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Recursive Parameter Identification Algorithm 
Stability  Analysis  Via Pi-Sharing 

Abstract-Pi-sharing is introduced as an extension of the application 
of passivity and hyperstability concepts  for discrete-time systems, provid- 
ing connections between input-output and state-space stability notions. 
Using tools developed within the pi-sharing framework, new stability 
results for the output error class identification algorithm are derived. This 
approach offers a clear interpretation of the role of the SPR condition in 
the work of Landau and Silveira and its absence in the work of Tomizuka 
and Altay. 

I. INTRODUCTION 

“You don’t know  how to manage Looking-glass cakes. 
Hand it round first, and cut it afterwards.”-Unicorn to 
Alice in L. Carroll’s Through the Looking Glass. 

T HE properties of passive systems and their interconnections 
have  been studied for many years, beginning  with insights 

developed in nehvork theory and later generalized to more formal 
system theoretic terms, e.g.,  [l], 121, [lo], [16]. Similarly, the 
related concept of hyperstability. since its introduction by Popov 
[3], has been employed in a wide range of problems, being 
particularly useful  in treating systems containing certain types of 
nonlinearities. Landau and co-workers have successfully applied 
hyperstability theory to obtain stability conditions for an important 
class of parameter identification problems [4]. These results, 
although obtained by algebraic manipulations, closely resemble 
those obtained by passivity formulations. This link prompted 
formalization of the a-sharing concept described in this paper. 
The a-sharing approach relies on inequalities concerning a system 
input-output inner product having the physical interpretation of 
“energy” supplied tothe system [l],  [lo],  [ll],  [22]. This results 
in simple characterizations of system interconnections in terms of 
the “capacity to dissipate energy,” which may be shared with 
deficiencies in this regard among connected subsystems. Like 
hyperstability, the behavior of the system state is associated with 
the energy supply inner product in a-sharing, relating input- 
output  and state-space stability notions. However, a-sharing 
extends the application of  both passivity and hyperstability for 
feedback connections, as we  will show. 

The a-sharing approach differs principally in viewpoint with 
the closely related dissipative systems approach [ 101, [ 131, [ 151- 
1181. The representation of the “energy supply” to a system is 
central to  the distinction. While the dissipative systems approach 
has provided compact generalizations of  many system characteri- 
zations and stability results, it is argued here that the a-sharing 
view more directly encourages an intuitive interpretation for the 
identification algorithms considered. 

Section II of this paper provides a formal introduction to a- 
sharing, deriving tools for determining the a-sharing, hyperstabil- 
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ity, passivity, and stability of interconnections of a-sharing 
systems. Also, similarities with the dissipative approach are 
discussed. Section III illustrates the use of the a-sharing approach 
by deriving results similar to [4], [5], together with some new 
results, for a class of recursive parameter identification al- 
gorithms. This application illuminates some essential differences 
between the a-sharing and hyperstability formulations. The 
conclusion raises some additional related applications, and indi- 
cates some directions for further work. 

II. PI-SHARING CONCEPTS AND RFSULTS 

We begin by discussing some notation and  the class of systems 
under consideration. For clarity, only finite-dimensional, single- 
input single-output, discrete-time systems will be treated. Linear- 
ity  and time-invariance, however, are not assumed. We  will  view 
the input u,  output y, and the state trajectory x of a system S as 
functions from the natural numbers $I into W, R, and Z n ,  
respectively, for some finite state-space dimension n. It  will be 
convenient to deal with  the following collections of  such functions 
113. 

Linear function (vector) space: 1, I, 
L = {all functions u: 31 -+ R, under pointwise addition 

and scalar (R) multiplication}. 
1, = {all functions u:P1 + Rn, under pointwise, com- 

ponentwise addition, and scalar (2) multiplication}. 

Inner product space: 12, 3; 

where the inner product (, ) is 

The induced norm on 1 or 3, is given by 

Similar inner product space structure on subspaces of b or 1, is 
provided by the truncated inner product 

T 

(u, W ) T  2 u‘(k)w(k), V U ,   WE^ or a,, V T E N  (2-3) 
k=O 

which  will  be employed throughout the discussion and results to 
follow. 

We avoid issues of existence of solutions by making the 
following assumption. 

Assumption: S can be described by 
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E L satisfying S .  Also, we have the existence of truncated norm 
and inner products, e.g., 11 u 11 & (u ,   u )  and (u ,  w) T ,  for all T E 
M and all inputs, outputs, or states u, w concerning the system S .  
The results below can be extended to include relational operators 
S-a significant strength of the approach-but one which we defer 
in the interest of clarity.  See, e.g., [22], [23] for a similar 
framework involving relations. 

Consider two such systems S1 and S2 connected in the feedback 
configuration as in Fig. 1. We assume the composite system S 
satisfies the above assumption (2-4) withrespect to the composite 
statex = [x:, x,’] T ,  input u = ul + y2, and output y = yl = u2. 
The a-sharing approach is characterized by the interpretation of 
the system input/output inner product (2-3) as the “energy 
supplied to the system up to time T.” Considering a system as, 
say, an admittance function mapping voltages (inputs) to currents 
(outputs) at a port of an electrical network, this view is justified 
according to the physical definitions of power and energy. See 
[ 11, [ l  11, [22] for additional discussion of this viewpoint. 
Formally, by the bilinearity and symmetry of the inner product (. , 
.) we have 

(u. A T =  (u1 +Y2. A T =  h .  A T +  cvz9 U)r 

= (Ul ,  ydr+ (U2I Y 2 ) T  (2-5) 

which says the energy supplied to the composite system is simply 
the sum of the energy supplied to the subsystems. This linear 
energy supply relationship is the basis of the results in passivity 
theory for interconnections (e.g.,  [I],  [lo], [22] and generaliza- 
tions [2], [13], [17]). We incorporate this basis into a framework 
involving the system state in the following definition of ?r-sharing. 
The “weighted norms” on %, I,, and W” employed below are 
written 

where a:  PJ + 3 and A : PI -+ E t n x  (symmetric) are any scalar 
and symmetric matrix sequences, respectively. When the weight- 
ing functions Q and A become identity operators, we have the 
usual (induced) norms on these inner product spaces. This 
simplified notation is  meant to retain the notion of modulation of 
the norms by the weighting functions. Let C = { (u ,  x, y) E il X 
L, X L} and C, = {(u, x, y) E C satisfying S ) .  

Definition: Given r :  W -+ B, p: PI -+ R , and symmetric 
positive semidefinite (p.s.d.) r:?l + E l n x n  and Q:W -+ P x ” ,  a 
system S with  input u, output y ,  and state x as assumed in (2-4) is 
said to be n-sharing with respect to (r, 0, p ,  r) iff 

holds V T  E PI and all (u, x ,  y )  E C,. The functions (r, Q, p ,  r)  
are called a-coefficients for S ,  and S will  be  simply termed a -  
sharing if the association to particular a-coefficients is clear. 

It is evident from (2-5) that every feedback interconnection 
(Fig.  1) exchanges energy between subsystems. The ?r-coeffi- 
cients p and r parameterize this exchange, while the r and Q 
coefficients parameterize the energy storage and dissipation 
properties of the system state trajectory. Note that for any system 
S, one could choose Q(k) = r (k )  3 0, r(k) = p(k) = - 1/2 so 

u - G 3 -  Fig. 1. Feedback J2 connection. u1 

that for all k 

u(k)y(k)  2 r(k)u2(k) + p ( k ) y 2 ( k )  +x7(k)Q(k)x(k)  
+ x T ( ~ +  l)r(k+  I)x(~+ l ) - x ~ ( ~ r ( k ) x ( k )  

1 1 
2 

= -- u * ( k ) - p Z ( k )  (2- 10) 

and the inequality (2-9) holds for all (u, x, y) E C. Thus, every 
system S under the assumption of (2-4) is a-sharing with respect 
to (0, 0, - 112, - 1/2), making this choice a rather useless 
indication of system energy exchange and storage properties. We 
shall discuss techniques for finding more descriptive sets of T- 
coefficients, making (2-9) a more useful system characterization. 

Connections with Passivity,  Hyperstability, Dissipativity, and 
Stability 

The concepts of passivity, hyperstability , and dissipativity 
supply important interpretations of the ?r-coefficients characteriz- 
ing a system. Positive a-coefficients indicate “energy dissipa- 
tive” properties in a system, while negative coefficients allow 
energy to be generated. Remember that the “storage” coefficients 
r and Q are at least positive semidefinite by defiiition. 

Lemma I :  S is passive [strictly passive] if there exists an r, 2 0 
[r, > 01 such that S is a-sharing with respect to (r, Q, p ,  r) 
where r(k) 2 r,, vk, and p(k) 2 0, vk. 

Proof: See the Appendix. AAA 
For a strictly passive system, then 

(u,  Y)T 2 r , ~ ~ u ~ ~ $ + P ,  V T E X  some r,>O, PEW, 

and the energy supplied to the system is greater than a function 
depending on the “size” of the input u and the constant p. With 
initial stored energy - (3, the system may supply no more than this 
amount to its environment. Also, the system dissipates energy at 
the “rate” rou2(k). In [13], [ 171 this is referred to as “input 
strictly passive.“ When  the coefficientp  satisfiesp 2 p, > 0, we 
have dissipation at the “rate” poy2(k), called “output strictly 
passive” in [13], [17]. Connections to other I/O descriptions, 
e.g., sector or conic section theory [22], [23] are straightforward. 
These 110 descriptions do not consider the behavior of the state 
trajectory, setting them apart from the notions of hyperstability, 
dissipativity, and a-sharing. 

A hyperstable system [3], [7] can be considered a Lyapunov 
stable system whose state remains bounded  when driven by inputs 
from a certain class. This class of inputs (see (A-4) in the 
Appendix) depends on the state trajectory and is often expressed 
as due to feedback from the system output. 

Lemma 2: S is hyperstable [strictly hyperstable] if there exists 
an Q > 0 such that S is a-sharing with respect to (r, Q, p, r) 
where r (k) 2 QI, Vk [ Q(k) 2 CUI, vk], and p(k), r(k) 2 0, vk. 

Proof: See the Appendix. AAA 
Similar to the hyperstability results, the following stability 

results are available via a-sharing. It will  be convenient to collect 
I/O and state stability notions in the following. 

Definition: A system S is a-stable if 
a) there exist y , ,  y2 such that 

llvllr ,< Y,IlulIT+Y2IX(O)I, v uEl, v x ( O ) E P ,  v TEW,  
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and if 
b) there exist y3, y4 such that 

k <  T 
max Ix(k)l < y3llullT+%lx(O)I, 

v u E L ,  v x ( O ) E P ,  v TEH.  

Remark: Condition a) is a finite input-output gain [13] result 
for S, which implies that S is J2-stable [I]. This can also be  seen as 
a “finite mean-square gain” condition for S. The coefficient y, is 
the “gain” of the input/output mapping. Condition b) yields a 
bound on the state in terms of the summed-squared value of the 
input and the norm of the initial state. Thus, b) implies the 
Lyapunov stability of the zero solution when u = 0. The 
simultaneous dependence on llull and Ix(0)I in a) and  b) results 
in a stronger form of stability than the statement “ S  is 1 ?-stable 
and Lyapunov stable.”  This stability notion differs from the 
hyperstability formulation in  the class of inputs considered (it does 
not depend on the state trajectory), and in the fact that explicit 
bounds on the norms of y and x are available in terms of the n o m  
of u. 

In  keeping  with the notion of strict hyperstability, where  the 
state converges to zero, a definition of strict a-stability, where 

l lXl lT < ySlluIIT+Y6(x(o)I, v TE$13 v u E l ,  v x(O)Es“ 

for some y5, y6, can also be useful  [21]. However, this extension 
will  not  be explored in this paper. 

The concepts of a-sharing and a-stability are linked by the 
following result. 

Theorem I :  Let S be a-sharing with respect to (I’, 0, p ,  r ) .  
i) If there exist ro E 3, po > 0 such that 

then S has finite mean square gain as given by definition a) for a- 
stability. 

ii)  If in addition to i), there exists y > 0 such that 

then S is  sr-stable. 
Proof: See the Appendix. aaa 

These T-sharing result5 thus far are most similar to those 
obtained from the dissipative systems approach [lo], [ 151. [ 181. 
The dissipative results for single systems and certain interconnec- 
tions are actually more general than considered here in  the cases 
of purely  Lyapunov (no inputs) or purely I/O (no consideration of 
state) stability studies. The advantage of Theorem 1 over the 
dissipativity results is that state and I/O stability are considered 
simultaneousiy, more fully exposing the effects of initial states 
and inputs on  the behavior of the output  and state trajectory. This 
distinction is most important when considering nonlinear systems, 
as superposition of the I/O and state stability results is not 
possible. Also, the dissipative approach is characterized by 
detectability assumptions, which are often  invalid for the 
parameter identification algorithms studied in  Section 111. The 
uniform positive definite condition on r in Theorem 1 can be a 
weaker and more easily checked condition for these algorithms. 

Pi-Sharing Results for  Interconnections 

Based on the linear energy supply relation (2-5), the  following 
result shows that  the  sr-sharing properties of the feedback 
interconnection depend on simple conditions concerning the a- 
coefficients (I’, Q, p ,  r). 

Theorem 2 (Feedback Connection): Let SI and Sz be a- 
sharing with respect to (rl, Q,, pl, r l )  and (r2, Q2,pz, r2). and let 
S be the system resulting from the feedback onnection of SI and 
S2 (Fig. 1). If 

rdk)+pdk)>O, v k (2- 1 1) 

then S is r-sharing with respect to 

r= - rl P2 
rl+ P2 

P = P ~  +r2. (2-13) 

(r, Q, p ,  r) are called composite a-coefficients for the intercon- 
nection S. 

Proof: See the Appendix. nnn 
Using Theorem 2 with the results of Theorem 1 and  Lemmas 1 

and 2 we see that a feedback connection of a-sharing systems, at 
least formally, may  be passive, hyperstable, or a-stable without 
requiring both subsystems to  have these properties. For example, 
it is not necessary in (2-13) for rl ,  p I ,  rz. andp, to all be positive 
in order that rand p are positive. Also, a system may  be shown a -  
stable without being passive or hyperstable according to Lemmas 
1 and 2, since r is not required to be positive for a-stability. This 
emphasizes that “passivity” and “stability” are distinct concepts. 

The direct connection between yI  and u2 in Fig.  1 leads to the 
form of the composite p in (2-13). Compensation for energy 
generation in one subsystem (say r2 < 0) is possible if the other 
subsystem has “excess dissipation.” given by p 1  > 0. This 
sharing is directly reflected in the composite coefficient p .  The 
indirect connection between u1 and y,. however, results in a rather 
indirect form of sharing due to the form of r in (2-13). since r < 

While the stability results given here could  have  been derived 
from the dissipative approach rather than  via a-sharing (the 
overall conditions on r l ,  p l ,  rz, and pz  turn out  to  be  the same), 
some subtle differences appear when considering the energy 
dissipative properties of a feedback interconnection. These 
differences stem from the interconnection structures considered. 
In this context. the dissipative approach [13], [17] considers the 
feedback structure as a connection of two one-poris into a single 
two-port system (two inputs. two outputs). The a-sharing 
approach considers the resulting connection as a single one-port 
(Fig. 1). The energy dissipative properties of the two-port cannot 
always be parameterized with respect to a single input  and output 
as would  be anticipated in simplifying the two-port to a one port 
(i.e., setting one input  to zero). Essentially, the  sr-sharing 
definition requires the dissipation properties of a system to be 
expressible in terms of the state and the actual variables of 
interconnection. At least for the parameter identification al- 
gorithms considered here, this specialized view provides the more 
direct analysis. 

The basic hyperstability result for interconnections [24] re- 
quires both subsystems to be hyperstable in order that the 
composite system is hyperstable. Thus, sr-sharing, via Theorem 
2, affords an extension through sharing in the r andp coefficients, 
much  like  that available with the generalized passivity [2]. [22] 
and dissipative [13], [17] approaches. In, e.g., [4] various loop 
transformations are employed to obtain sharing-like hyperstability 
results, although some fundamental distinctions between these 
various approaches remain. Further discussion is provided in the 
remarks following Theorem 3 below. 

Pi-Coefficient  Computation 

min V I ,  ~ 2 ) .  

For the simple conditions on the subsystems in a feedback 
connection (Theorem 2)  to be useful in design and analysis, some 
means of finding “tight” sets of a-coefficients for the subsystems 
is necessary. As foreshadowed by [22], such simplified ap- 
proaches to the analysis of complicated systems can provide 
important information. but necessary conditions for, e.g., stability 
are often unavailable. An algebraic technique for finding ”tight” 
sets of sr-coefficients in terms of a state-space representation of S 
is given by: 

Theorem 3: Suppose the functions f and h in the system 
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description (24 )  are such that for some functions A ,  B,  C, d, 
possibly depending on k ,  u, or x (of  which we suppress all  but k in 
the notation), we can write (24)  equivalently as 

x ( k + l ) = A ( k ) x ( k ) + B ( k ) u ( k )  (2-14) 

y ( k )  = CT(k)x(k)  +d(k)u(k) .  (2-15) 

Then S is a-sharing with respect to the scalar sequences r and p 
and symmetric p.s.d. matrix sequences r and Q if 

(2-16) 

is negative semidefinite (n.s.d.)  for all k ,  where 

~ , ( k )  = A  r(k)r(k + 1 ) ~  ( k )  - r(k) + p ( k ) c ( k ) c ~ ( k )  + Q(Q 

~ ~ ( k ) = ~ q k ) r ( k +  I ) B ( ~ ) - ~   c ( k ) + p ( k ) d ( k ) c ( k )  (2-18) 

(2-17) 
1 

M4(k)=Br(k)I’(k+1)B(k)-d(k)+r(k)+p(k)d2(k) .  (2-19) 

The functions (r, Q, p ,  r) are then a-coefficients for S. 
Proof: See the Appendix. A n n  

Remarks: i) The specialization of (2-14) and (2-15) from (2-4) 
allows the conditions to be stated in terms of properties of a matrix 
of functions M(k). Even though the elements of M(k) may  be 
unknown, their structural interrelation may allow M(k) to be 
shown n.s.d. as required by Theorem 2 .  Such is the case in the 
parameter identification algorithm analysis of Section 111. More 
general system forms lead to conditions on sets of nonlinear 
equations of matrix valued functions [ 151. 

ii) In continuous time, differentiability of the state trajectory 
and the “storage function” @(x)  (x‘rx here) together with 
reachability of the state space an allows a converse to this 
theorem [ 151. In general, the converse does not  hold in discrete 
time, even with standard reachability assumptions. However, it is 
necessary that M(k) have nonpositive eigenvalues “along the 
trajectories” [xr(k) ,  u(k)]. (See the proof in the Appendix.) As a 
practical matter, the state trajectories will be unknown for all but 
the simplest nonlinear time-varying systems, and only the 
sufficient condition given in the theorem will  be useful. 

iii) For linear time invariant systems, the M(k) matrix can be 
simplified (set p(k)  = r(k) = 0) to obtain the familiar Kalman- 
Popov-Yakubovich equations [8] for establishing the positive 
reality of the system (2-14), (2-15). In the hyperstability approach 
of [4], the p(k)  terms in M(k) are obtained by block diagram 
manipulation of a feedback gain around the system. Similarly, the 
r(k) term in (2-19) can be obtained by introducing an external 
feedforward gain. Thus, the application of Theorems 1 and 2 to a 
feedback system can be interpreted as a series of additive loop 
transformations to obtain a new feedback system composed of 
passive (or hyperstable) subsystems. However, the stability 
properties of this new system are not in general the same as those 
of  the original feedback system. Additional conditions can provide 
the desired equivalence with respect to stabilty, e.g.,  [l], but  such 
conditions must be verified in each case. Since this transformation 
is absorbed in  the application of Theorems 1 and 2 in a way that 
retains the original feedback system signals, there are no 
additional conditions to check in the a-sharing approach. 

iv) By the structure of M(k), if  it is n.s.d.  for positive r(k) and 
p(k) ,  then it is n.s.d. with r(k) = p ( k )  = 0. In the case where 
M(k)  corresponds to a linear time invariant system, the system is 
then passive (i.e., positive real) even when  subjected  to the 
(positive) feedback gain p and the (negative) feedforward gain r. 

A Simple Example 

Together with Lemmas 1 and 2, and Theorems 1 and 2, 
Theorem 3 provides an algebraic means of determining the 

passivity, hyperstability, and a-stability of a system or feedback 
interconnection of systems. The parameter identification al- 
gorithm of the next section is an example of a nontrivial 
application of these tools in determining stability. At this point, 
though, a simpler example is more useful in illustrating the points 
discussed above. 

Example: Consider the feedback connection S of the systems 
SI and S2 as in Fig. 1, where S1 and S2 are described by 

1 
Xl(k+ l)=-x1(k)+u,(k) 

Y d k )  =xdW + 2udk) 

Xz(k + 1) = Ox@) + u,(k) 
Y2(N = OX2(k) + d(k)uz(k).  

2 (2-20) 

s2 I (2-21) 

We wish to choose the parameter d(k) in S, so the feedback 
interconnection is “well-behaved. ‘’ Note  that  in an input-output 
sense, S2 is simply the gain d(k). If d(k) were fixed, then we 
could apply z-transform techniques to obtain the JP-stability [ 11 of 
S, 1 < p  < m , f o r d <  - 3 / 4 o r d >  -1 /4 . I fweal lowdto  
vary  with time, the a-sharing techniques still apply  while the 
transform techniques do not. To find a-coefficients for SI and S2, 
we use Theorem 3. It  can easily be checked that 

(rl, Q,, p1, r11=(1/4, 0, 3/16, 1) (2-22) 

provides that M(k) 0 (hence, is n.s.d.)  for S ,  and  that 

(r2, Qz, ~ 2 ,  r 2 ) = ( ~ ,  E, 0, d- E )  (2-23) 

yields M(k) = 0 for S2, for any E > 0. Using Theorem 2 we find 
composite coefficients for the interconnection S: 

1/4 0 (2-24) 

(2-25) 

Now p(k )  is bounded away from zero and positive if d(k) is 
bounded  away from -3/16. Also, r ( k )  is uniformly positive 
definite, Q(k) is p.s.d., V k ,  and r(k) = 0. By Lemmas 1 and 2 
and Theorem 1 we have that S is passive, hyperstable, and a -  
stable with the lower bound  of - 3/16 on d(k).The a-stability of S 
implies it is 12-stable and the composite state is  bounded whenever 
the input  is in 12.  

Compared to the z-transform approach, when p(k)  is fixed, the 
a-sharing approach has  both different conditions [e.g., on d(k)] 
and different results. General conclusions about the relative 
strengths of these two approaches are therefore difficult to obtain. 
Interesting comparisons to specialized input-output stability a p  
proaches, such as the circle [l], [23] and Popov [l], [24] criteria 
could also be made, but  we  will  not pursue these here. However, 
this example demonstrates some key features of the a-sharing 
approach claimed earlier. By definition of passivity and hypersta- 
bility (see the proofs of Lemmas 1 and 2), it is easy to see the 
subsystem Sz is neither passive nor hyperstable when d(k) < 0, 
V k .  However, the composite system is  both  passive  and hyperst- 
able as long as d(k) 2 - 3/16 + E ,  for some E > 0. Note also 
that  when d(k)  is bounded, Sz is a-stable, according to the 
definition, so a system may, in fact, be a-stable without being 
passive or hyperstable. The next section provides a more 
meaningful demonstration of  the usefulness of the a-sharing 
approach in stability analysis. 

111. APPLICATIOK: RECURSIVE PARAMETER IDENTIFICATION 

We consider the problem of recursively identifying the parame- 
ters of a linear time-invariant plant P described by 

Authorized licensed use limited to: Cornell University Library. Downloaded on September 02,2024 at 06:12:56 UTC from IEEE Xplore.  Restrictions apply. 



20 IEEE TRANSACTIONS ON AUTOMATIC  CONTROL,  VOL.  AC-31.  NO. 1, JANUARY  1986 

where 

Or=[a,, e - . ,  an, b l ,  . .- ,  b,] (3-2) 

GT(k)=[y (k ) ,  .+. ,  y ( k - n + l ) ,  u(k) ,  . . - ,  u ( k - m + l ) ]  

(3-3)  

are plant  parameter and plant information vectors, respec- 
tively. The plant output  is predicted using a  posteriori parameter 
estimates in a parallel (output error) structure 

P(k+ l)=BT(k+  l)@J(k) (3 -4 )  

where the predictor information vector is 

G T ( k ) = [ j ( k ) ,  . * e ,  j ( k - n + l ) ,  u(k) ,  . e . ,  u ( k - m + 1 ) ] .  

(3-5) 

If  we define the prediction error v(k) and equation error e(k) 
according to 

v(k+ 1 )  4 y ( k +  l ) - j ( k +   l ) + q ( k +  1) (3-6) 

e (k+  1 )  P [eT-BT(k+ 1)]@(k) B Br(k+ l ) ~ ( k )  (3-7) 

where q is an additive output disturbance, the parallel prediction 
structure yields the following relation between e,  V ,  and 7 [6]: 

n 

+ e ( k + l ) + q ( k + l ) - C   a i q ( k + l - i ) .  (3-8)  
i =  I 

In polynomial shift operator (4-l) notation, (3-8) is written as 

1 
v (k+   l )= -  

-4 (4- 9 { e ( k +  1 ) +  w ( k +  l ) }  (3-9) 

whereA(q-’) = 1 - E n  i = l  and w(k + 1 )  & A(q-I){q(k 
+ l ) ]  . This purely autoregressive system has a convenient state- 
space realization for use  in Theorem 3 .  We denote this as SI 

SI: x ~ ( k +  l )=AIx l (k )+Bl [e (k+   l )+w(k+  l ) ]  (3-10) 

v(k+  l )=Crx(k)+dl[e(k+  1)+ w ( k +  I)] (3-11)  

where 

(3-12)  

C :=[a l ,  - - . ,  a,]; d l = l .  (3-13)  

The parameters in the parallel predictor are updated according 
to 

B(k+ l )=B(k)+h(k)P(k)@J(k)v(k+ 1) (3-14) 

where h(k) and P(k) are the (as yet unspecified) scalar “step 
size” and “direction matrix.” By subtracting 6 from both sides 
and adjoining the equation error (3-7), we form a state-space 
representation for the relation between u(k + 1) and - e(k + 1 )  
which we denote as SZ 

s2: B(k+ 1)=-428(k)+B2(k)v(k+ 1 )  (3-15)  

where 

- 4 2  =I; B2(k) = - h(k)P(k)@J(k) (3-17) 

S2 is obviously time-varying,_and since the entries of B2, C2, and 
d2 depend on past values of O and v ,  S2 is also nonligear. As an 
aside, we note that (3-14) is-an implicit expression for 6(k + 1 ) .  It 
can be solved explicitly for O(k + 1 )  for implementation [12 ] ,  but 
the implicit form is more useful for analysis. 

In  what has become a standard approach [4], [6], we examine 
the behavior of this class of parameter identification algorithms by 
noting  that SI and S2 are interconnected in a feedback configura- 
tion S (error model) as in Fig. 1 ,  but  with composite input w and 
output v .  Convergence of the prediction error v to zero would 
allow persistent excitation conditions on u to be given such that 4 
is also persistently exciting [9]. The entire error model S could 
then be- shown asymptotically stable, implying  that the parameter 
errors O converge to zero. The a-sharing app:oach to the stability 
of S addresses the convergence of the prediction error v ,  using 
sharing between SI and S2 to provide the r-stability of S. Sharing 
exposes a relationship between the ubiquitous SPR assumption on 
SI, as in, e.g., [4], and the “power” in the plant input u sufficient 
for stability as given in [5], [12]. 

First we use Theorem 3 to find a-coefficients for SI and Sz. 
Lemma 3: For SI, let a= C:CI 2 Z;=l a t ,  then SI is a- 

sharing with respect to (rl, Q1, p I ,   r , )  given by 

r na 01 

pl(k)  = 112-ncy; r l (k)  = 1 / 2 .  (3-20) 

Proof: Direct substitution shows that M(k) is block diago- 
nal, MI has nonpositive eigenvalues, and M4 = 0 so Theorem 3 
holds. AAA 

Lemma 4: For S2, if P-I(O) is symmetric p.d. and P(k) is 
updated according to 

P- l (k+  1 ) = y ( k ) P - 1 ( k ) + 6 ( k ) Q ( k ) ~ T ( k )  (3-21) 

where 0 < y (k )  < 1, vk, and 0 < 6(k), vk ,  and if the step size is 
given by h -‘(k)  = 2y(k), then S2 is a-sharing with respect to ( r 2 ,  

Qz, P Z ,  rd where 

I’z(k)=P-I(k); Q2(k)=(l-y(k))P-I(k)  (3-22) 

Proof: By direct substitution, M(k) is identically zero. The 
constraints on the update for P(k) provide that r2(k) and Q,(k) are 
p.s.d., vk. AAA 

Remark: The proofs of Lemmas 3 and 4 adopt the strategy of 
requiring M(k) to be block diagonal. While this greatly simplifies 
the task of showing it  to be n.s.d., this prevents retaining greatest 
generality in the proof. Other algorithms may require a more 
general use of Theorem 3 than  that demonstrated here. 

By (3-22) and (3-231, the parameters y and 6 influence the 
energy dissipative properties of Sz; that is, the properties of the 
parameter estimate update portion of the adaptive algorithm. 
Note  that S2 may generate energy if 6 > 0. The subsystem SI, and 
thus the dissipation properties parameterized by cy in (3-19) and 
(3-20), are determined by the structure of the predictor portion of 
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the adaptive algorithm. SI also may generate energy if 112 - na 
< 0. The ?r-sharing approach provides the following characteri- 
zation of the adaptive algorithm as a whole  in terms of these 
parameters and the properties of the information vector sequence 
4. 

Theorem 4: For the general output error algorithm described 
by (3-1) to (3-7), (3-14), and (3-21), if _ .  

CI : 

c2: 

. . , .  . 
there exists an > 0 such that 

1 
--6(k) 2 € 1 ,  V k 
2 

and there exists an e2 > 0 such that 

then the prediction error is bounded 
R1: there exists yl, y2 such that 

llU11T < YIIIWIIT+Y2IX(O)l, 

If  in addition to C1 and C2 
C3: there exists CY > 0 such that 

P-’(k) 2 crl, 

then the parameter error is  bounded 
R2: there exist -y3, -y4 such that 

r 

in the sense 

v TEPJ, vx(0)EFi”. 

v k  

in the sense 

Proof: By Theorem 2, condition C1 implies the error system 
S corresponding to the algorithm is a-sharing with respect to 

with CY = u: .  By Theorem 1 .  part i, condition C2 yields the 
I/O stability statement R1. Condition C3 in Theorem 1, part ii, 
yields the a-stability of S, which specializes to the statement 
R2. Ann 

Conditions C1 and C2 ensure that energy generation in one 
subsystem is overcome by excess dissipation in the other. C1 is 
easily satisfied since the parameter 6 is designer-selected. Condi- 
tion C2 is the key condition demonstrating the advantages of 
sharing for this parameter identification example. It requires that 
the composite coefficient p(k)  is positive and bounded  away from 
zero. This can be accomplished in two different ways. First, if the 
coeffkients of the plant denominator polynomial a, are small 
enough by E;= I ui < 1/2n, then CY may  be chosen so that 1/2 - 
na > 0. Since P(k) is p.s.d. and y (k )  > 0, p(k)  is  bounded  away 
from zero without utilizing the sharing available from the QTPQ 
term in C2. This is the essential effect of requiring SI to be strictly 
positive real (SPR). (Note by Lemma 1 ,  this condition on the a, 
implies that S I  is strictly passive, hence strictly positive real [7], 
[ 111.) This approach captures the motivation behind  common 
schemes of sidestepping the SPR condition, e.g., [25]-[27].  They 
seek to change the algorithm in order to modify the operator 
subject to the SPR condition. 

The second approach to  obtain a positive composite p(k)  
(condition C2) exploits the sharing available from the + TP+ term 

by requiring 

(3-24) 

by choice of the u components of +(k) and the scalars y ( k )  and 
6(k) affecting the update (3-21) for P(k). The result of [5] can be 
easily cast in this form, since there y ( k )  E 1 and 6(k) G 0 which 
results in P(k) G P(0). If the plant is only  known  to be stable, 
then  an upper bound on a can be chosen for which a lower bound 
on E;= u2(k - 1) may  be stated causing the inequality (3-24) to 
be satisfied. Since in  many applications the plant  input u is easily 
influenced, this condition is generally much more practical than 
an SPR assumption on the plant under identification. Note this is 
fundamentally different from a persistent excitation condition on u 
[9]; it is really more of a “persistent power” condition. See [14] 
for more discussion of “persistent power” sequences. With P(k) 
a fixed p.d. matrix, the composite coefficient r(k)  is uniformly 
positive definite, satisfying C3 of Theorem 4. In [SI, the error 
system input is zero, so it certainly belongs to I?, hence, the 
output u E I ?  and the composite state x = [x:, x:] is bounded. 
This implies the prediction error converges to zero and the 
parameter errors  are bounded. 

Thus, in this second case, we see an advantage in exploiting the 
sharing possible between systems as completely as possible, 
rather than making extra (SPR) assumptions on the systems 
themselves. This tradeoff in condition C2 also suggests that a 
mixture of SPR and persistent power conditions, given by the 
relative magnitudes of the a, and +TP+ terms, could be  used  to 
obtain more relaxed conditions for algorithm stability in some 
applications. Since the a-stability property of S holds for any 
error system input  in I, we have extended the results of [4], [SI ~ 

obtaining the O’-stability and the finite mean-square gain stability 
of the disturbance-to-prediction error relation. These results are 
not available using  the hyperstability approach of [4], [SI. 

The a-sharing approach also allows the sharing phenomenon to 
be extended to more general classes of algorithms than considered 
in [5].  The new results of [12], for example, are based on 
condition C2 of Theorem 4,  but various other forms of the P(k) 
update  within (3-21) are considered. Essentially, whenever +TP+ 
can be set uniformly large enough to compensate for non-SPR 
deficiencies in SI, by selection of the input sequence u,  then 
persistent power conditions may  be used  in place of SPR 
conditions. 

Given the a-stability results, stronger bounded input-bounded 
output stability results may  be obtained using linearization 
techniques and exponential stability, e.g.: [19]. With  the addition 
of a persistent excitation condition on 4, the I”-“gain” of the 
error system may  be derived [20], resulting in a  “local” bounded 
disturbance-bounded prediction error-bounded parameter error 
stability result for the algorithm. The result is in general “local,” 
since large disturbances may destroy the linearization and 
persistent excitation properties used to derive the result. 

It  is important to note  that  the persistent excitation conditions 
are on the information vector 4, some of whose elements depend 
on the evolution of the parameter estimates, which are not  known 
a priori. Transferring this condition to one on the  input sequence 
u alone (as done for the persistent power condition in [SI, [12]) is 
a key step toward providing persistent excitation. This step uses 
linearization, which depends critically on the convergence of the 
prediction error  [9]. The stability results in this paper, using a 
tradeoff between SPR and persistent power conditions, allow the 
results of [9] to be extended to include the case of disturbances in 
1’. and  to provide closed-loop I/O gains. Thus, the a-sharing 
stability results provide a vital basis upon  which to derive more 
general bounded input-bounded output stability results. 

IV. CONCLUSION 

The definition of a-sharing provides a useful characterization 
of  the behavior of systems connected in feedback. This characteri- 
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zation is embodied in a set of n-coefficients (functions) pertaining 
to the system “energy supply,” and  in terms of these coefficients 
close ties exist to  the well-known notions of passivity, hyperstabil- 
ity, and  dissipativity-as  well as to a stability notion introduced 
here as n-stability. An algebraic test on a system state-space 
representation exists which is sufficient to determine a-coeffi- 
cients, and in these terms there are explicit expressions for the 
sharing possible between interconnected systems. 

The use of n-sharing in stability analysis was illustrated by two 
examples. The first provided some comparisons between  passiv- 
ity, hyperstability, n-sharing, and a-stability for a simple feed- 
back system. The second example presented a general parameter 
identification algorithm as a nonlinear time-varying feedback 
system for which the algebraic conditions for n-sharing could  be 
satisfied. The a-sharing approach for the second example 
provided a straightforward explanation in terms of sharing for the 
differences between the results of [4] and [5] with regard to the 
SPR assumptions. Also we found that the shift in viewpoint  away 
from hyperstability provided results of a related but essentially 
different nature-more  in line with  input-output stability results. 
The n-sharing stability results also form an important basis for 
deriving conditions for bounded disturbance-bounded prediction 
error stability. 

The n-sharing approach shows promise in treating various 
other “adaptive systems” due to the structure in the M(k) matrix 
(Theorem 3) given by the particular forms of the parameter 
estimate update for these algorithms. This algebraic tool provides 
a useful approach for such dynamical systems, where explicit 
solutions are unavailable. For some parameter identification 
algorithms, e.g., those using information vector filtering, the I/O 
“gains” provided by the x-sharing approach are instrumental [21] 
in obtaining overall stability results. 

APPENDIX 

Proof of Lemma I :  From [l], a system is  passive [strictly 
passive] by definition if there exists a 6 2 0  [6 >O] and a 0 E 2 
such that 

(u ,  ~ ) 7  2 Sllull;+P, V uEb,  V TEW.  (A-1) 

From the definition of n-sharing we have 

(u,  A- 2 @ ) I I Y I I ~ + ( ~ ~ I I ~ I ~ ~ - ( ~ ) I x ( O ) I ~ ~  
v (u,  * ,  y)ECs, v T E N  (A-2) 

but since the systems considered are mappings defined for all u E 
I, by taking /3 = - (I‘) Ix(0)I the hypotheses on r and p yield 

(u ,  .Y)T 2 ~ o ~ ~ ~ ~ ~ ~ + P ,  V ~ € 1 ,  V TEPI (A-3) 

and  the result follows. aaa 
Proof of Lemma 2: From [3], [7 ] ,  a system is hyperstable 

by definition if whenever the input u lies in the class B ,  defined 
for 6 > 0 [possibly depending on do)] by 

B = l u E % I ( u ,  Y)T d 6 max Ix(k)l, V G T E ~ ] ] ,  ( ~ - 4 )  

then the state remains bounded  in the sense that there exist M and 
u such that 

k g 7  

IxW>l Q ulx(O)l + M  V k.  (A-5) 

If  in addition, for bounded u E B,  limk,, Ix(k)l = 0, then the 
system is said to be strictly hyperstable. 

By hypothesis we have 

(u, Y)r  2 ( ~ ) ~ X ( T + ~ ) I ~ - ( ~ ) J X ( O ) I ~ + ( Q ) I I X I I : ,  

v (24, x, y)ECs, v TEFI. (A-6) 

Since there exists a solution triple for S for every u E I, and B is 
contained in 1, if r (k)  2 d, Vk, we have for every u E B 

6 max Ix(k)l 2 6 max Ix(k)l 
k < T + 1  k g 7  

Now  if maxk<Tcl Ix(k)l > Ix(T + 1)1, VT E M 1  then Ix(k)I is 
bounded as claimed, so suppose for some T maxk< T +  Ix(k)l = 
Ix(T + 1)l. Then the inequality (A-7) becomes 

By the quadratic formula 

By similar reasoning as above, this implies that Xlx(k)I is 
bounded, implying that limk,, (x(k)I = 0. and the system is 
strictly hyperstable. ana 

Proof of Theorem I :  i) By hypothesis 

where 6 = lmin (0, ro)l. Since r and Q are p.s.d., using the 
Schwartz inequality, we obtain 

Since po > 0, the quadratic formula yields 

where yo = maximum eigenvalue of r(O), and part (a) of the T- 
stability definition holds. 

ii) Using (-4-13)  in (A-11) with the Schwartz inequality again, 
and since po > 0, 

NOW by hypothesis ii), and since 11  11 T is monotone increasing in 
T. (A-15) yields 
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since the domain of S includes all of I for u and all of Rfl for x(0). 
Part b)  of the a-stability definition follows. 

Proof of Theorem 2: By the feedback structure and the T- 
sharing of SI and S2 

(u, Y ) T = ( u ~ ,  ~ l ) r + ( u 2 ,  ~ 2 ) r  2 (rl)lxl(T+ 1 ) l 2 - ( r ~ ) 1 ~ ~ ( o ) l 2  
+(~~) IX~(T+~) I~ - (~~ ) I~~ (O) I~+ (QI ) I IX I I I :+ (Q~) I IXZ I I :  
+ (P1+~2) I IY11~+(~ l ) l l ~111~+@2) I IY211~  

V TEN, V (ulr X I ,  y)ECq, V (Y ,  x23 Y ~ ) E C S ~ *  (A-17) 

Define the composite system state x‘ = [x:,  x:] so that  with r, 
Q,  and p as in the theorem statement 

(A-21) 

for X(k) 2 rl(k)/(rl(k) + p2(k)).  Note  that (dropping the  index k) 

(Xu1-(1-X)y,)2=u~(X(A-1)+X)-2h(l-X)u1y2 

+ ( 1  - A - X ( 1  -X))Y: 2 0 V X, u,, Y ~ E R .  (A-22) 

Thus, 

Xu:+(l-X)yf 2 X ( l - X ) ( U f + y f + 2 ~ , y 2 )  (A-23) 

hence  multiplying through by rl(k) + p2(k) yields (A-20) with 

satisfying the definition of a-sharing for the composite system 
S. A A A  

Proof of Theorem 3: Using  the state representation for S we 
have 

(r)~x(k+l)~’-(r)lx(k)l~=[x~((k), u ( ~ 1  

1 (A-24)  

(A-25) 

and 

so in summation from k = 0 to k = T we have 

7- T 

k = O  k=O 

where M(k) is as given in (2-17)-(2-19) .  Thus, if M(k) is n.s.d. 
vk, neglecting this term and using our notation for weighted 
norms (2-6)-(2-8) we have the desired inequality (2-9) for the a -  
sharing definition. ana 
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