptotic 
~ ~ ~ o v e r a w i d e r r n g e o f o v ~ p i n g ~ o f d r s s d e n s i -  
tiea?mdnonlineufysepurbIeprirsofdrssdensities. 

I. INTRODUCTION 

HE NEED FOR automatic  classification  occurs in a 
tremendous  range of engineering and  social  problems: 
e.&, navigation,  medical  diagnosis, aerial reconnaissance, 

satellite  photography,  communication  systems,  psychological 
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