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Abstract—This paper describes the performance characteristics of the
LMS adaptive filter, a digital filter composed of a tapped delay line and
adjustable weights, whose impulse response is controlled by an adaptive
algorithm. For stationary stochastic inputs, the mean-square error, the
difference between the filter output and an externally supplied input
called the “desired response,” is a quadratic function of the weights,a
paraboloid with a single fixed minimum point that can be sought by
gradient techniques. The gradient estimation process is shown to intro-
duce noise into the weight vector that is proportional to the speed of
adaptation and number of weights. The effect of this noise is expressed
in terms of a dimensionless quantity “misadjustment” that is a mea-
sure of the deviation from optimal Wiener performance. Analysis of a
simple nonstationary case, in which the minimum point of the error
surface is moving according to an assumed first-order Markov process,
shows that an additional contribution to misadjustment arises from
“lag” of the adaptive process in tracking the moving minimum point.
This contribution, which is additive, is proportional to the number of
weights but inversely proportional to the speed of adaptation. The sum
of the misadjustments can be minimized by choosing the speed of
adaptation to make equal the two contributions. It is further shown,
in Appendix A, that for stationary inputs the LMS adaptive algorithm,
based on the method of steepest descent, approaches the theoretical limit
of efficiency in terms of misadjustment and speed of adaptation
when the eigenvalues of the input correlation matrix are equal or close
in value. When the eigenvalues are highly disparate (Apyax/Amin > 10),
an algorithm similar to LMS but based on Newton’s method would
approach this theoretical limit very closely.

I. INTRODUCTION

UR PURPOSE IS to derive relationships between speed
@of adaptation and performance of adaptive systems. In

general, faster adaptation leads to more noisy adaptive
processes. When the input environment of an adaptive system
is statistically stationary, best steady-state performance results
from slow adaptation. However, when the input statistics are
time variable, best performance is obtained by a compromise
between fast adaptation (necessary to track variations in input
statistics) and slow adaptation (necessary to contain the noise
in the adaptive process). These issues will be studied both
analytically and by computer simulation. The context of this
study will be restricted to adaptive digital filters “driven” by
the LMS adaptation algorithm of Widrow and Hoff [1], [2].
This algorithm and similar algorithms have been used for many
years in a wide variety of practical applications [31-[26].

We are attempting to formulate a “statistical theory of
adaptation.” This is a very difficult subject and the present
work should be regarded as . only a beginning. Stability and
rate of convergence are analyzed first, then gradient noise and
its effects upon performance are assessed. The concept of
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“misadjustment™ is defined and used to establish design
criteria for an adaptive predictor. Extension of the concept to
the analysis of a useful but relatively simple form of nonsta-
tionary adaptation leads to criteria governing optimal choice of
speed of adaptation.

The results reported here have been gradually developed in
our laboratory during the past 15 years and are being extended
and applied by ongoing research.

II. AN ADAPTIVE FILTER

The filter considered here comprises a tapped delay line,
variable weights (variable gains) whose input signals are the
signals at the delay-line taps, a summer to add the weighted
signals, and an adaptation process that automatically seeks an
optimal impulse response by adjusting the weights. Fig. 1 il-
lustrates the adaptive filter as used in modeling an unknown
dynamic system.

In addition to the usual input signals, another input signal,
the “desired response,” must be supplied to the adaptive filter
during the adaptation process. In Fig. 1, essentially the same
input is applied to the adaptive filter as to the unknown sys-
tem to be modeled. The output of this system provides the
desired response for the adaptive filter. In other applications,
considerable ingenuity may be required to obtain a suitable
desired response for an adaptive process.

III. THE PERFORMANCE SURFACE

The analysis of the adaptive filter is developed by considering
the ‘“‘adaptive linear combiner” of Fig. 2, a subsystem of the
adaptive filter of Fig. 1, comprising its most significant part.!

In Fig. 2, a set of input signals is weighted and summed to
form an output signal. The inputs occur simultaneously and
discretely in time. The jth input vector is

- . T
X] = [xli’x2j’ e 3xlf’ o ;xni] .
The set of weights is designated by the vector wl =
{wy,wy, ", wp ", wy]l. The jth output signal is

- T T
y,-=Z w,x,,-=w X]':Xi Ww.
I=1

€Y

The input signals and desired response are assumed to be sta-
tionary ergodic processes. Denoting the desired response as

1This combinational system can be connected to the elements of a
phased array antenna to make an adaptive antenna [5)-[9]), or to a
quantizer to form an adaptive threshold element (“‘Adaline” [1], [3] or
TLU {2]) for use in adaptive logic and pattern-recognition systems.
It can also be used as the adaptive portion of certain learning control
systems [10], [11]; as a key portion of adaptive filters for channel
equalization [12]-[16]; for adaptive noise cancelling [17], [18]; or for
adaptive systems identification [19]-[26].
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Fig. 1. Modeling an unknown system by a discrete adaptive filter.
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Fig. 2. Adaptive linear combiner.
dj, the error at the jth time is
=d:-v:=d:~ WIX:=d;- XT
€=dj-yj=d;- W X;=d;j- X; W. 2)
The square of this error is
=42 T Ty.xT
e =d} - 21d; X W+ W X; X[ W. (3)

The mean-square error £, the expected value of e,2 , 18
g4 Ee}] = E(d}] - 2E(d;x]1W + WTELX; XT 1W
=E[d}]- 2P"w+ WwTRW 4)

where the cross correlation vector between the input signals
and the desired response is defined as

d"x ”1

dszi

nw>
~

E[le’] =F (5)

d,-x,,,;
and where the symmetric and positive definite input correla-
tion matrix R of the x-input signals is defined as

Xij*1j X1j%af

T XojX1j XzjX2j
E[XiX,- l1=E .

Xnj%nj |
It may be observed from (4) that the mean-square-error (mse)
performance function is a quadratic function of the weights, a
“bowl-shaped> surface; the adaptive process will be continu-
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ously adjusting the weights, seeking the bottom of the bowl.
This may be accomplished by steepest descent methods [27],
[28] discussed below.

In the nonstationary case, the adaptive process must track
the bottom of the bowl, which may be moving. An analysis of
a simple nonstationary case is presented in Section XI.

IV. THE GRADIENT AND THE WIENER SOLUTION

The method of steepest descent uses gradients of the perfor-
mance surface in seeking its minimum. The gradient at any
point on the performance surface may be obtained by dif-
ferentiating the mse function, equation (4), with respect to the
weight vector. The gradient vector is

V=-2P+2RW. 7
Set the gradient to zero to find the optimal weight vector W*:
W*=R7'P (8)

which is the Wiener-Hopf equation in matrix form.
The minimum mse is obtained from (8) and (4):

Emin = Eld} ] - PTW*. 9)
Substituting (9) into (4) yields a useful formula for mse:
E=Emin + (W- WHTR(W- W*). (10)

Define V as the difference between W and the Wiener solu-
tion W*:
vaw- w*. (11)
Therefore,
£=kmin+ VIRV. (12)
Differentiation of (12) yields another form for the gradient:
V =2RYV. (13)

The input correlation matrix, being symmetric and positive
definite, may be represented as

R=0AQ" =0AQT

where Q is the orthonormal modal matrix of R and A is its
diagonal matrix of eigenvalues:

(14)

A =diag [M, Az, ", Ap, " 7, Apl. (15)
Equation (12) may be reexpressed as
E=fmin+ VIQAQ V. (16)
Define a transformed version of ¥V as
V'eQ'v and V=0V an
Accordingly, equation (12) may be put in normal form as
E=tmin+ VTAV (18)

The primed coordinates are therefore the principal axes of the
quadratic surface. Transformation (17) may be applied to the
weight vector itself,

W=0'W and Ww=0W'.
V. THE METHOD OF STEEPEST DESCENT

The method of steepest descent makes each change in the
weight vector proportional to the negative of the gradient
vector:

19

Wj.',l = Wi + y(—VJ-). (20)
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Fig. 3. Feedback model of steepest descent.

The scalar parameter u is a convergence factor that controls
stability and rate of adaptation. The gradient at the jth itera-
tion is V;. Using (13), (14), and (17), equation (20) becomes

Vie - - 2uA) Vi =0. 21

This homogeneous vector difference equation is uncoupled.
It has a simple geometric solution in the primed coordi-
nates [5]:

Vi=U- 2uAY 7, (22)
where ¥ is an initial condition:
Vo=Wo-W*. (23)
For convergence, it is necessary that
1 Amax > 1> 0 (24)

where A,y is the largest eigenvalue of R. From (22), we see
that transients in the primed coordinates will be geometric; the
geometric ratio of the pth coordinate is

rp= (1= 2u),). (25)

An exponential envelope can be fitted to a geometric sequence.
If the basic unit of time is considered to be the iteration cycle,
time constant 7, can be determined as follows:

1 { 1+ 1
rp=exp(-—|=1-—+——=-""".
Tp ™ 27y

The case of general interest is slow adaptation;i.e., large 7.
Therefore,

(26)

1
rp=(1-2uA)=1- —
Tp

or

. 1

p 2y

27

Equation (27) gives the time constant of the pth mode.

Steepest descent can be regarded as a feedback process where
the gradient plays the role of vector error signal. The process,
if stable, tends to bring the gradient to zero.2 Fig. 3 showsa
feedback model for a stationary quadratic mse surface being
searched by the method of steepest descent. The model is
equivalent to the following set of relations.

Wj = wj+1 Ide]ayed oneiteration
Wiw =W; +u(-Vy)
V;=2R(W;- W*)=2RV. (28)

This feedback model is used subsequently in a study of non-
stationary adaptation. Notice an input not mentioned earlier,

3This has been called performance feedback {11], [29].
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“gradient noise.” Because gradients are estimated at each
iteration cycle with finite amounts of input data, they will be
imperfect or noisy.

V1. THE LMS ALGORITHM

The LMS algorithm is an implementation of steepest descent
using measured or estimated gradients:

Wi+l = Wj +”(_6j)- 29

The estimate of the true gradient is 6
The gradient estimate used by LMS takes the gradient of the
square of a single error sample. Thus

Pal
V,-= '2Eij. (30)
The LMS algorithm can be written as
Wj+l =W"+2[J€ij. (31)

If we assume that X; is uncorrelated over time (i.e., that
E[X,-X,Z:,,] =0, VI+# 0), an assumption common in the field of
stochastic approximation [30], {31], then the expected value
of the gradient estimate equals the true gradient, and the
weight-vector mean is convergent to the Wiener solution of (8),
as shown in {4] and [5].

Condition (24) is necessary and sufficient for convergence of
the LMS algorithm. However, in practice, the individual
eigenvalues are rarely known so that (24) is not always easy to
apply. Since tr R is the total input power to the weights, a
generally known quantity, and since tr R > A, as R is posi-
tive definite, a sufficient condition for convergence is

1trR>u>0. (32)

VII. THE LEARNING CURVE AND ITS TIME CONSTANTS

During adaptation, the error ¢; is nonstationary as the weight
vector adapts toward W*. The mse can be defined only on the
basis of ensemble averages. From (18), we obtain

Ej =£min *+ Vj'TA Vj’- (33)

Imagine an ensemble of adaptive processes, each having indi-
vidual stationary ergodic inputs drawn from the same statisti-
cal population, with all initial weight vectors equal. The mse
E,- is a function of iteration number j, obtained by averaging
over the ensemble at iteration j.

Using (22), but assuming no noise in the weight vector,
equation (33) becomes

£ = Emin * VoL AU - 2uA)¥ Vg

=tmin + Vo - 2uRYRU - 2uRYV,.  (34)
When the adaptive process is convergent, it is clear from (34)
that

],]in; Ej = £min
and that the geometric decay in £; going from £o to &mjn will,
for the pth mode, have a geometric ratio of r; and a time
constant

1 1

T, = .
2 ® 4ud,

>

(35)

TPmse

The result obtained by plotting mse against number of
iterations is called the “learning curve.” Due to noise in the
weight vector, actual practice will show E,- to be higher than
indicated by (34).
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VIII. GRADIENT AND WEIGHT-VECTOR NOISE

Gradient noise will affect the adaptive process both during
initial transients and in steady state. The latter condition is of
particular interest here.

Assume that the weight vector is close to the Wiener solu-
tion. Assume, as before, that X; and d; are stationary and er-
godic and that X jis uncorrelated over time;i.e.,

E[X]-Xj+k]=0 k#0.
The LMS algorithm uses a gradient estimate
V=-2¢X;=V;+N;

(36)

37

where V is the true gradient and N; is a zero-mean gradient
esnmatlon noise vector. When W;= W*, the true gradient is
zero, but the gradient would be esumated according to (30)
and is equal to the gradient noise:

1Vi= “2€in. (38)

According to Wiener filter theory, when W; = w*, € and X;
are uncorrelated. If they are assumed zero-mean Gaussian,
€; and X; are statistically independent. As such, the covariance
of Nj is

cov [N;1 = E[N;NF1=4E[€} X; X[

=4E(€ | EX;X]]

=4E[€]1R. (39)
When W; = W*, E [6,2] = £min- Accordingly,

cov [Nj] =4&min R 40)

As long as W; = W*, we assume that the gradient noise co-
variance is given by (40) and that this noise is stationary and
uncorrelated over time. The latter assumption is based on

(36) and (38).
Projecting the gradient noise,
Ni=Q7'N; 41
its covariance becomes
cov [Nj1=E[N;N;T1 =E[QT'N;N Q1 =0 cov [N;1Q
=4£min Q"' RQ
=4t A 42)

Although the components of N; are correlated with each
other, those of N are mutually uncorrelated and can, there-
fore, be handled more easily.

Gradient noise propagates and causes noise in the weight
vector. Accounting for gradient noise, the LMS algorithm can
be expressed as

A
Wis1 = Wi +p(-V)) = W + u(-V; + Nj). (43)
This equation can be written in terms of ¥j as

Visi = Vj +u(-2AV; +Np). (44)
Near the minimum point of the error surface in steady-state,
the mean of V]' is zero and the covariance of the weight-vector

noise is [18, appendix D, section B}
cov [¥/1 = péminl (45)

where the components of the weight-vector noise are of equal
variance and are mutually uncorrelated. It has been found,
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however, that (45) closely approximates measured weight-
vector covariances under a considerably wider range of condi-
tions than the assumptions above imply.

IX. Mi1SADJUSTMENT DUE TO GRADIENT NOISE

Random noise in the weight vector causes an excess mse. If
the weight vector were noise free and converged such that
W; = W*, then the mse would be £miq. However, this does not
occur in actual practice so that the weight vector is on the
average “‘misadjusted” from its optimal setting.

An expression for mse in terms of V,-' is given by (33), from
which we obtain an expression for excess mse:

(excess mse) = V,-'TA V. (46)
The average excess mse is an important quantity:
”n
E{ViTAV]1= 3 N El(pp*] (47

p=1

where vp, is the pth component of V After adaptive tran-
sients die out, E{ v '] = 0. Therefore, from (45) we have

El(pp)*] = uémin, ¥P (48)
Substitution into (47) yields the average excess mse,
n
EIViTAV]1=témin 3 N\p=émin trR.  (49)

p=1

We define the “‘misadjustment’ due to gradient noise as the
dimensionless ratio of the average excess mse to the minimum
mse,

average excess mse
pmh o8 . (50

Emin

For the LMS algorithm, under the conditions assumed above,

M=putrR. (s1)

This formula works well for small values of misadjustment, 25
percent or less, so that the assumption

W~ w* (52)

is satisfied. The misadjustment is a useful measure of the cost
of adaptability. A value of M =10 percent means that the
adaptive system has a mse only 10 percent greater than £miq-

It is useful to relate misadjustment to the speed of adapta-
tion and the number of weights being adapted. Since tr R
equals the sum of the eigenvalues,

n
M=“Z Rp=/-‘n>‘ave (53)
p=1
where A,y is the average of the eigenvalues. From (35),
1 1 1 1
)‘P =1 ( ) or )‘ave ( ) . (59
4u TPmse 4u Tomse/ave
Substituting into (53) yields
(55)

_1( 1 )
4 TPmse ave
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The special case where all eigenvalues are equal is an important
one. The learning curve has only one time constant 7y, and
the misadjustment is given by

n

M= .
4Tmse

(56)

When the eigenvalues are sufficiently similar for the learning
curve to be approximately fitted by a single exponential, its
time constant may be applied to (56) to give an approximate
value of M.

Since transients settle in about four time constants, equa-
tion (56) leads to an approximate “rule of thumb:” the mis-
adjustment equals the number of weights divided by the
settling time. A 10-percent misadjustment would be satisfac-
tory for many engineering designs. Operation with 10-percent
misadjustment can generally be achieved with an adaptive
settling time equal to ten times the memory time span of the
adaptive transversal filter.

X. A DESIGN EXAMPLE/CHOOSING NUMBER OF
FILTER WEIGHTS FOR AN ADAPTIVE PREDICTOR

Fig. 4 is a block diagram of an adaptive predictor.3 Its
adaptive filter converts the delayed input Xj-a into x; as best
possible. If the adaptive-filter weights are copied into an
auxiliary filter having a tapped delay-line structure identical
to that of the adaptive filter and the input x;jis applied to this
auxiliary filter, the resulting output will be a linear least
squares estimate of xj,o (limited by finite filter length and
misadjustment).

A computer implementation of the adaptive predictor was
made using a simulated input signal x; obtained by bandpass
filtering a white Gaussian signal and adding this to another
independent white Gaussian signal. Prediction was one time
sample in the future, i.e., A =1, using an adaptive filter with
five weights, all initially set to zero.

Fig. 5 depicts three learning curves. For each adaptive step,
the mse Ej corresponding to the current weight vector W; was
calculated from (10) using known values of R and £p,;,,, giving
the “individual learning curve.” The smooth ‘“ensemble aver-
age learning curve” is simply the average of 200 such individual
curves and approximates the adaptive behavior in the mean.
The third curve calculated from (34) shows how the process
would evolve if perfect knowledge of the gradient were avail-
able at each step. It is a noiseless “‘steepest descent learning
curve.”

Of particular interest is the residual difference between the
ensemble learning curve and the steepest descent learning curve
after convergence. The latter, of course, converges to £min-
The difference is the excess mse due to gradient noise, in this
case, giving a measured misadjustment of 3 percent. The
theoretical misadjustment was M = 2.5 percent. The minor
discrepancy is due mainly to the fact that the input samples
are highly correlated in violation of the assumption that
E[X;jX{\x]1=0, Vk#0, used in the derivation of misadjust-
ment formula (56).

The ensemble average learning curve has an effective mea-
sured time constant 7. of about 50 iterations since it falls to
within 2 percent of its converged value at around iteration 200.

3This same predictor was described by Widrow in [5]; it has been
used for data compression and speech encoding [32] and for “maximum
entropy” spectral estimation [33].
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When all eigenvalues are equal, equation (35) becomes

1 n

T 4p\ 4utrR’

Tmse (57)
Using (57) in the present case (although the eigenvalues range
over a 10 to 1 ratio) yields Tp5e = 50, which agrees with ex-
periment. Equation (57) gives a formula for an “effective
time constant,” useful even when the eigenvalues are highly
disparate.

The performance of the adaptive filter may improve with an
increase in the number of weights. However, for a fixed rate of
convergence, larger numbers of weights increase misadjust-
ment. Fig. 6 shows these conflicting effects. The lowest curve
for Tise = o represents idealized noise-free adaptation, provid-
ing the minimum mse &, (n) for each value of n. The other
curves include average excess mse due to gradient noise. We
define the ‘““average mse” to be the sum of the minimum mse

Authorized licensed use limited to: Cornell University Library. Downloaded on August 01,2020 at 22:34:09 UTC from IEEE Xplore. Restrictions apply.



1156 PROCEEDINGS OF THE IEEE, AUGUST 1976
TABLE 1
COMPARISON OF THEORETICAL AND EXPERIMENTAL ADAPTIVE PREDICTOR PERFORMANCE
NUMBER APPROX AVERARE MSE MISADJUSTMENT
OF TIME CONSTANT] Theoretical/Experimental| Theoretical/Experimental
WEIGHTS Tnse
n
5 100 .742 .751 1.3% 2.5%
5 50 .751 .754 2.5% 3.0%
5 25 .769 .781 " 5.0% 6.6%
5 15 .794 .824 8.3% 12.6%
10 100 .737 .745 2.5% 3.5%
10 50 .755 . 764 5.0% 6.2%
and the average excess mse. Thus o?
(average mse) = [1 + M1 £pmin(n). (58) NOISE: NOISE
Using this formula, theoretical curves have been plotted in FeRs — Iiﬁ?g-gsﬂ |éf{‘¥52“ss| - (#)
Fig. 6 for approximate values of Tge of 100, 50, 25, and 15 RANDOM o - ADDITIVE WHITE NOISE,
iterations. It is apparent from these curves that increasing the WEIGHTS v " VARIANCE = € min
number of weights does not always guarantee improved system . N I ARABLE
performance. Experimental points derived by computer simu- W
lation have compared very well with theoretical values pre- !
dicted by (58). Typical results are summarized in Table I. INPUT DATA n-WEIGHTS

XI. RESPONSE OF THE LMS ADAPTIVE FILTER IN A
NONSTATIONARY ENVIRONMENT

Filtering nonstationary signals is a major area of application
for adaptive techniques, especially when the stochastic proper-
ties of the signals are unknown a priori. Although the utility
of adaptive filters with nonstationary inputs has been demon-
strated experimentally, very little of this work has been
published, perhaps due to the inherently complex mathematics
associated with such problems [34], [35]. The nonstationary
situations to be studied here are highly simplified, but they
retain the essence of the problem that is common to more
complicated and realistic situations.

The example considered here involves modeling or identify-
ing an unknown time-variable system by an adaptive LMS
transversal filter. The unknown system is assumed to be a
transversal filter of same length n whose weights (impulse
response values) undergo independent stationary ergodic first-
order Markov processes, as indicated in Fig. 7. The input
signal x; is assumed to be stationary and ergodic. Additive
output noise, assumed to be stationary, of mean zero, and of
variance £min, prevents a perfect match between the unknown
system and the adaptive system. The minimum mse is,
therefore, £min, achieved whenever the weights of the adaptive
filter W; match those of the unknown system. The latter are at
every instant the optimal values for the corresponding weights
of the adaptive filter and are designated W,-“, the subscript indi-
cating that the unknown “‘target’ to be tracked is time variable.

According to the scheme of Fig. 7, minimizing mse causes
the adaptive weight vector W; to attempt to best match the
unknown Wl" on a continual basis. The R matrix, dependent
only on the statistics of x;, is constant even as W,-* varies. The
desired response of the adaptive filter d; is nonstationary,
being the output of a time-variable system. The minimum mse
£min is constant. Thus the mse function, a quadratic bowl,
varies in position while its eigenvalues, eigenvectors, and £yiq
remain constant.

In order to study this form of nonstationary adaptation both
analytically and by computer simulation, a model comprising

an ensemble of nonstationary adaptive processes has been

defined and constructed as illustrated in Fig. 8. The unknown

UNCORRELATED
SAMPLES

LMS ADAPTIVE FILTER

% v
g
Fig. 7. Modeling an unknown time-variable system.
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* *
Wi aee (Wi ADDITIVE NOISE
INPUT
SIGNAL , o wl
INPUT
SIGNAL ;,

Fig. 8. An ensemble of nonstationary adaptive processes.

filters to be modeled are all identical and have the same time-
variable weight vector Wj* throughout the ensemble. Each
ensemble member has its own independent input signal going
to both the unknown system and the corresponding adaptive
system. The effect of output noise in the unknown systems is
obtained by the addition of independent noise of variance
&min. All of the adaptive filters are assumed to start with the
same initial weight vector Wy ; each develops its own weight
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vector over time in attempting to pursue the Markovian
target W}

For a given adaptive filter, the weight-vector tracking error
at the jth instant is (W; - Wj*). This error is due to both the
effects of gradient noise and weight-vector lag, and may be
expressed as

(Weight-vector error); = (W; - W)

= (W; - EIW;D) + EDW;1- WP (59)

weight-vector
noise

weight-vector
lag

The expectations are averages over the ensemble. The compo-
nents of error are identified in (59). Any difference between
the ensemble mean of the adaptive weight vectors and the
target value W}’ is due to lag in the adaptive process, while the
deviation of the individual adaptive weight vectors about the
ensemble mean is due to gradient noise.

Weight-vector error causes an excess mse.
average excess mse at the jth instant is

The ensemble

(“e“ge e"“ss) = E[W;~ WHTRW;~ WP (60)
mse j

Using (59), this can be expanded as follows:

(averafnes:xcess)i =E[(WI _ E[W’])TR(W’ - E[Wl])]
+E[(E[W;1- WHT RE[W;1- W)
+2E[(W;~ EIWDTREIW;1-WhH].  (61)

Expanding the last term of (61) and simplifying since Wf is
constant over the ensemble,
2E[WF RE(W;1- WRW} - E(W;1TRE[W;1+E[W;]TRW}]
=2[E(W;1TRE[W;] - E(W;1T RE[W;]
- EIWTRW}! +E[W;1TRW}]

=0. (62)

Therefore, (61) becomes

average exce
mse

ss)]_ =E[(W,- ETW;)TR(W; - E[W;])]

+E[(E[W;1- WHTRE[W;1- W], (63)
The average excess mse is thus a sum of components due to
both gradient noise and lag:

(average excess) = EL(E[W,] - W,-“)TR(E[W,-] - whl

mse due to lag/;
=E[EIW]1- WTAEIW;1- W] (64)

average excess
mse due to
gradient noise /;

=E[(Wj~ EIW,DTAW, - E[W;]D)]. (65)

Fig. 9 is a feedback diagram adapted from Fig. 3, illustrating
the two sources of weight-vector error. From the feedback
diagram, it can be seen that the “output™ W; attempts to track
the time variable “input” WS. Tracking error (W;- W) is
caused by the propagation of gradient noise and by the re-

= E[(W; - EIW;DTR(W; - E[W;])]
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Fig. 9. Feedback diagram of steepest descent showing sources of weight
tracking error.

sponse of the adaptive process to the random variations of
W,‘-’. It will be shown that increasing the time constant of the
adaptive process diminishes the propagation of gradient noise
but simultaneously increases the lag error that results from
the random changes in W}'.

The gradient-noise covariance for the stationary case (40) is
a function of R. Since R is constant, equation (40) is a good
representation of covariance for the type of nonstationarity
under study. Furthermore, Fig. 9 shows that the propagation
of gradient noise in the linear feedback system representing
the adaptive process is not affected by variability of W,‘-".
Therefore, equation (49) can be used to provide an evaluation
of (65), the excess mse from gradient noise. The next step is
an evaluation of (64), the excess mse due to lag. Statistical
knowledge of (E [W,-' I- W]-"') will be required. In finding lag
effects, we may eliminate gradient noise from consideration so
that E[W;] = W}. Knowledge of (W,f - W,’-"') will be sufficient.

Without gradient noise, the method of steepest descent and

the LMS algorithm are represented by (13) and (20). With
variable W}, they become
Wjw - - 2UR)W; =2uRW}. (66)

Premultiplying both sides by Q™! transforms (66) into the
primed coordinates,

Wiy - - 2uA)W; = 2uAW}'. (67)

We have assumed for our present study that all components of
W}’ are stationary, ergodic, independent, and first-order
Markov; they all have the same variances and the same auto-
correlation functions. Since W}'=Q7' W} and Q' is ortho-
normal, all components of W]-*' are independent and have the
same autocorrelation functions as the components of Wj".
Therefore, equation (67), being in diagonal form and having a
driving function whose components are independent, may be
treated as an array of n independent first-order linear differ-
ence equations.

Let the z transform of W; be B'(z). The z transform of (67)
is then

z@'(z) - (I - 2uA)B'(z) = 2uAD* (2). (68)
Solving (68) yields the transform of W;:
Q'(z) = 2uA(zl - T+ 2uA)" ' R *'(2). (69)

The weight tracking error (W; - W}") is of direct interest. Its
transform is obtained from (69) as

BD'2)-D* ()= [2uA@I - T+2uA)! - 11B*'(2). (70)

The transfer function connecting W,-*' to the weight tracking
error is thus

2uAGEI-I+2uA) -1 1)

Since (71) is diagonal, the scalar transfer function of its pth
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Fig. 10. Origin of W) and its propagation into weight-lag error. (a) All
channels. (b) pth channel.

diagonal element may be written as

-1 _
2z 14+ 2pA,) - 1= — 1) (72)

1-(1-2uAp)z7 Y
This transfer function has a zero at z=1 and a pole whose
impulse response has a geometric ratio of (1 - 2u7\p) =7p.

Fig. 10(a) shows the origin of the vector W"‘ as a first-order
Markov process and its propagation into the weight tracking
erTOor. W" is assumed to originate from mdependent stationary
ergodic whlte-nmse excitation (of variance ¢*) to a bank of
one-pole filters, all having transfer function 1/(1 - az™!). The
pth channel of this process is shown in Fig. 10(b). Its scalar
transfer function is

z'-1 _ z1'-1
-z D(1-0- 20z (U-azHA-rpzh)

(l-a) (rp-l)
- a_rp a-r
(-az ) (A-rpzhy’

The sampled impulse response of this transfer function is ob-
tained by inversion of (73) into the time domain. From it,
the variance of the lag error of the pth component of the
primed weight vector can be computed as the sum of the
squares of the samples of the impulse response multiplied by
o%. The sum of squares is given by
- - . 2
=)0

a-rp a-rp

=(j-‘r,,> () (=)

1. From (27),

(73)

squa.res

21 - a)rp - 1)]
(1-arp) )
(74)
In cases of interest, 7, is large so that rp <
1 __1
2uN,

Furthermore, we assume that the time constant of nonsta-
tionarity Ty« is also large, so thate < 1

1
1-a’

Tp =" (75)
1 o

Tw* =

(76)

A common operating region would be where

Tws >> 7p, Vp. ()
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Fig. 11. Net misadjustment versus LMS convergence factor u.

The value of u is set so that the response times of the adaptive
weights are short compared to the time constant of nonsta-
tionarity. Under these conditions, equation (74) reduces to

1

2'rp ™ )\ (78)

(sum squares).,.w‘ >>,

Using this relation, the covariance of the lag error is obtained
as

T1 0
o2 .
cov [W} - W} lin=o =— Tp = i AT
Twe>> T, 2 4u
0 Ty
79
Making use of (64),
n
(average excess mse due to lag) = i Z = rﬁ (80)
2 p=1 4u

Because of the ergodic properties of W, , this average is not
time variable. The misadjustment due to lag is

_ ( na® > l @1
4Emin '

Under usual operating conditions, the misadjustment due to
lag is inversely proportional to u.

Set u to a very small value so that the adaptive weight vector
W; does not track W} but merely assumes the value of its time
average. Asrp, = 1, equation (74) reduces to

2

Mpdrye>>1, =

g ir)\

2Emll'l p=1

(sum squares)gzo =27y (82)
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Fig. 12, Weight tracking in a nonstationary environment.

(a) Plots

demonstrate weight lag as a function of u. (b) Plots demonstrate

weight noise as a function of u.

The misadjustment due to lag turns out to be

2

(NS) 2 (My,)ymo === Ty tr R, (83)

2&min

Since there is no tracking, the misadjustment for this case is a
measure of the “nonstationarity,” NS, of the randomly moving
hyperparaboloidal bowl.

An interesting special case is that of all equal eigenvalues.

Combining (81) with (83),
] = (NS) [27&3—] (84)
Tw* Tw*
This result has intuitive appeal. The misadjustment equals the
product of nonstationarity and the ratio of the adaptive
time constant to the time constant of nonstationarity.

From (63), the average excess mse is the sum of components
due to gradient noise and lag. The total misadjustment is,
therefore, the sum of two misadjustment components. Making
use of (51) and (81),

(ML)th >> ‘r = (NS)[

2

4Emin

Optimizing the choice of y results in minimum Mg, when the
two right-hand terms are equal. The speed of adaptation is
optimized when the loss of performance due to gradient noise
equals the loss in performance due to weight-vector lag.* The
optimal u is

1
(Msum)fw.>>f =(WtrR+ ( ) (85)

. no? 1/2
= — . 86
Wolnge>>n, = | Jgm e B (86)

A typical plot of Mgy, versus u is shown in Fig. 11, indicating
the tradeoffs involved in adjusting u for minimization of

‘Another case has been analyzed by Widrow [29 ) where the fluctua-
tion of W; has a uniform low-pass power spectrum. In this case, the
misadjustment due to lag is proportional to the square of u; the speed
of adaptation is optimized when the gradient-noise loss equals twice the
loss due to lag. The misadjustment due to lag turns out to.be quite
sensitive to the spectral characteristics of the fluctuation of W;.

Mgym. In practice, u* might need to be approximated by trial
and error, particularly when data are unavailable for applica-
tion of (86).

The theory developed in this section has been tested exten-
sively by computer simulation based on an ensemble of
adaptive processes, as illustrated in Fig. 8. Every mathematical
quantity discussed in this section has been measured. Typical
experimental results are presented below.

Fig. 12 illustrates weight tracking and the associated errors.
The adaptive filter had four weights. Responses are shown
only for weight number one. The effects of weight lag are
demonstrated by comparing the ensemble average of weight
number one plotted over time against weight number one of
Wj*. Averages were taken over 128 ensemble members. The
lag effect is highly evident in the first experiment with
4 =0.003125. In the third experiment, with u = 0.05, the lag
is quite small decreasing in proportion to u.

The effects of gradient noise are demonstrated with the same
experiment. The ensemble mear of weight number one is
plotted as a function of time j. Theoretical one-standard-
deviation lines for weight noise are shown about this mean. In
addition, weight number one of W; of a single ensemble mem-
ber is plotted to indicate what occurred in an individual
situation. It is clear that weight-noise power increases in
proportion to u.

In these experiments, the inputs were white and of unit
power, so that R =1. The additive output noise power was
&min = 1. Equation (85) has been used to obtain theoretical
values of misadjustment and its components. Tables II, III,
and IV summarize the results of three experiments, comparing
theory and experiments for three values of u, and fixing every-
thing else. The input data were the same for all three experi-
ments. Initial transients were allowed to die out before
measurements were taken. Experimental values of misadjust-
ment and its components were obtained by ensemble average
measurements using (60), (64), and (65), normalizing with
respect to Emin, which in this case was 1. Theoretical and
experimental results compared well, expect for lag misadjust-
ment in the first experiment. In this case, where u is very
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TABLE 11
First ExperiMENT, u = 0.003125
n = 4 weights Misadjustment Misadjustment
= t 1
mse 80 data samples Due to Due to
=1 t 1
Tye = 125 data samples Weight Lag Gradient Noise
(NS) = 24.9%
Theoretical 32.0% 1.25%
Experimental 13.5% 1.5%
TABLE 111
SECOND EXPERIMENT, u = 0.0125
n = 4 weights Misadjustment Misadjustment
mse 20 data samples Due to Due to
Tyx © 125 data samples Weight Lag Gradient Noise
(NS) = 24.9%

Theoretical 8.0% 5.0%
Experimental 5.6% 5.7%
TABLE IV
THIRD EXPERIMENT, p 8 0.05

n = 4 weights Misadjustment Misadjustment
Tmse = 5 data samples Due to Due to
Tyx = 125 data samples Weight Lag Gradient Noise
(NS) = 24.9%

Theoretical 2.0% 20.0%
Experimental 1.8% 28.3%

small, equation (78) is inaccurate since Tys is no longer much
larger than 7,.

Much more work needs to be done in the study of non-
stationary adaptive behavior. We have presented a simplistic
but meaningful beginning.

APPENDIX A
THE EFFICIENCY OF ADAPTIVE ALGORITHMS

We have analyzed the efficiency of the LMS algorithm from
the point of view of misadjustment versus rate of adaptation.
The question arises, could another algorithm be devised
that would produce less misadjustment for the same rate of
adaptation?

Suppose that an adaptive linear combiner is fed N inde-
pendent input n X 1 data vectors X;,X,, " ', X drawn from
a stationary ergodic process. Associated with these input vec-
tors are their scalar desired responses d;, d,," ', dy, also
drawn from a stationary ergodic process. Keeping the weights
fixed, a set of N error equations can be written as

e=d;- wx;, i=1,2,-*,N. (A.1)

Let the objective be to find a weight vector that minimizes
the sum of the squares of the error values based on a sample of
N items of data.

PROCEEDINGS OF THE IEEE, AUGUST 1976

Equation (A.1) can be written in matrix form as

&E=D-XW (A.2)
where X is an N X n rectangular matrix
14 (x,x, - xy17T (A.3)
and where & is an N element error vector
&8 [e €2 -'-eN]T. (A4)

A unique solution of (A.1), bringing & to zero, exists only if
X is square and nonsingular. However, the case of greatest
interest is that of N >> n. The sum of the squares of the
errors is

&T6 =DTD + wTXTXw- 20T Aw. (A5)
This sum multiplied by 1/N is an estimate é‘ of the mse £. Thus

im £ =&
N—oo

lgr

= N5 €& and (A.6)
Note that f is a quadratic function of the weights, the parame-
ters of the quadratic form being related to properties of the N
data samples. (X7X) is square and positive semidefinite. Emi,,
is the smallsample-size mse function, while £ is the large-
sample-size mse function. These functions are sketched in
Fig. 13.

The function é‘ is minimized by setting its gradient to zero:

vE=2xTxw- 2X7D. (A7)

The “optimal” weight vector based only on the N data samples
is

e & (XTX) ' A 7D. (A.8)

This formula gives the position of the minimum of the small-
sample-size bowl. The corresponding formula for the large-
sample-size bowl is the ?\liener-ﬂopf equation (8).

We could calculate W* by a training process, a regression
process, LMS, or some other optimization procedure. Taking
the first block of N data samples, we gbtﬁn a small-sample-
size function £, whose minimum is at Wf. This could be re-
peated with a se,gond data sample, giving a functionlgz whose
minimum is at W5, etc. Typically, all the values of W* would
differ from the true optimum W?* and would, thereby, be
misadjusted.

To analyze the misadjustment, assume that N is large and
that the typical small-size curve approximately matches the
large-sample-size curve. Therefore,

E~ (-2t
The true large-sample-size function is
E=tmint V,TAV,'

and (A.9)

The gradient of this function expressed in the primed co-
ordinates is

V'=2AV".
A differential deviation in the gradient is
@V')=2A@V")+2 @A)V’

This deviation could represent the difference in gradients be-
tween small- and large-sample-size curves.
Refer to Fig. 13. Let W' = W*' then ¥' =0. The gradient

(A.10)
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Fig. 13. Small- and large-sample-size mse curves.

of ¢ is zero, while the gradient ofg is 0' = de. Using (A.10),
@dv’')y=2A@v"). (A.11)

From (A.11), the deviation in gradient can be linked to the
deviation in position gf the small-sample-size curve minimum
since (dV') = (W*' - W*'). Taking averages of (A.11) over an
ensemble of small-sample-size curves,

cov [dV'] =4 Acov [dV']A. (A.12)

Equation (42) indicates that the covariance of the gradient
noise when W' = W*'is given by 4§min A. If the gradient were
estimated under the same conditions but using N independent
error samples,

cov [dV'] = %Emm/\. (A.13)
Substituting this into (A.12) yields
cov [dV'] =7V1—gmi,,/\-1. (A.14)
The average excess mse, an ensemble average, is
average
(excess )=E[(dV')TA(dV')]. (A.15)
mse

Equation (A.14) shows cov [d ¥'] to be diagonal, so that

average n
(excess ) =—¢min- (A.16)
N
mse
The misadjustment is, therefore,
number of weights
L ( ights) (A17)

N (number of independent training samples)

This formula was first presented without detailed proof by
Widrow and Hoff [1] in 1960. It has been used for many
years in pattern recognition studies. For small values of M
(less than 25 percent), it has proven to be very useful. A
formula similar to (A.17), although based on somewhat dif-
ferent assumptions, was derived by Davisson [36] in 1970.

Although equation (A.17) has been derived for training with
finite blocks of data, it can be used to assess the efficiency of
steady-flow algorithms. Consider an adaptive transversal filter
with stationary stochastic inputs, adapted by the LMS algo-
rithm. For simplicity, let all eigenvalues of R be equal. As

1161

such

_ n
4Tmse

(56)

The LMS algorithm exponentially weights its input data over
time in determining current weight values. If an equivalent
uniform averaging window is assumed equal to the adaptive
settling time, approximately four time constants, the equi-
valent data sample taken at any instant by LMS is essentially
Neq = 4Tmge samples. Accordingly for LMS,

n

Neg

A comparison of (A.18) and (A.17) shows that when eigen-
values are equal, LMS is about as efficient as a least squares
algorithm can be.5 However, with disparate eigenvalues, the
misadjustment is primarily determined by the fastest modes
while settling time is limited by the slowest modes. To sustain
efficiency with disparate eigenvalues, algorithms similar to
LMS have been devised based on Newton’s method rather than
on steepest descent [38], [39]. Such algorithms premultiply
the gradient estimate each iteration cycle by an estimate of the
inverse of R:

M= . (A.18)

“1
Wiy = W, +uRG,
or

-
wj+l = Wj + 2uR Gij. (A.19)

This process causes ail adaptive modes to have essentially the
same time constant. Algorithms based on this principle are
potentially more efficient that LMS but are typically more
difficult to implement.
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An Adaptive Nonparametric Linear Classifier
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Abstract—The equalized-error (*EE”) training procedure, introduced
in this paper, is 2 new nonparametric training procedure for linear
classifiers in a multiple-feature stochastic environment. This procedure
is a form of stochastic approximation that minimizes the sum of the ex-
pected normalized first moments of the falsely classified pattern vec-
tors about the decision hyperplane. This sum is the “EE loss function.”
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The minimization is achieved by a simply implemented recursive equa-
tion. We show that the sequence of decision hyperplanes generated by
this recursive equation converges in mean square and with probability
one to a hyperplane that minimizes the EE loss function.

We provide preliminary qualitative and quantitative evidence that the
EE training procedure converges rapidly and achieves low asymptotic
error probabilities over a wide range of overlapping pairs of class densi-
ties and nonlinearly separable pairs of class densities.

1. INTRODUCTION
tremendous range of engineering and social problems:

: e.g., navigation, medical diagnosis, aerial reconnaissance,
satellite photography, communication systems, psychological

THE NEED FOR automatic classification occurs in a
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