
I
n the past, single-carrier communication was the modulation format of choice. Today, multi-
carrier modulation is being selected as the transmission scheme for the majority of new com-
munications systems [1]. Examples include digital subscriber line (DSL) [2]; European digital
video broadcast (DVB) and digital audio broadcast (DAB) [3], [4] [i.e., high-definition television
(HDTV)]; wireless local area networks such as IEEE 802.1la [5], HIPERLAN/2 [6], and multi-

media mobile access communication (MMAC) [7]; satellite digital audio radio services (SDARS)
such as Sirius Satellite Radio and XM Radio [8]; and power line communications (PLC) [9].

One of the virtues of multicarrier systems is that they are resilient to multipath (or delay spread
in the wire-line case), provided that the delay spread of the channel fits within a prespecified guard
interval between blocks. However, the length of this guard interval, which is fixed, is much
shorter than the block length. In general, the channel length is unknown, and, in some cases, it
may exceed the length of the guard interval. This is known to be true in DSL, for example. In
this case, an equalizer can be used to mitigate the problem. Whereas in a single-carrier system,
the equalizer inverts the channel (in the absence of noise) to create an effective channel that is
simply a delayed impulse, in multicarrier systems, the goal of the equalizer is to create an
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effective channel that may have multiple nonzero samples, so
long as the length of the effective channel becomes shorter than
the guard interval. This is referred to as channel shortening.

This article discusses the creation of adaptive algorithms
for channel shortening, with particular attention to blind
algorithms. The context is multicarrier modulation, though
other applications of chan-
nel shortening are dis-
cussed. It is shown that the
algorithms used for adap-
tive equalization are not
easily applied to adaptive
channel shortening. In a
return to first principles, a
property restoral design philosophy is put forth and several
recent property-restoral-based approaches to adaptive channel
shortening are reviewed. We conclude with a discussion of the
limitations of the current approaches and a list of open prob-
lems in the area of adaptive channel shortening. Indeed, there
is much more work to be done.

PROBLEM FORMULATION
Traditionally, equalization takes the form of channel inversion;
thus, the effective channel impulse response is simply a delay. In
this case, the problem is well defined. Given a noise-free trans-
mission channel h(k), the equalizer w(k) is designed such that
the effective channel c(k) is simply an impulse with delay �

c(k) = h(k) � w(k) = δ(k − �). (1)

[Note that this notation is chosen to be consistent with the
channel shortening literature rather than the traditional equal-
ization literature. If conventional equalization notation is pre-
ferred, (1) would read h(k) = c(k) � f(k) , as in [10], for
example.] In the noisy case, a minimum mean-squared error
(MMSE) design can be used to keep the noise gain small as well.
If the residual interference is approximately Gaussian, then the
MMSE design minimizes the bit error rate (BER).

One way to think of equalization is that, given the channel
h(k), we wish to shorten the channel to an impulse by convolv-
ing the channel with some filter w(k). A more general problem
statement is that we wish to shorten the effective channel to
some window of predetermined length. This problem is not as
well defined. Does the impulse response within the window mat-
ter? Does the shape of the residual channel taps outside the win-
dow matter? How does the BER of the system relate to the shape
of the achieved impulse response? How do we design an algo-
rithm to adapt a channel-shortening equalizer with these ques-
tions in mind? This tutorial article will address (though not fully
resolve) these questions, with a contextual focus on multicarrier
communication systems.

APPLICATIONS OF CHANNEL SHORTENING
In multicarrier communications, modulation is done on a
block-by-block basis, with a guard interval between the blocks. A

critical assumption underlying the successful operation of such
a system is that the delay spread of the channel is no longer
than this guard interval. If this assumption is violated, a chan-
nel-shortening equalizer (CSE) can be used to restore the validi-
ty of this assumption. This article focuses on the multicarrier
context, but we now briefly review several other applications

that can benefit from chan-
nel shortening.

Channel shortening was
first applied to maximum
likelihood sequence estima-
tion (MLSE) in the 1970s.
MLSE [11] is the optimal
sequence estimator in the

sense that it minimizes the error probability of a sequence.
However, its complexity grows exponentially with the channel
length. For many practical transmission schemes, this complex-
ity is too high to be implemented [12], [13]. This complexity can
be mitigated by employing a prefilter to shorten the transmis-
sion channel to a manageable length and then applying the
MLSE to the output of the shortened effective channel. One
approach is to design both the prefilter and the (shortened) tar-
get impulse response to minimize the mean-squared error
(MSE) between the target and the convolution of the channel
and prefilter [14], [15]. Other approaches use a decision feed-
back equalizer (DFE) to shorten the channel and then apply the
MLSE [16], [17]. These cases essentially implement a standard
DFE for a single-carrier system (so that decisions can be made)
and then take the output of the feed-forward filter (before the
subtraction of the feedback terms) and separately pass it
through a Viterbi algorithm.

Channel shortening has also been proposed in conjunction
with multi-user detection [18]. Consider a direct-sequence code
division multiple access (DS-CDMA) system with L users, with a
flat-fading channel for each user. The optimum multiuser detec-
tor is again the MLSE, yet complexity grows exponentially with
the number of users. “Channel shortening” can be implemented
to suppress L − K of the scalar channels and retain the other K
channels, effectively reducing the number of users from L to K.
Then the MLSE can be used to recover the signals of the
remaining K users [18]. In this context, “channel shortening”
means reducing the number of flat-fading channels rather than
reducing the number of taps of a single frequency-selective
channel. However, the mathematics are quite similar.

BLIND ADAPTIVE METHODS
One straightforward way to design a channel shortener is to
first identify the channel and then compute the “best” channel
shortener (by some definition of “best”) for the estimated chan-
nel. This may be done by periodically transmitting a predeter-
mined sequence of symbols, called training symbols or pilot
symbols [19], and then comparing the known channel input
and output to estimate the channel. Such methods are called
“trained,” as opposed to “blind” techniques, which do not
require knowledge of, or existence of, a training signal.
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There are a variety of reasons for using blind rather than
trained methods. Although trained methods are often adequate,
they have several disadvantages. Since the training signal takes
up time slots that could be used to send data, this configuration
reduces the throughput of the system. Another disadvantage is
that the training signal is not always known at the receiver, e.g.,
in a noncooperative (surveillance) environment. Finally, the
faster the channel varies over time, the more often the training
signal must be transmitted, further reducing the throughput.
For these reasons, a blind receiver is often desired. Moreover,
even when the training signal is available, a semiblind imple-
mentation, which combines the use of trained techniques dur-
ing the training periods and blind techniques during periods of
data transmission, can be used.

When the channel is modestly time varying, two receiver
implementations are possible. The receiver can frequently
update an estimate of the current channel and periodically
recalculate the optimal channel shortener for the current
channel; alternatively, it can directly update the channel
shortener over time in an adaptive fashion. The former proce-
dure can lead to higher performance but at a much higher
computational cost; a direct adaptive approach can maintain
near-optimal performance at a more manageable cost. This
article emphasizes the conversion from blind, adaptive equal-
ization algorithms to blind, adaptive channel-shortening algo-
rithms, although trained, adaptive designs will be considered
as well.

MODULATION FORMATS
Equalization requirements are different for traditional single-carri-
er systems, multicarrier systems, and single-carrier systems that
make use of a cyclic prefix. In this section, we review single-carrier
and multicarrier communication systems, with the goal of provid-
ing a context for the mathematical channel-shortening problem.

A typical single-carrier system modulates the input data by a
complex exponential, transmits it through a passband channel,
and then demodulates the signal, as depicted in Figure 1. If the
channel is frequency selective, then the output is distorted in
the frequency domain. In the time domain, this amounts to con-

volving the input with some unknown channel h[n], which is
possibly time varying as well. This problem can be addressed by
using a blind, adaptive equalizer. Algorithms for adapting blind
equalizers are discussed later in this article.

A popular heuristic way of thinking about multicarrier com-
munications is that if we divide the frequency-selective channel
into bins that are small enough, then the channel will be
approximately flat fading in each bin. If we transmit a large
number of independent, narrow-band single-carrier signals,
then each one perceives the channel as flat fading. Then only a
single-tap (scalar) equalizer is needed for each subchannel. It is
more mathematically correct to think of sampling the frequency
response of the channel, with the samples taken at the frequen-
cies of the multiple carriers.

Figure 1(b) shows a multicarrier signal that consists of a
sum of N narrow-band signals, each with its own carrier fre-
quency fi. Mathematically, the transmitted multicarrier signal is

x(k) =
N−1∑
i=0

Xi e j2 π fikT. (2)

The carrier frequencies are linearly spaced, so that fi = fc + i · �f .
The total bandwidth N �f is constrained to equal the sampling fre-
quency 1/ T. Thus, the transmitted signal becomes

x(k) =
N−1∑
i=0

Xie
j2 π k ( fc+i�f)T

= e j2πkfc T︸ ︷︷ ︸
modulation

·
N−1∑
i=0

Xie
j2π

N ik

︸ ︷︷ ︸
IFFT

. (3)

Thus, multicarrier modulation can be performed by taking an
N-point inverse fast Fourier transform (IFFT) of the input
data and then modulating the result by a single carrier fre-
quency. It is primarily this fact—that modulation and
demodulation can be performed efficiently by the IFFT and
fast Fourier transform (FFT)—that has made multicarrier
modulation practical to implement.

[FIG1] (a) Single-carrier modulation. (b) Multicarrier modulation. If equalization or channel shortening is applied, the channel is
immediately followed by the equalization or channel-shortening filter.
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Circular convolution in the time
domain amounts to pointwise mul-
tiplication in the frequency domain.
The whole point of multicarrier
communications is for the received
narrowband signals to be obtained
by point-wise multiplication of the
input vector and the channel coeffi-
cients in the frequency domain.
However, the convolution of the
transmitted data block and the
channel is actually a linear convolu-
tion. The typical solution is to trick the channel into thinking
that the transmitted data is periodic, so that the convolution
looks like a circular convolution. This is done by inserting a
cyclic prefix before each transmitted block, as shown in Figure 2.

We can use a matrix interpretation to see how the cyclic pre-
fix makes the linear convolution appear circular. The left side of
Figure 3 shows a linear convolution as multiplication of a wide
Toeplitz channel matrix of channel taps and a periodic input
vector. The right side of Figure 3 shows the effective circular
convolution as a multiplication of a square matrix and the non-
periodic input. Please see “Multicarrier and SCCP Parameter
Selection Guidelines” for a description of how the FFT size and
prefix length are chosen.

SINGLE-CARRIER CYCLIC PREFIX MODULATION
Single-carrier cyclic prefix (SCCP) modulation has been pro-
posed as an alternative scheme that combines some of the
advantages of single-carrier modulation with the equalization
advantages of multicarrier modulation [20]–[22]. The idea is
that the transmitter is single carrier, but transmission is con-
ducted by blocks. Each block has a cyclic prefix added, as in
multicarrier systems. The IFFT, frequency-domain scalar equal-
ization, and FFT are all done at the receiver.

Figure 4 shows the relation between multicarrier and SCCP
modulation. If a multicarrier system is operating correctly, the
net system, in matrix form, is simply an N × N identity matrix.
To convert this into an SCCP sys-
tem, first note that the net effect of
an FFT, an identity matrix, and an
IFFT is still an identity matrix; this
is shown in the bottom half of
Figure 4, including the dashed
boxes. Now note that the dashed ini-
tial FFT and IFFT cancel each other
out. When this is done, we are left
with a block-based transmitter that
adds a cyclic prefix but has no FFT
or IFFT. The receiver now has both
the FFT and the IFFT, as well as the
frequency-domain equalizer. Again,
the cyclic prefix must be as long as
the channel memory for equaliza-
tion to be performed by a bank of

scalars in the frequency domain. If the channel memory exceeds
the CP length, we may once again use a channel shortener.

One of the advantages of SCCP modulation is that the trans-
mitted samples still have a finite alphabet; since they are not
Gaussian, they do not have the high peak-to-average power ratio
of multicarrier signals. However, Louveaux et al. [23] have
shown that for a fixed BER and adaptive bit loading, the achiev-
able bit rate of a multicarrier system is always greater than or
equal to the achievable bit rate of an SCCP system operating
over the same channel and bandwidth.

ADAPTING SINGLE-CARRIER METHODS 
TO THE MULTICARRIER CASE
Adaptive equalizers (for single-carrier systems) have been stud-
ied extensively [24]. The most popular trained adaptive equaliz-
er uses the least mean square (LMS) algorithm [25], [26] to
minimize the mean-squared difference of the equalizer output
and a training signal. The most popular blind adaptive equaliz-
ers are the decision-directed LMS algorithm and the constant
modulus algorithm (CMA) [10], [27]. Decision-directed LMS
makes use of the fact that the channel input is discrete or
finite-alphabet, e.g., it may be ±1. Hence, we can form a rough
estimate (decision) of the input by simply quantizing the equal-
izer output to the nearest possible input value (e.g., by taking
its sign when we expect a binary ±1 source). This signal can
then replace the training signal. The CMA conceptually makes

[FIG2] Insertion of the cyclic prefix, depicted for a block size of eight and a prefix length of two.
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[FIG3] The cyclic prefix transforms a linear convolution of the channel and data into a circular
convolution. Since the first few columns and the last few columns of the channel matrix get
multiplied by the same data values (due to the redundancy of the prefix), then those columns
can be combined by adding them together. This leads to the narrower channel matrix on the
right, which is circulant.

Channel Vector

Channel Matrix Circulant Matrix

Data

CP Same as End of Data Vector

Data

Authorized licensed use limited to: Cornell University Library. Downloaded on September 02,2024 at 23:36:56 UTC from IEEE Xplore.  Restrictions apply. 



use of the fact that the magnitude of the input is constant, even
if the input itself is not. The CMA can also be used to equalize
finite-alphabet, nonconstant modulus signals [10], in which
case it is best viewed as a dispersion-minimizing algorithm. 

Adapting blind algorithms from the equalization problem
to the channel-shortening problem can be difficult. One issue
is that, even if the input to the channel is finite-alphabet, the
output of a short channel need not be. This creates problems
for both multicarrier and SCCP systems. Moreover, the chan-
nel input in the multicarrier case is the IFFT of a finite-alpha-
bet vector, so it is no longer finite-alphabet; in fact, it will
have a nearly Gaussian distribution. This is because each IFFT
output is a weighted sum of the N IFFT inputs (i.e., the actual
data), and for large N, the central limit theorem indicates that
the distribution approaches a Gaussian. This has dire conse-
quences for the CMA, which does not converge at all when the
input is Gaussian.

One algorithm that has been successfully adapted to the chan-
nel-shortening case is the trained adaptive MMSE algorithm. It is a
generalization of the LMS algorithm, and it is the focus of the next
section. Please see “The Folklore of Equalizer Design” for modifica-
tion of adaptive equalization rules of thumb to the multicarrier case. 

TRAINED ADAPTIVE MMSE CHANNEL SHORTENING
The LMS algorithm [25] compares the output of the equalizer to
a delayed training sequence and forms an error signal from the
difference. The equalizer coefficients are adapted such that the
expectation of the square of the error is minimized. This is
depicted in Figure 5(a). When the goal is to make the effective
channel (i.e., the channel-equalizer combination) into some-
thing other than a delay, the model must change.

The trained, adaptive MMSE channel shortener [15]
accounts for the fact that the target impulse response may be
something other than simply a delay. Specifically, the target is a
channel that has been shortened to some particular finite
length, though there is still a bulk delay � associated with this
target impulse response. However, we are free to choose not
only the channel shortener, but the coefficients of the target
impulse response as well, so as to minimize the same mean
square error as the LMS algorithm. This is depicted in Figure
5(b). A gradient descent of the MSE can be used to adapt the fil-
ters, as with the LMS algorithm. However, there are two differ-
ences. First, in the simplest gradient calculation, one filter is
held constant while the other adapts, and then vice-versa, with
one filter using a much larger step size than the other. This

allows one filter to “fol-
low” the other, so that the
two updates do not con-
flict [15]; however, this
configuration also leads to
very slow convergence
times [28]. Second, more
critically, a constraint
must be applied since set-
ting both filters to all
zeros leads to a perfect
MSE of zero. Falconer and
Magee proposed to main-
tain a unit-norm target
impulse response by
renormalizing at each
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MULTICARRIER AND SCCP PARAMETER SELECTION GUIDELINES

A detailed examination of Figure 3 and the underlying mathematics shows that for the channel to perceive the data as periodic, the
redundant portion of the data (i.e., the prefix) must be as long as the memory Lh of the longest channel that is expected to be encoun-
tered. Thus,
1) Prefix length (ν) must be greater than channel memory (Lh): ν ≥ Lh

Although time variations of the channel are to be expected, the block convolution interpretation tacitly assumes that the channel is
constant within each block. Thus, the block duration should be much less than the channel coherence time. We also want a small block
size to keep the complexity low. This leads to rule 2:
2) Block length must be much less than channel coherence time (in samples): N � τcoher/T
The use of the cyclic prefix increases the symbol length to be the length of the data N plus the length of the cyclic prefix ν, reducing
the throughput by a factor of N/N + ν. Therefore,
3) Prefix length must be much less than the block length: ν � N. 
Since Lh and τcoher are beyond our control, these guidelines often cannot all be simultaneously satisfied. One resolution is to
deliberately violate the first condition and then use a channel shortener to restore it. This is what is done in digital subscriber
lines, for example.

[FIG4] Comparison of multicarrier modulation (top) and single-carrier cyclic prefix modulation (bottom).
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iteration [15]. The unit-norm constraint could also be imple-
mented by adding a vector CMA term to the cost function rather
than by renormalizing [29]. Alternatively, one filter tap could be
constrained to unity [14].

The adaptive MMSE channel shortener of [15] was designed
for channel shortening in conjunction with MLSE for a single-
carrier system. Hence, it assumes that time-domain training is
available. However, when training is available for a multicarrier
system, it is typically provided on selected tones in the frequency
domain [19]; hence, the required time-domain training will not
be available. For example, if every fourth frequency-domain
input is known at the receiver, the IFFT of this partially known
vector is not known. This can be mitigated somewhat by resort-
ing to decision direction, but at the cost of adding a large delay
since decisions cannot be made until an entire block has been
received and passed through the FFT.

PROPERTY RESTORAL
Even though decision-directed and con-
stant-modulus-based designs cannot be
used to create blind, adaptive channel
shorteners, we can make use of the
underlying philosophy used to develop
those algorithms. This philosophy is the
concept of “property restoral” [30,
Chapter 6]. The idea is to look for and
restore properties of the transmitted
sequence that ought to be present in the
equalized received sequence. In the sin-
gle-carrier case, the transmitted
sequence can be constant modulus or
can have a finite-alphabet; hence, algo-
rithms have been designed to restore
those properties. In the multicarrier case,
several properties are available for creat-
ing blind, adaptive channel shorteners.

1) A cyclic prefix is present, so each
symbol has redundancy in its data
[31], [32].
2) The channel is desired to be short-
er than the cyclic prefix length. If it is,

then the autocorrelation of the output data (assuming an
uncorrelated source) should be short as well [33], [34].
3) Often zeros are transmitted on the band edges, which is
like frequency-domain training [35], [36]. 
4) The frequency-domain (not time-domain) data is finite
alphabet [37].

We now discuss algorithms that attempt to restore each of these
properties. 

CYCLIC-PREFIX RESTORATION
In multicarrier or SCCP modulation, the transmitted sequence
has redundancy due to the cyclic prefix. This redundancy has
often been exploited for carrier frequency offset (CFO) estima-
tion, under the assumption that the channel is shorter than the
cyclic prefix [38] or that the channel is not time-dispersive at all
[39]. This anticipated redundancy can also be exploited in the

THE FOLKLORE OF EQUALIZER DESIGN

The past three decades of research on adaptive equalizers have provided a collection of “rules of thumb” that are useful starting
points for selecting the parameters of the equalizer before adaptation commences.  Analogous guidelines can be followed for adap-
tive channel shorteners.

Rule Single Carrier Multicarrier

Initialization Single spike at equalizer center Single spike (equalizer and/or target response)
Equalizer length 3–5 times channel length 3–5 times difference of channel and prefix lengths 
Effect of zero on unit circle Noninvertible channel Several noninvertible subchannels 
Desired delay Channel peak + Location of window of channel with 

half equalizer length largest energy + half shortener length 

[FIG5] Comparison of (a) the LMS trained adaptive equalizer and (b) the MMSE trained
adaptive channel shortener, where � is the chosen transmission delay.
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property restoral sense to create a blind, adaptive channel short-
ener. The multicarrier equalization by restoration of redundancy
(MERRY) algorithm adapts the channel shortener with the goal
of restoring this redundancy [31].

Figure 6 illustrates the concept of redundancy restoration.
Consider a block-based transmission scheme (multicarrier or
SCCP) with a data
block size of eight
samples and a prefix
length of two samples.
At the transmitter, the
redundancy of the
cyclic prefix can be
represented by
x1 = x9 and x2 = x10.
At the receiver, samples y2 and y10 would still be equal in the
absence of a channel. However, these samples consist of the con-
volution of the channel and the input sequence. If the channel is
no longer than the cyclic prefix, then the convolution for y10

only uses the x data in the end of the symbol, and the convolu-
tion for y2 only uses the redundant data in the prefix, making
the two y values equal. However, if the channel is longer than
the prefix (as shown in Figure 6), then the excess channel taps

create terms that will be different in the two convolution sums.
These undesirable terms are shown in brackets. If we adapt the
channel shortener to make y2 and y10 equal in the mean
square sense, then these undesirable terms will go away. The
only way to do this is to remove all of the channel taps except
those within the length of the prefix.

Formally, the MERRY
algorithm attempts to
minimize the expecta-
tion of the square of a
“cyclic difference,”
which is the difference
between two y values
separated by the data
block length. The two

values that we choose will depend on the symbol synchroniza-
tion � (our estimate of the boundaries of the data block). That
is, we wish to perform a gradient descent of

Jmerry = E
[
|yν+� − yν+�+N|

2
]
. (4)

This leads to a very simple LMS-like form for the algorithm:

Given �, for symbol k = 0, 1, 2, . . . ,

r̃ (k) = r (Mk + ν + �) − r (Mk + ν + N + �),

e(k) = wT(k) r̃(k),

ŵ(k + 1) = w(k) − µe(k) r̃∗(k),

w(k + 1) = ŵ(k + 1)

‖ŵ(k + 1)‖ . (5)

In other words, we form a difference vector of received data
samples (each pair separated by N samples), then use that as
the “regressor” vector for an LMS-like algorithm. The only
other difference between MERRY and LMS is that MERRY
must be constrained to avoid the all-zero solution [since
there is no “desired” signal to compare to in the error e(k )],
which can be done by constraining a single tap or the norm
of the filter to unity. This is enforced by the renormalization
in the last line of (5). The cyclic difference can only be meas-
ured once per symbol, so we can only update the adaptive
algorithm once per block. This is one of the weaknesses of
the MERRY algorithm. Its strength is that it has the same
cost surface as the trained, adaptive MMSE channel shorten-
er, with two caveats.

The first caveat is that the MMSE algorithm maintains a
unit-norm constraint on the target response. The easiest way
to implement the MERRY algorithm is to renormalize the
channel shortener after each iteration, as discussed above.
This leads to a unit-norm channel shortener, rather than a
unit-norm target response. This can be corrected by adding a
Lagrangian term to the cost function [40]. 

The second caveat is that MERRY shortens the channel to
the length of the cyclic prefix. Technically, it is acceptable to
only shorten the channel memory to the length of the prefix,
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[FIG6] Loss of the prefix-induced redundancy due to a long channel.
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[FIG7] MERRY cost versus time.
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i.e., to shorten the channel length to the prefix length plus one.
Thus, we are shortening the channel to be one tap shorter than
we really intend to. However, for typical prefix lengths, such as
32 in assymmetric digital subscriber line (ADSL) or hundreds of
taps for broadcast television or radio, this difference is negligible.

Figures 7 and 8 give an example of the operation of the
MERRY algorithm. Figure 7 shows the value of the MERRY cost
as the channel shortener adapts. The channel and channel short-
ener are each modeled as length-42 finite impulse response (FIR)
filters. Convergence is on the order of 500 symbols in this case.
The unshortened channel is shown in Figure 8(a), and the final
shortened effective channel is shown in Figure 8(b). Observe that
the energy has been compressed to lie
primarily in 16 consecutive samples,
with a delay of 25 samples.

AUTOCORRELATION
SHORTENING
Regardless of the modulation format, if
the input is uncorrelated and the
channel is in fact short, then the auto-
correlation of the received data will
also be short. We can view a short
autocorrelation as a property that is
degraded by a long channel. We can
then form a blind, adaptive channel
shortener that attempts to restore this
property. Figure 9 illustrates this prin-
ciple. The two plots in Figure 9(a)
show a long channel and its autocor-
relation function. Then a channel
shortener is applied, and the resulting
short channel and its autocorrelation
are shown in Figure 9(b). The short
channel has most of its energy in 17
taps; hence, its autocorrelation has
most of its energy in lags zero through
16. The first question to be answered
is: Since a short channel has a short
autocorrelation, is the converse always
true? The answer is that it is not

always true [33], but it appears to be true often enough to be a
useful tool for developing an adaptive channel shortener.

Several algorithms have been proposed to restore a short
autocorrelation. The first of these, the sum-squared autocorrela-
tion minimization (SAM) algorithm [33], performs a gradient
descent of the excess autocorrelation. Specifically, the cost func-
tion to be minimized is the sum of the squares of autocorrela-
tions of all lags greater than the desired channel memory. Again,
as with MERRY, the all-zero solution minimizes this cost func-
tion, and this degenerate case must be avoided. One simple
approach is to renormalize the filter after each iteration or to
hold one of the filter taps equal to unity.

[FIG8] (a) Channel and (b) shortened channel.
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[FIG9] Shortening a channel shortens its autocorrelation. Is the converse true? Not always. In
this example, the desired channel memory and maximum autocorrelation lag are both 16.
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Several variants of SAM have recently been proposed. The
sum-absolute autocorrelation minimization (SAAM) [41] algo-
rithm replaces the squares of the autocorrelation with their
absolute values, leading to better performance in the presence of
impulse noise. Impulse noise is a common problem in digital
subscriber lines. The single lag autocorrelation minimization
(SLAM) [42] algorithm
greatly reduces the complex-
ity of SAM by considering
only the single autocorrela-
tion term whose lag is just
barely greater than the
desired channel memory.
The intuition for this is that
the autocorrelation tends to decrease as the lag increases;
hence, the first lag outside of the prefix will tend to dominate
the remaining lag terms. Miyajima and Ding [43] proposed an
approach similar to SAM, based on oversampling and subspace
methods. Loosely speaking, they search for a filter in the null
space of an autocorrelation matrix based on the same lag as
SLAM, subject to the requirement that the filter must not be in
the null space of the autocorrelation matrix based on zero lag
(which keeps the filter away from the all-zero solution).

The autocorrelation of a filter does not change if its poles or
zeros are flipped over the unit circle. Since the SAM, SAAM, and
SLAM algorithm costs depend on the autocorrelation of the
effective channel, they will not change if we invert any of the

zeros of the channel shortener. For a filter of order L, there are
up to 2L combinations of inverting or noninverting zeros. The
unfortunate consequence of this is that, for any given point on
the cost surface, there are up to 2L points of identical cost else-
where; in particular, each minimum will be repeated 2L times.
Some of the global minima of the SAM cost may be close to the

global optimum of a more
traditional cost surface,
whereas other global mini-
ma of the SAM cost may not
be in desirable locations.

Figure 10 illustrates this
effect for a unit-norm filter
of length three (i.e., second

order). The plot shows contours of the SAM cost surface, and
the maximum shortening signal-to-noise ratio (SNR) solution
of [44] is shown as a large dot. The channel is shown in the
picture-in-picture in the upper right of Figure 10, and for this
example, the desired channel length is two taps rather than
three. There are four global minima of the SAM cost function,
and only two of them are near the maximum shortening SNR
solution (and the negative of that solution, hence the second
dot). The dashed line represents a plane of symmetry for the
SAM cost function, which will also be a plane of symmetry for
the SAAM and SLAM cost functions. These extra minima
require care in initialization or some additional procedure for
re-initialization upon capture of a SAM minimum with poor

shortening SNR performance.

NULL-TONE RESTORATION
Another common property of multi-
carrier signals is the presence of null
tones in the transmitted data. For
example, in IEEE 802.11a, 12 of the
64 tones are null tones, with six null
tones located at each edge of the fre-
quency band. This provides a buffer
to limit adjacent channel interfer-
ence. It has also been suggested in
[35] that this can be viewed as over-
sampling the transmitted signal
(before transmission, rather than at
the receiver) since, of the 64 inputs,
52 are data and 12 are zeros. A blind,
adaptive channel-shortening algo-
rithm can be derived with the goal of
restoring the values of these tones to
zero at the output of the receiver’s
FFT [35], [36]. This results in a carri-
er nulling algorithm (CNA). A block
diagram of this algorithm is given in
Figure 11.

Formally, the CNA cost function is
the average power of the outputs on
the tones that should be null.

IEEE SIGNAL PROCESSING MAGAZINE [116] NOVEMBER 2005

[FIG10] Contours of the SAM cost function. The channel shortener is length three and has a
unit norm; hence,  it is parameterized by two angles in spherical coordinates. The channel
(shown in the picture-in-picture) is length three, and we wish to shorten it to a length of
two. The large dots are the maximum shortening SNR solution [44], which SAM attempts
to approximate.
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Jcna =
∑

null tones i

E[|zi|]2, (6)

where zi is the i th output of the demodulating FFT in
Figure 11. The CNA algorithm is a constrained gradient descent
of this cost function. This leads to a very simple LMS-like struc-
ture, although the computational complexity is somewhat
higher due to several matrix-vector products. 

Given �, for symbol k = 0, 1, 2, . . . ,

ŵ(k + 1) = w(k) − µ RH
k FH

T FTRk w(k)︸ ︷︷ ︸
znull(k)

,

w(k + 1) = ŵ(k + 1)

‖ŵ(k + 1)‖ , (7)

where Rk is a Toeplitz matrix of received data (to implement the
filter/data convolution) and FH

T is a truncated IFFT matrix con-
taining the columns of an IFFT matrix corresponding to the
positions of the null tones. The vector znull(k) contains the out-
puts zi of the tones that are supposed to be zero. The delay �
implicitly appears in the data matrix Rk, since the indices of the
data values depend on an estimate of the symbol boundaries.

The CNA algorithm has much in common with the MERRY
algorithm. Like MERRY, CNA can only update once per sym-
bol. This is because the cost function is measured at the out-
put of the FFT, once per block. Also, as with the MERRY and
SAM algorithms, a constraint is required for CNA to avoid the
all-zero solution. De Courville et al. [35] chose to implement a
unit-norm constraint on the channel shortener via periodic
renormalization. Romano and Barbarossa [36] did not specify
their choice of constraint. Assuming that the unit-norm con-
straint is used, the CNA algorithm solves for the eigenvector
corresponding to the minimum eigenvalue of the auto-
correlation matrix of the outputs on the null tones [35],
whereas MERRY seeks the eigenvector corresponding to the
minimum eigenvalue of the autocorrelation matrix of a differ-
ence of two vectors of received samples [31].

Analysis of the CNA algorithm is surprisingly difficult. De
Courville et al. [35] show that the zero-forcing equalizer (not a
more generic channel shortener) minimizes the CNA cost
function. Hence, CNA should be used in multicarrier systems
that do not employ a cyclic prefix.
Romano and Barbarossa [36] state
that in the single-input, multiple-out-
put case (e.g., for oversampled
received data or multiple receive
antennas), if the locations of the null
inputs are cycled through all possible
tones (i.e., frequency hopping at the
transmitter), then CNA converges to
perfectly shorten the channel.
However, in practice, the null tones
are located at the band edges and are
not frequency-hopped.

FREQUENCY-DOMAIN, FINITE-ALPHABET METHODS
The time-domain data in a multicarrier system is not finite-
alphabet, but the frequency domain data at the output of the
demodulating FFT is finite alphabet. This means that a deci-
sion-directed or constant modulus cost function can be pro-
posed in the frequency domain. However, now there are N
tones, so the cost must be summed over the N outputs. For
example, we might have the frequency-domain decision-directed
and constant modulus cost functions [37]

Jdd =
∑

tones i

βi E
[
(Q{zi} − zi)

2
]
, (8)

Jcm =
∑

tones i

βi E
[
(z2

i − γi)
2
]
, (9)

where each βi is a weight, Q{·} finds the nearest constellation
point in a finite alphabet, and γi is the desired average squared
modulus of the final output zi on tone i. The choice of nonuni-
form βs can be used to provide unequal error protection across
the tones. The CNA algorithm can be thought of as using a spe-
cial case of (8); it is a decision-directed algorithm in which we
compare the null tones to a finite alphabet that is simply the set
{0}, so Q{zi} = 0 always. Aside from CNA, adaptive channel
shorteners that make use of these types of frequency-domain
cost functions have not been studied in the literature.

If the channel is short, the output will be quadrature ampli-
tude modulation (QAM) data on each nonnull tone, but the mod-
ulus of the points will not be correct until after the bank of
one-tap frequency-domain equalizers (FEQs). Thus, the frequen-
cy-domain cost must be measured at the output of the FEQ. This
means that the channel shortener and FEQ, which are connected
in series, will both be adapting based on the N outputs of the
FEQ. Typically, adaptive devices are analyzed under the assump-
tion that each device operates independently, and this sort of
adaptation of a series of elements is not well understood [45].

Lin et al. [46] have proposed a trained, nonadaptive design that
operates in the frequency domain. Their method maximizes the
energy at the output of the pilot tones divided by the energy of the
null tones. In principle, this idea could be used to create a trained,
adaptive algorithm that restores both the pilots and the null tones,
like a combination of CNA and frequency-domain LMS.

[FIG11] Block diagram of the carrier nulling algorithm (CNA). For simplicity, the null tones
are shown as grouped rather than split with half at each band edge, though the latter is the
case in practice.
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ALTERNATIVE STRUCTURES
The mathematical problem we wish to solve is how to design
blind, adaptive channel-shortening algorithms. However, since
we are focusing on the context of multicarrier communication
systems, for completeness we now present alternative multicar-
rier equalizer structures that do not involve channel shortening.
The common theme of these alternative structures is that they
all operate on a tone-by-tone
basis, with one filter or linear
combiner per tone.

The most popular alter-
native equalization structure
for a multicarrier system is
called a “per-tone equalizer” (PTEQ) [47], which performs
equalization tone-by-tone in the frequency domain. For each
tone, a linear combination of the outputs of a sliding FFT of
the received data is formed to remove the inter-carrier inter-
ference from the desired tone. An equivalent (and computa-
tionally cheaper) solution is to linearly combine the desired
tone and a vector of differences of the received samples [47].
During data transmission, each of the N linear combiners
forms an output once per block, whereas a channel shortener
forms the output of a single linear combiner N times per
block; thus, the computational complexity of processing the
data is the same for the two filters. However, a PTEQ has N
times as many coefficients to initialize compared to a channel
shortener. Hence, initialization complexity is much higher for
a PTEQ than for a channel shortener.

It is a curious coincidence that the difference vector used by
the PTEQ (without the ith FFT output) is the same difference
vector r̃ used in the MERRY algorithm, and the ith FFT output
is used in adapting the FEQ that necessarily follows the MERRY
algorithm. Thus, the regressor vector (the vector used in an
LMS-like gradient descent update rule) for an adaptive PTEQ
linear combiner for tone i consists of the concatenation of the
regressor vectors for the MERRY linear combiner and an adap-
tive FEQ for tone i. This implies a similarity of behavior of
MERRY and a PTEQ adapting via LMS.

Another alternative structure is a bank of filters in the
time domain, or a time-domain equalizer filter bank (TEQ-
FB) [48]. If the filters in both structures are complex, then
the PTEQ and TEQ-FB are mathematically identical. The
TEQ-FB performs each linear combination in the time
domain, and again interference is removed tone-by-tone.
However, now each of the N filters must produce N outputs
per block, so the TEQ-FB has a computational complexity
during data transmission that is about N times larger than a
PTEQ or channel shortener.

A third alternative equalization structure that operates
tone-by-tone is frequency-domain equalization for discrete
multitone, dubbed FEQ-DMT by its creators, Trautmann and
Fliege [49]. Discrete multitone is the name given to FFT-based
wire-line multicarrier transmissions, but this approach applies
to wireless transmissions as well. Like the CNA channel short-
ener, the FEQ-DMT exploits the fact that many multicarrier

systems transmit zeros on a subset of the tones. Rather than
forcing the corresponding outputs to zero (as CNA does), FEQ-
DMT uses the fact that the intercarrier interference is the only
signal present on these tones; hence, the outputs on the sup-
posed null tones can be weighted and added or subtracted from
the data tones to remove the interference from the data tones.
This leads to a bank of linear combiners, much like the PTEQ.

The difference is that in the
PTEQ, the signals being com-
bined for tone i were the i th
FFT output and a collection
of differences of received
samples, whereas the FEQ-

DMT combines the i th FFT output with the output signals on
the null tones. Trautmann and Fliege [49] have shown that if ν
null tones are used, they provide the same amount of protec-
tion from channel distortion as the use of a cyclic prefix of
length ν. That is, if a cyclic prefix is used and no null tones are
present, or if no prefix is used but the null tones are present
and the FEQ-DMT receiver is used, then the data can be recov-
ered perfectly in the absence of noise. Their proof can be
extended to show that the use of both a cyclic prefix and null
tones (with an FEQ-DMT receiver) provides protection against
multipath with twice as much delay spread.

All of these alternative structures have very good perform-
ance in time-invariant environments. However, even aside
from issues of computational complexity, these structures have
disadvantages. They all have many times the number of param-
eters as a single channel shortener. If we wish to adapt all of
these parameters based on a finite amount of data, the adapta-
tion speed will be slow. A common rule of thumb is that con-
vergence of an adaptive algorithm requires about 100 times as
many data points as there are parameters (filter coefficients)
to be estimated. Thus, if we can use the data in an optimal
manner, the convergence and tracking speed of a single chan-
nel shortener should be much faster than for a bank of filters.
For example, the SAM channel shortener converges within
several data blocks [33], whereas a recursive least squares per
tone equalizer takes about 200 blocks to converge [50], pre-
sumably because there are about 250 times as many parame-
ters to update in the latter case.

CONSEQUENCES FOR THE PERFORMANCE SURFACE
All of the adaptive channel-shortening algorithms discussed
above optimize some heuristic cost function in the hopes that
this will lead to a high bit rate (in a point-to-point link with
fixed maximum BER) or low BER (in a broadcast system with
fixed transmitted bit rate). However, it is difficult to establish a
direct relation between the heuristic performance surfaces and
the bit rate or BER surfaces.

Many channel-shortening designs have been proposed by
nominating a heuristic performance metric and then finding
the filter that optimizes that particular metric. Examples
include the maximum shortening SNR design [44], the mini-
mum mean squared error design [15], the minimum delay
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spread design [51], and the minimum interblock interference
design [52]. However, none of these designs is optimal in
terms of the performance metric of interest for wireless chan-
nels, which is the BER. Figure 12, taken from [40], shows a
plot of the (uncoded) BER versus the SNR for these channel
shorteners. Note that for some algorithms, the use of a chan-
nel shortener actually
degrades the BER.

The difficulty is that
the BER is a highly non-
linear and multimodal
function of the filter taps;
hence, it is difficult to
optimize. For QPSK data
on each tone with a high SNR, the BER can be approximated by
[53, pp. 225–226]

Pe = (2/Nu)
∑

i∈data tones

Q
(√

SNRi

)
, (10)

where Nu is the number of data-carrying tones. The effective
SNR at the output of each data tone, SNR i, is a generalized
Rayleigh quotient with respect to the channel shortener,

SNR i = wHBiw
wHAiw

. (11)

The matrices Ai and Bi are Hermitian positive semidefinite.
They depend on the channel impulse response, the correla-
tion of the noise and interference, the residual (unshort-
ened) portions of the effective channel, and the i th row of
the DFT matrix. These matrices have been analyzed with
fewer and fewer approximations in recent literature; see [54]
for a relatively simple approach that only makes a few
approximations.

The form of (10) shows just how difficult it is to optimize the
BER. For a single-carrier system, the summation is absent, so
the BER can be minimized by maximizing the SNR at the out-
put of the receiver. This, in turn, can be accomplished by mini-
mizing the MSE. In contrast, since there are many outputs in a
multicarrier system, the summation must be included in (10),
creating a challenging optimization problem.

In wire-line, point-to-point communication systems such as
DSL, typically the BER is constrained and the data rate is
increased until the BER reaches the prespecified upper limit. In
this case, the SNR on each tone still has the form of (11), but
the performance measure becomes the capacity (i.e., the num-
ber of bits that can be transmitted per block without exceeding
the BER upper limit)

B =
∑

i∈data tones

log2

(
1 + SNRi

�

)
, (12)

where the SNR gap � is determined in part by the desired BER
threshold [2]. This problem has been well studied in the DSL lit-
erature (see, e.g., [55]), although the solutions are computation-
ally intensive and optimality is not guaranteed.

In terms of adaptive algorithm design, it is important to realize
that the cost functions used to create adaptive algorithms, such as

mean-squared error [15]
or MERRY cost [31], do
not necessarily have a
direct relation to the BER
(10) or bit rate (12). That
is, these cost functions are
essentially heuristics that
can be easily adaptively

optimized, but optimizing these proxy cost functions will not nec-
essarily optimize the BER or bit rate. More sophisticated adaptive
algorithms are needed to address this incongruity.

DISRUPTING FACTORS
The adaptive channel-shortening algorithms discussed above
make various assumptions that are often not true, and when the
assumptions are invalid, the algorithms behave differently than
expected. In particular, we have assumed that 1) the transmitted
signal is white, i.e., its autocorrelation function is a delta func-
tion, and 2) the transmitted null tones are in fact zero, or at
least any signal on these tones is uncorrelated with the trans-
mitted data signal. In fact, these two assumptions are mutually
exclusive. We now discuss the ways in which these assumptions
can be violated, as well as the effect such a violation has on the
behavior of the various adaptive algorithms.

Generally, the data bits on the used carriers are uncorrelated
with each other if the source coding and interleaving have been

[FIG12] BER versus SNR for several nonadaptive channel-
shortening designs, reproduced from [40]. “No CSE” is the case
when there is no channel-shortening equalizer. Otherwise, each
design is optimal under a different design criterion, yet none is
optimal in terms of BER. The designs considered are the MMSE
[14], [15], MSSNR [44], minimum delay spread design [51] with
quadratic or linear weighting (MDS-Q, MDS-L), and minimum
inter-block interference (Min-IBI) [52].
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done correctly. However, if null tones are present, then the out-
put of the transmitter IFFT will not be uncorrelated. To see this,
assume that the frequency domain data vector is XT = [BT, 0T],
where B is a collection of QAM data and 0 is a vector of zeros.
Assume that B is white and examine the autocorrelation of its
inverse Fourier transform x:

E[B∗BT] =I, (13)

E[X∗XT] =
[

I 0
0 0

]
, (14)

E[x∗xT] =EN

[
(F∗

NX)∗(F∗
NX)T

]

=FNE[X∗XT]FH
N �= I. (15)

Because the autocorrelation matrix of X has a block of zeros, it
is not identity, and cancellation of the FFT and IFFT matrices
cannot occur. The more null tones there are, the more the IFFT
output is correlated with itself. 

Another similar
way in which the
uncorrelated input
assumption can be
broken is if an
orthogonal frequency
division multiple
access (OFDMA) pro-
tocol is used. In the
uplink of an OFDMA, the tones are partitioned into disjoint sets
and allocated to the various users [56]. If there are four users,
for example, each user transmits on a quarter of the tones and
assumes that the remaining tones are null tones. The tones for
a given user may have a continuous allocation, they may have
an equally spaced allocation, or they may have a random alloca-
tion [56]. Assuming that one or more of the user’s uplink chan-
nels is longer than the guard interval, channel shortening will
need to be performed at the base station. In this case, all of the
channels must be simultaneously shortened, either by a single
channel shortener or by multiple channel shorteners. The crux
of the problem is that each channel has a different user, and
since each user uses only a subset of the channels, each user’s
transmitted signal is highly colored. It is not equivalent to
model this as a single transmitter that uses all of the tones
because each user has a different channel.

Both the MERRY and SAM algorithms assume an uncorrelat-
ed transmitted signal. Simulations have shown that for MERRY,
if the transmitted signal is correlated, there will be residual
energy in the channel outside of the desired window. However, it
is difficult to prove this mathematically. For SAM, if the input is
correlated up to some time separation τ1 and the channel has
memory τ2, the received data is correlated up to a time separa-
tion of τ1 + τ2 . Thus, if we shorten the correlation of the
received data to length ν, we have to shorten the autocorrela-
tion of the channel (and hence its memory) to ν − τ1 rather
than ν. In other words, we wind up making the channel signifi-

cantly shorter than the cyclic prefix. By allocating effort to
reducing some of the channel taps inside the window, we must
spend less effort reducing the taps outside of the window, and
the residual interference outside the desired window becomes
higher than the case in which all of our assumptions hold.

The null tone assumption used by CNA is often violated as
well. The null tones are almost always present, but they are usu-
ally not truly null. One of the predominant disadvantages of a
multicarrier system is that the transmitted data has a high peak-
to-average-power ratio (PAPR). This is because the time-domain
data is a linear combination of N independent QAM symbols,
and the central limit theorem says that for large N, the resulting
data has a nearly Gaussian probability distribution. One com-
mon approach to reducing the PAPR is to transmit small values
on the null tones in such a way that the PAPR is reduced [57].
Thus, these small correction terms are necessarily signal
dependent. In this case, not only are the null tones not null, but
the values on these tones are correlated with the signal. The
presence of these correction terms raises the noise floor, and

their correlation with
the signal distorts the
cost function.

OPEN PROBLEMS
Research on adaptive
channel shortening is
truly just beginning.
The few algorithms that

have been proposed so far are not fully understood, and presum-
ably there are many more algorithms awaiting discovery. We
conclude with a description of issues that are not yet completely
resolved or that have yet to be addressed in the literature.

Virtually all channel-shortening (adaptive and nonadaptive)
designs in the literature take the form of a constrained opti-
mization problem [58]. In the nonadaptive case, the ever-pres-
ent constraint leads to algorithms that maximize a generalized
Rayleigh quotient (or a product of many of them). In the adap-
tive case, this usually leads to algorithms that descend some
cost surface subject to a unit-norm or unit-tap constraint on the
channel shortener. Virtually all authors have chosen to imple-
ment the unit-norm constraint, and they have implemented it
by renormalizing the filter after each update [15], [28], [31],
[33], [35], [42]. One possible reason for this choice is that Al-
Dhahir and Cioffi [14] have shown that the MMSE channel
shortener with a unit-tap constraint always has a higher MSE
than one with a unit-norm constraint, with the implication that
a unit-norm constraint is preferable. However, the MSE is not
directly related to the BER in a multicarrier system, so the
implications of this result are debatable. In any case, the behav-
ior of adaptive channel shorteners that renormalize after each
update is not yet well understood. The study of the behavior of
unit-norm constrained adaptive channel shorteners is thus an
open problem. Along the same lines, other channel shorteners
could be proposed that use different constraints or that enforce
the constraint by some means other than renormalization.

ONE OF THE ADVANTAGES OF SCCP MODULATION 
IS THAT THE TRANSMITTED SAMPLES STILL HAVE A
FINITE ALPHABET; SINCE THEY ARE NOT GAUSSIAN,
THEY DO NOT HAVE THE HIGH PEAK-TO-AVERAGE

POWER RATIO OF MULTICARRIER SIGNALS.
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The number of algorithms that perform adaptive channel
shortening is currently very small compared to the number
of adaptive equalization algorithms. Algorithm construction
and analysis thus forms yet another open problem. Since
most of the current algorithms only update once per block,
they tend to have very slow convergence rates. For a wireless
environment in which the channel changes significantly
every ten or 20 blocks, such algorithms have difficulty track-
ing the changing environment. Fast versions of existing algo-
rithms are of interest, as are algorithms that can update
multiple times per block.

The performance of adaptive channel shorteners is heavily
dependent on the choice of synchronization delay. Choosing this
delay is equivalent to choosing the desired boundaries of each
data block at the output of the channel shortener. Even within
the range of delays that lead to relatively good performance, the
performance is not a smooth function of the delay. One possible
contribution to be made is the proposal and study of a heuristic
method for choosing the delay in a blind fashion. Another con-
tribution would be to determine analytically how the cost func-
tion for each algorithm depends on the delay, or at least to give
bounds on the performance as a function of delay. One of the
virtues of per-tone structures is that they are less sensitive to
the choice of delay, but this problem is a significant issue for the
design of a channel shortener.

Finally, MIMO and multiuser extensions are becoming
increasingly important. If there are multiple transmit and
receive antennas, the channel shortener(s) at the receiver must
simultaneously shorten many channels. If this is in the context
of a multicarrier code-division multiple access (MC-CDMA) sys-
tem, then shortening the channels for the various users must be
done before the signals can be despread and the different users’
signals can be separated.

CONCLUDING REMARKS
The design of blind, adaptive channel shorteners requires fun-
damentally different approaches than the design of adaptive
equalizers. Although the property restoral concept is still a
good starting point, the properties that are expected to be
present in a system requiring channel shortening are typically
different from the properties expected to be present in a sys-
tem requiring equalization. Several simple approaches have
been proposed in the literature, but they are limited by vari-
ous assumptions and they optimize a heuristic cost function
rather than the bit rate or BER. Algorithms that address these
issues would be of great utility. Additionally, more powerful
algorithms that converge more rapidly would be of interest,
especially since it is difficult to apply standard gradient
descent algorithm acceleration techniques to the constrained
gradient descent algorithms that have been proposed for
adaptive channel shortening.
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