
SHORT  PAPERS 

The above results  extend  readily to Udink  ten  Cate’s  [4]  generalization 
of the  Kudva-Narendra algorithm and  to the  model  reference adaptive 
control method of Sebakhy [5]. The  method of maintaining  linear 
constraints may  be  applied  to  the identification method of Martin- 
Sanchez  [6]; it also  extends  readily  to  the  discrete  single-input-single- 
output  adaptive observer  described  briefly by Luders  and  Narendra  in 
[7, section V.A], requiring  only the choice G= I for  the adaptive gain 
and  the  projection of the adaptation excitation  vector, which  in  this  case 
is the  auxiliary  vector sk. 
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Adaptive  Implementation of One-Step-Ahead 
Optimal  Control via Input Matching 

c. RICHARD  JOHNSON, JR., &EMBER, IEEE, ~ h ? )  

EDISON B E ,  MEMBER,  IEEE 

Abstmet-Directly adapting feedback control parameters to match IUI 
optimal input avoids  the  current limitations of indirect  adaptive control and 
direct  adaptive  model  matching. This original concept, termed input match- 
ing, allows combination  of stable parameter adjnstment algorithms and 
optimal performance considerations. Furtbermore, the emphasis 00 input 
matching permits consistent control despite  inconsistent parameter identi- 
fication obviating  efforts sucb as test or p r o b i i  inputs required to ensure 
consistent identification. 

The control signal is reduced to a constant weighted sum of tbe 
memorable  information-state  vector eomponenb by tbe use of a one-step 
ahead quadratic cost function to govern  the  behavior  of a linear, time-in- 
variant  multivariable  plant. The control effort from this linear combination 
proves  globally estimable by a vector equation error  formulation  since the 
one-stepahead cost function permits simple u posteriori input  error calcu- 
lation. Several simulations demonstrate the behavior of this new multivari- 
able  adaptive  input matching control method. 

I. INTRODUCTION 

Adaptive control is an outgrowth of automatic control that has 
attracted significant  research  effort  since  the mid-1950’s  [I]-[3].  These 
investigations  have  been  motivated by a desire for development of 
real-time control of incompletely known plants.  Limited plant specifica- 
tion is normally  assumed to entail  unknown, perhaps  drifting  parameters 
in a prespecified structural description.  Adaptive  controllers can be 
coarsely  divided into two large  classes of active and passive adaptivity 
[4],  [5].  Actively adaptive controllers,  based on Fel’dbaum’s dual  control 
theory [6],  utilize,  in addition to  the  available  real-time information, the 
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knowledge that  future  observations will be made which will provide 
further possible  performance  evaluation and regulate  their  learning 
accordingly.  Passively adaptive controllers  utihze the  available real-time 
measurements  but  ignore  the  availability of future observations. This 
limitation  results in  accidental learning but generates  much  simpler 
control  algorithms  and therefore will be the  technique considered  here. 

Passive adaptive  controllers can be subdivided into two further classi- 
fications: indirect  and direct, denoting  the primary  focus of the adapta- 
tion  mechanism  either on plant  parameter  determination or control 
parameter  determination, respectively.  Indirect adaptive  control,  appar- 
ently  originally  suggested in  [7], arbitrarily divides  the control task into  a 
plant  identification stage  providing parameter  estimates to a prestruc- 
tured controller, which  utilizes  these  estimates in generating a  control 
signal as if they  were  the actual values.  Acceptance of this method  has 
led  to a tremendous interest in  system identification (81-[ll].  Most 
parameter estimation  schemes,  however, are inherently  open  loop and 
suffer  consistency and identifiability constraints in  the  presence of 
feedback [12],  [13].  Any resultant bias  in  the parameter estimates  could 
prove disastrous upon insertion  in  a  predetermined  control law. This 
limitation  has  been artificially  circumvented by the  injection of a  per- 
turbation  input [14]  or  reliance on its inherent  presence [15]. 

The  obvious alternative, avoiding  the  necessity of proper  plant  identi- 
fication, is direct  adaptive  control, which adjusts the  available control 
parameters themselves  such that  the overall  performance of the  control 
system  improves. Two broad techniques  exist for establishment of con- 
vergent control  parameter  adaptation schemes:  search  methods and 
stability  analysis.  Search  techniques,  primarily gradient based,  arise 
directly from similar  techniques  for plant  parameter estimation. Nor- 
mally,  however, the gradient of the performance function with respect to 
the control  parameters is not readily determinable and the performance 
surface is typically  multimodal  in  the control  parameters [16]. Alterna- 
tively, adaptive  control  algorithms arising from  stability analysis can 
guarantee  global asymptotic stability as a  by-product. The  widest ap- 
plication of stability theory  to adaptive  control design  has  utilized 
Lyapunov’s  second  method [ lq ,  Originally [N], [I91 via a model  refer- 
ence approach [20],  [21]. Model  reference adaptive  control techniques 
implement adjustment of reachable  parameters in the  overall controlled 
system so that its response to some arbitrary reference  signal  exactly 
matches that of a  predetermined model due  to the  same  reference. 
General lack of the ability to satisfactorily alter all of the  plant parame 
ters led to  the concepts of perfect  model  following [22],  (231 and 
equicontrollability [24], either of which ensures  exact  matching  with a 
bounded  control effort.  Assumption of the  capability of exact matching 
hampers [25]-[27] the current sophisticated  schemes of adapting  con- 
troller parameters solely  from plant  input and output measurements 

A  deterministic  direct  adaptive scheme  is  developed  in this paper 
capable of providing  both bounded tracking error  and  bounded  control 
effort by shifting the focus from exact output  matching to exact input 
matching, a  concept  intimated  in [32]-[34]. Input matching, as originated 
here,  melds the globally  convergent  estimation character of model 
matching  and  the  robustness of optimally-based input specification. The 
concept of input matching  is  motivated by the realization that most 
control laws for discrete, linear, lumped-parameter time-invariant sys- 
tems are simply linear combinations of input,  output,  and  driving 
sequence  terms,  the “linear-in-the-parameters” [8] structures of  which are 
identifiable by  the  bulk of parameter estimation  schemes.  The  goal of 
input  formation does not require identifiability, however,  only matcha- 
bility,  thereby  loosening the restrictions of indnect  adaptive  control.  The 
idea of observing  system  behavior and inferring the  optimal action that 
should  have  been  taken  completes  the  scheme by providing a method of 
error  determination  for the  estimation  scheme. The  incorporation of 
control  cost in the optimal  action  inferral expands the technique’s 
applicability beyond  the  realm of exact output matching. This paper 
presents the initial application of this new approach  to  adaptive  con- 
trol. 

The  next  section will discuss  the  one-step-ahead quadratic cost func- 

[28]-[31]. 
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tion to be minimized. A direct  adaptive scheme  based on input  matching 
utilizing this one-stepahead definition of optimality is  developed in  the 
third  section.  Simulation  studies  which furnish insight into the  behavior 
of the proposed adaptive  control scheme are presented in Section IV. 

11. oNE-sTEP-A?rF.AD o m  CONTROL 

The autoregressive-moving-average (ARMA) vector  difference equa- 
tion 

D W 

Y(k+I)= 2 A,Y(k-i+I)+  l$U(k-j+l), (2.1) 

where Y is an n X 1 output vector, U an m X 1 input vector, and Ai and L$ 
are,  respectively, n x  n and n x m  constant  parameter m a m a ,  ade- 
quately  describes the  input-output behavior of a linear, time-invariant 
lumped-parameter MIMO plant.  The  plant  transfer  function matrix, 
[I,-Z~,Iz-‘AiJ-’[~,”,lz-’B,], is assumed to be irreducible, which 
assures [35],  [36] that  an observable and  controllable state-space descrip 
tion  exists for  the  plant described by (2.1). The system  underlying (2.1) is 
therefore  assumed to be  minimally  implemented. If not, the  unobserv- 
able and/or uncontrollable  portions  are assumed  neglectable due  to 
satisfactory, i.e., stable, behavior. 

The  objective in controlling the plant via formation of an  appropriate 
input signal  is reasonable tracking of a reference  signal while simulta- 
neously maintaining  a  bounded control effort. The  one-stepahead  cost 
function 

i =  I j =  1 

J ( U ( k ) ) = 2 { [ R ( k + 1 ) - Y ( k + I ) ] ~ P [ R ( k + 1 ) - Y ( k + 1 ) ]  1 

+ U’(k)QU(k)},  (2.2) 

where R is the n X 1 reference to be tracked  and P and Q are, respec- 
tively, n X n  and m x m  symmetric,  positive-definite  matrices  chosen to 
reflect the relative costs of components of the  tracking  error and the 
input vectors, has been  previously  utilized  in  hybrid 1371 and  indirect 
adaptive [14],  [38, ch. 51, [39] control schemes.’ A heuristic justification 
for  its  use  in an  adaptive context is that insertion of estimated parame- 
ters into  a control computaton based on a more distant end  time  would 
tend  to  transmit  and  compound  the  estimation error. 

Minimizing (2.2) with  respect to U(k) results in [27], 1401 

U*(k)=[Q+B?PB,] - ’  
C W 

XBTP R ( k + I ) -  2 A ; Y ( k - i + I ) -  2 L$U(k-j+l) . (2.3) [ i=  1 j = 2  I 
Therefore, the  optimal  control  effort is a  linear  combination of the 
elements of the  information  state vector, i.e., the next  desired output 
(reference),  the current and past  plant  outputs and past  plant  inputs. 
Note  that only the next  value of the reference  must  be known to apply 
the  present control. Herein, the reference will be considered as specified 
one,  and only one, time unit in advance,  Such stepby-step revelation of 
the  reference  allows tracking of a  broad class of trajectories, including 
the output of nonlinear or distributed  parameter models as well as linear, 
time-invariant  lumped-parameter  models, the  traditional  domain of 
model-following  schemes. 

The attractive simplicity of the control input  formation is somewhat 
offset by limitations on the  class of plants  it can stabilize, due  to its 
“shortsightedness.” Stabilization implies that, for  any  bounded reference 
R,  the input (I, the output Y, and every internal  state of the  system are 
bounded- If the  control  input  and  plant  output remain bounded, clearly, 
the cost function  in (2.2) is bounded  and,  due to the assumed controlla- 
bility and  observability of the plant, all state variables are bounded [41]. 
Therefore, it is sufficient to investigate the boundedness of ZJ and Y, via 
transfer  function analysis, in assessing the  stabilization of the plant  in 
(2.1) by the optimal  control of (2.3). The question of the plant’s stabiliza- 
bility  degenerates to the possibility of selecting appropriate P and Q 
such that 1401 

where 

r w  1 

which is the  characteristic  equation of the R to Y transfer  function. 
Interpretation of this problem as a multivariable root locus or as con- 
stant gain output feedback  allows use of the results of current research in 
resolving  this question [MI. The remainder of this work will assume, 
however, that  the choice of the  one-step-ahead optimal criterion in (2.2) 
incorporates  a  reasonable P and Q that, through (2.3), will stabilize the 
plant  in (2.1). It is demonstrable [a] that this assumption is less 
restrictive than  the assumption of perfect  model-following  capability. 

111. ADAFTWE INPIJT MATCHING FOR ONE-STEP-AHEAJJ OPTIMAL 
CONTROL 

In indirect  adaptive  control schemes, the  parameter  estimation  prob- 
lem centers on the  plant in  (2.1).  If the  past  input sequence and resulting 
output sequence are available, the  (A,,Bj)  parameters can be estimated 
via any  standard  linear recursive method.  The consistency of these 
estimates  hinges on the  requirement that the input  and  output sequences 
are  not linearly  related.  Artificially  imposing separation between param- 
eter  estimation and  control law determination  in following the  indirect 
adaptive  control design technique violates this requirement  and lea& to 
parameter  estimate inconsistency.  The alternative  approach postulates a 
linear feedback form  for U(k) and  adjusts  the gain parameters directly. 
Existing direct  adaptive control methods  recursively update  the control 
parameters so that  the difference  between the  plant  output  and  a 
reference signal is minimized. These  recursions are controlled by the 
output  error and are therefore  termed output matching. 

The  basic concept of the input-matching  method  developed in this 
paper,  though still direct, is drastically  different  from the  output-match- 
ing methods.  Consider (2.3), which can be rewritten as 

I: W 

P(k)=DR(k+l)+  F,Y(k-i+l)+  GjU(k-j+1)  (3.1) 
i = l  j = 2  

where 

D=[Q+B?PB,]-’B,?P,  ( 3 4  

& = - D A i  for i = 1 , 2 , - - . , u ,  (3.3) 

and 
%=-DL$ for j=2,3;.. ,w. (3.4) 

Note  that if the  optimal  input sequence (based on possibly suboptimal 
preceding  behavior), the reference  history, and the applied input  and 
resultant output records are known, then the control parameters 
{ D, 4, %) can be  estimated  using any  standard linear  recursive method 
where the  update term is controlled by the  “input  error” u+- U. A 
particular  parameter  estimation scheme  is  given below. 

Lemma I :  The  adjustment rule 

nonzero level as suggested in 1401, possibly decreasing the  steady-state hacking error. 
‘This cost function could be altered  by  penalizing  the deviation in control effort from a - 6( k - l)] (3.5) 
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where 0 denotes element-by-element  multiplication,  when  used to u p  
date the parameters of 

w 

6 ( k ) = 6 ( k ) R ( k + l ) +  2 F.(k)Y(k-i+l)+  ej(k)U(k-j+l) 
i =  1 j=2 

(3.6) 

will cause 

6(k )+U*(k)  as k+m (3.7) 

for any initial  estimates &O), k(O), and @O), if 

3HL and H , 3 0 < H L < H v ( k ) < H , , < m  

V k ;  Vie[l ; - . ,q] ;  V j € [ I ; . . , m ] ,  (3.8) 

where H,, denotes the ijth element of H and q = (v  + I)n + ( w  - I)m, 

3 1 E [ l ; . . , q ]  and J E [ I , - - - , m ]  

and the scalar h(k) satisfies 

O < h ( k ) <  V k , V j € [ l  ;..,m]. (3.10) 

2 H v ( k ) x ? ( k )  ,= 1 

where 

X ( k )  2 

[ R T ( k )  : Y'(k-1): ... :Y ' (k -o )  ; U'(k-2); ... : U'(k -w) ] .  . .  . .  
(3.11) 

Proof: Identifying W(k) with U*(k - l), BT(k) with [ D ( k  - 1) : 
F , ( k - l ) ;  ... i F,(k-I) i G2(k-l)i ... i GJk-l)],  and X'(k) with 
[R'(k)i Y'(k-1) i ... i Y'(~-c) UT(k-2) i ... i U7(k-w)], the 
adjustment rule (3.5) can be  written as (A.3) in the Appendix. The 
required  satisfaction of (3.8), (3.9), and (3.10) allows the application of 
Theorem A.2,  which  directly  proves (3.7). Q.E.D. 

Unfortunately, the sequential mechanization of (3.5) and (3.6) requires 
exact knowledge of the information state vector  in addition to the value 
of the past optimal control effort. Reliance on  reception of the optimal 
control signal only one sample instant too late clearly appears impracti- 
cal.  However, this optimal control effort can be calculated after the fact. 
Lemma 2: The error between the optimal control input of (3.1) and 

the estimated input of (3.6) is  calculable a posteriori from 

( I * ( k - I ) - f i ( k - l ) = [ Q + B : P B , ] ~  I [ B : P ( R ( k ) - Y ( k ) ) - Q 6 ( k - l ) ] .  

(3.12) 

ProoJ If the coptrol estimate iq(3.6) is applied to the plant in (2.1) 
for some  choice of D(k), &(k) and G,(k) and the next output Y(k+ 1) is 
measured then rearranging (2.1) 

i =  5 1 AiY(k-i+l)+ 2 B , U ( k - j + l ) = Y ( k + l ) - B , f i ( k ) .  (3.13) 
j =  2 

SO, from (3.1) the optimal control effort U*(k), given the same  past input 
and  output record,  would  have  been 

U*(k)=[Q+B~PBI]-'B~P[R(k+1)-Y(k+1)+B,6(k)]. 
(3.14) 

Subtracting 6 ( k )  from both sides of (3.14) and reindexing  yields (3.12). 
Q.E.D. 

These  two  lemmas  provide the necessary tools for the statement of the 
full algorithm adaptively  implementing  one-step-ahead optimal control 
of (2.1) via input matching. 

Theorem 1: Given the structure, i.e., m, n, v and w, of an irreducible 
ARMA description (2.1) of a linear, time-invariant  lumped-parameter 

MIMO plant, foreknowledge of the single  matrix B I  is sufficient to allow 
globally  consistent adaptive control via (3.5), (3.6), and (3.12) eventually 
minimizing (2.2) provided (2.1) is stabilized  by (2.3) for the chosen P and 
Q. 

ProoJ The combination of Lemmas I and 2 satisfies (3.7). The only 
internal information necessary about the plant in order to adapt (3.6) via 
(3.5) and (3.12) is the value of B , .  The convergence of the performance 
to that of the optimal control  system,  which  employs the optimal 
feedback gains of (3.2), (3.3), and (3.4) in (3.1) from the initial instant 
onward can be substantiated by  a stable open-loop estimation interpreta- 
tion, since  upon adequate satisfaction of (3.7) the output error becomes 
an unforced  system  governed by the coefficients of C(z) in (2.5) which  is 
assumed stable [27]. Q.E.D. 

The remaining problem is the estimation of B , .  A very crude estimate 
of B ,  is obtainable by attributing all of the next output after a large 
input vector to its  transmission  through B , .  If B ,  is roughly  estimat@  by 
some appropriate procedure, the use of an  inpcprate estimate B,  in 
(3.12) will  certainly affect the convergence of D, F,. and G, in (3.6) via 
(3.5). The question is how  severely an inaccurate apriori estimate for B ,  
will alter the convergent  values of D,  c, and G, from  their  desired 
optimal values in (3.2), (3.3), and (3.4). This is  answered  by  the  following 
lemma. 

Lemma 3: If a  bounded  estimate i, replaces B ,  in (3.12), and subse- 
quently (3.5), then implementing theAadaptive controller of Theorem 1 
will  result  in the convergence of U ( k )  to U*(k) in (3.1) with (3.2) 
replaced by 

D = [ Q + i : P B , ] - ' k T P  (3.15) 

if 

well as 
1) a  Pair hl (k )  and H l ( k )  exists,  satisfymg (3.8), (3.9), and (3.10), as 

h ( k ) H ( k ) O { Z ( k ) [ Q + 6 T P i , ] - ' }  

= h l ( k ) H , ( k ) O { Z ( k ) [ Q + i ~ P B l ] - T } ,  V k ,  (3.16) 

where 

Z ( k )  X ' ( k ) [ k T P ( R ( k ) -  Y ( k ) ) -  Qfi(k-l)]' (3.17) 

and 

destroy the stability of the  controlled  system.* 

that 

2) use of (3.15), (3.3), and (3.4) in the control law (3.1) does not 

ProoJ The replacement of a  bounded B ,  for E ,  in (3.12) requires 

f i ( k - I ) = Q - l ~ ~ P ( R ( k ) -  Y(k)) as k + m  (3.18) 

for the input matching error to converge to zero. Paraphrasing the 
development of the measured error in the proof of kmpa 2 by  assum- 
ing that (3.18) provides the optimal input based on B , ,  U*, yields 

6+(k-1)-6(k-I)=[Q+6~PB,]-'[B^:P(R(k)-Y(k))-Q6(k-l)], 
(3.19) 

which  disagrees  with the error 2 generated  by substitution of 6, for B ,  
in (3.12) 

~(k-l)=[Q+i~Pil]-I[B^,?P(R(k)-Y(k))-Q6(k-1)]. 
(3.20) 

If .&k- 1) rather than $ ( k  - 1)- f i (k  - 1)  is  utilized  in (3.9, Vtisfac- 
tion of (3.16) is sufficient to allow  use of Lemma 1 to prove that U(k - 1 )  
will  converge as indicated in (3.18). The  reasonableness of convergence 
to this approximate control effort  certainly  requires the stability of the 
suboptimal overall scheme,as assured by condition (2). Q.E.D. 

Note  that if Q EO and B,  and B ,  are invertible,  then the D in (3.15) 
matches the desired optimal value of B;' from (3.2), i.e., if (3.16) is 
satisfied, then for exact output matching despite an inaccurate estimate 
of B ,  the overall  scheme  is  asymptotically  optimal. 
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I ,-+ ERROR 
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I I 

Fig. I .  Exact output/model matching. 

m OMPENSATOR - U 

I 

Fig. 2. Input  matching. 

Y 
4 

For  the special  class of SI systems,  satisfaction of (3.16) is ascert+qi 
simply  since Q + BTPB, and therefore both Q + BTPB, and Q + BTPB, 
are scalars. 

Corollary I :  For SI systems, if 

s g n [ Q + i ~ ~ B , ] = s g n [ e + i : P i , ] ,  (3.21) 

where sgn(x)= x/(lxl),  and h(k) is chosen  satisfying 

O < h ( k ) <  
2 [ Q + i ~ P B , ] - ’ [ Q + i T P ~ , ]  (3.22) 

2 HiX?(k) 
i =  1 

then (3.7) will be  satisfied  with (3.15) replacing (3.2)  in  (3.1). 
Pro05  Equations (3.21) and (3.22) clearly  satisfy  Lemma  3. Q.E.D. 

Remark: 
I )  Exact output matching  represented by  Fig. 1  requires  development 

of sophisticated  adaptive algorithms to properly  utilize  the output  error 
in adjusting  the  compensator parameters. The  input matching error in 
Fig.  2  is  more  easily  utilized in established  parameter adaptation 
schemes via a  direct equation  error  formulation (such as  in  the Appen- 
dix) because it is not  separated from the  adapted element  by the 
unknown plant as in  adaptive  output matching. Generation, from infor- 
mation state vector  measurements, of control efforts that would have 
been optimal in the past  and necessary for  input  error  determination, 
therefore becomes the central pursuit. 

2) The  rate of convergence of the  actual  output  to  the o p h a l  output, 
once  adaptation is complete, is at the mercy of the  chosen  design. This 
shift in  specification of a component of the overall  convergence rate 
from the  adjustable multipliers in the adaptive algorithm to the de- 
signer’s choice of P and Q reflects  the  shift from  the parallel  model 
reference adaptive system (MRAS) form [21] of recent  attempts utilizing 
output  error in updating either control [31] or plant [42] parameter 
estimates to a  series-parallel MRAS form  focusing on  input matching. A 
possible  sacrifice in convergence  speed  is more  than offset by the 
broader  applicability of the  control scheme. 

3) A problem with the  parameter  identification of MIMO ARMA 
models,  such as that of the  controller  in (3.1) or the  plant  in (2.1), is the 
multiplicity of specifications of the  entries of Ai and B, yielding  equiv- 
alent  input-output  transfer  function descriptions. This has  prompted  the 
consideration of unique characterizations of such equations [43], [a]. 
However, if the delay-line  lengths u and w in (2.1) are accurately 
specified  along  with B , ,  then  due  to the  plant’s  asserted  irreducibility, 
the Ai and remaining B, in (2.1) are uniquely  specified [27l.  If the o and 

w in (3.6) are different  from the correct  values in (3.1),  however,  (3.6) 
need not  provide a unique parameter  estimate of (3.1)  by obeying (A.7) 
at some point  in  the estimation  scheme.  Clearly, the estimates for o and 
w used in (3.6) m y t  be  greater  than or equal  to  the respective  values in 
(3.1) in  order  for U(k) to  equal U(k), again due to the plant’s  irreducibii- 
ity. 

4) Note  that  in  the SISO case, (321) proves true if, for  the scalar B, 

sgn(B, )=sgn( i , ) ,  (3.23) 

a condition required in several  earlier adaptive  control schemes based on 
output  matching [20], [45]-[a].  Furthermore,  in  the SISO case, if Theo- 
rem AI is  satisfied so that  the  parameter  estimates display consistent 
convergence to  the  optimal  control  parameten of  (3.15),  (3.3), and (3.4), 
then B,  can be exactly calculated  from  the convergent  value of D in 
(3.15)  by 

B , = : D - ~ - P - I & - T Q .  (3.24) 

(Also determinable, excluding  the numeric$ difficulties of near singular; 
ity,  in-the MIMO case if both D and BLT exist-) Then, either the E;. 
and 5 could be recalculated to reflect the use of (3.2) or, if the B, in 
(3.24)  were still assumed  inexact, due  perhaps  to incomplete parameter 
convergence, the  adaptation  procedure could be  restarted. This tiering of 
decision-making  mechanisms is a rudimentary example of the layered 
approach to learning systems  recently formulated  in [49]. The suggestion 
of successive  regeneration of the adaptive scheme  with an “improved” 
estimate of B ,  also  raises  the  possibility of incorporating such  a  rede- 
termination of B,  at each iteration, possibly  providing an overall con- 
sistent  scheme. 

5)  If B, = . . . = BN - I =U, but BN #0, i.e., the plant in (2. I )  includes a 
transport lag,  basically an N-step  delay  occurs  between action  and 
observation of the  reaction necessary for  correcting the  feedback  gains. 

Iv. SIMULATIONS 

The  direct  adaptive  implementation of one-stepahead  optimal  control 
via input  matching espoused in  Theorem 1 will be  examined in this 
section  via  simulations.  Examples  display  several  salient features of 
adaptive  input  matching for one-stepahead  optimal  control:  consistent 
control without consistent  identification, insensitivity to parameter am- 
biguity due to order over-estimation;  robustness  despite output measure- 
ment  noise,  ability to  track  jump  parameter changes; and feasibility of 
two-stage adaptation relaxing the necessary a priori knowledge of B,. 
The examples are limited to SISO plants in order to more  clearly  display 
these valuable  characteristics, though MIMO examples  have also been 
successfully  simulated  [27], [50]. 

A .  Consistent Conirol Wilhout Consistent Ident&ation 

Consider  the unstable SISO plant 

z + l . l  - 2+ 1.1 
z2- 1.6z+ 1.28 (2- 1 .13d4) (z -   ~13e -b ’~ )  ’ 

- ( 4 4  

the  inverse of which  is  also  unstable. This plant is stabilizable by 
one-step-ahead  optimal control for positive  values of p between 0.3 and 
35  in P = p F ,  with Q-’BTF= 1, as is  easily  verified  by  a  simple root- 
locus  plot. For p= 10 the steady-state response  to  a  unit-step input is 

10(1)(1+1.1) 
ys’(R(z)=’~(l-z~l))= (1-1.6+1.28)+10(1)(1+1.1) =0.97  (4.2) 

which is very  close  to  the  unit  reference. 
The  indirect one-step-ahead  optimal control of H,(z) achieved in  the 

virtual  steady-state  environment of the step response,  neglecting the 
perturbation  input  found necessary in [14], can prove  satisfactory as 
shown in Fig. 3. (Note that the  clipping on this and  other  plots is a 
characteristic of the plotting  routine,  not the actual curves.) The “adap 
tive step response,” an established evaluator-comparator for adaptive 
control schemes  [17], [IS], [20],  of the simultaneous  equation  error 
identification [Sl]  and one-stepahead  optimal  control of H,(z), given an 
accurate initial estimate of the unity numerator gain and initidy zero 
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Fig. 3. Simultaneous identification and one-:tep-ahea< o p t i q l  contr-01: unit step re- Fig. 5. One-stepahead optimal control yia adaptivp  inpuI-matchipg: unit step response 
sponse (plant: H l ( z ) ;  initial estimates: Bl(0)= I,Al(0)=A2(O)=B2(O)=O). (plant: Ihl(z); initial estimates: D(0)=0.9, Fl(0)= F2(0)= G2(0)= - 1.1). 
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Fig. 4. Simultaneous identification and one-st:p-ahe@ o p w  conpol: unit step re- Fig. 6. One-stepahead optimal control via adaptive input -mtching:-unit step  response 
sponse(plan1: HI(.?); initialestimates: B ~ ( O ) = B ~ ( O ) = A , ( O ) = A ~ [ O ) = I ) .  (plant: HI(=); ioitiolesrimates: b(0)=0.9, f,(U)= F2=(O)=C,(O)=O). 

guesses for  the  remaining  transfer-function coefficients,  proves stable  inputs [14]  required to assure  consistent plant  identification  in  indirect 
and approximately  optimal, in the  sense of (4.2),  despite the slight  schemes are unnecessary in  input  matching since the objective is control 
residual sum of the  squared parameter errors.  Convergence is rapid  in 
this noiseless  case.  However, for the different initial estimate of all the 
transfer-function coefficients as unity, with the identical  stepsize weight 
formulation [51, section 4.61, the  identifier is  "satisfied"  by a sigmficantly 
more erroneous  parameter set  that, when incorporated in  (3.1),  generates 
an unstable response, as indicated by  Fig.  4. 

The  direct  approach of exact output matching,  epitomized by the 
"adaptive  inverse  control"  in  [34],  though  avoiding the pitfalls of an 
ill-posed identification task,  would fare no better  due to  its attempted 
cancellation of the  unstable numerator in  (4.1)  [52]. In  [53]  the  limiting 
of the input-signal  magnitude  is  suggested, which leads to the  possibly 
undesirable limit  cycle  oscillation of bang-bang control. A second cor- 
rective procedure suggested in [53] is the  more  careful  choice of a 
reference  signal. Rather  than  attempting to  adaptively track, e g ,  a step, 
a  suitable  approximation to the  step should  be  followed. The only  truly 
suitable facsimile  is a  step response retaining the  nonminimum  phase 
zero, thereby  not requiring its cancellation.  But this requires  exact 
knowledge of a  plant  parameter which  is assumed unknown a priori. 

Input  matching avoids  these  restrictions. For the initial  estimates of 
D(O)=O.9 and c(0) = %(O) = - 1.1 corresponding  to  the  unity plant 
parameter  guesses of the  divergent  simultaneous identification  and  con- 
trol  example, input  matching  has significantly bounded the adaptive  step 
response wib forty iterations  and optimauy  stabilized the  output in 
significantly  less than eighty iterations, as  illustrated in Fig.  5,  using the 
same stepsize weighting formula.  Begnning with the zero estimates 
relating  to  the initial guesses of the convergent  indirect  example, the 
adaptive  step response in Fig. 6 maintains  a lower  overshoot. The 
convergence times are roughIy equivalent.  Note,  more  importantly  how- 
ever, that  adaptive  input matching  achieves consistent  optimal  control 
despite  inexact control  parameter identification, as expected  from Theo- 

signal formation  rather  than control-law determination. 

B. Insensiiiviy to Order Owreslimation 

The almost-inverse control choice of Q -'B:P= 10 used in  determin- 
ing the  optimal  control of 

2.52- 1 = 
f u r )  = 

2.5(Z - 0.4) 
r2-O.8z+0.4 ( ~ - 0 . 6 3 2 e ' D ~ ~ ~ " ) ( z - 0 . 6 3 2 e - j ~ ~ ~ )  

(4.3) 

improves the  underdamped  plant  step response  to a practically deadbeat 
behavior.  Fig. 7 demonstrates the  postulated  convergence of the adaptive 
step response  achieved via input matching adaptive control of (4.3) 
despite the overestimation of the  plant  order, in this  case  by one to  third 
order. Despite the considerable  residual  sum of the squared  error be- 
tween the convergent control  parameters  and their  respective  minimal- 
order  optimal  control law counterparts,  the response  proves optimal 
within  forty iterations. The wild  initial  gyrations are  due  to the short  lag 
in  overcoming the large initial parameter estimate errors. 

C. Robusf Behavior Despite Noise 

Despite the exclusion of noise  from  the  theoretical  development,  the 
adaptive  step response in Fig. 8 for input  matching  control of &(z) 
seems  centered about the  noise-free  optimal  response  despite  the uni- 
form [ -0.25, 0.251 sequentially  uncorrelated output measurement  noise. 
Input matching appears to maintain robustness  even in the presence of 
zero-mean  noise  impinging on  the  output values  in (3.5), (3.6), and 
(3.12).  Analytical  examination of the  scheme's  behavior in a noisy 
environment  could rely on  a proper  extension of its deterministic 

rem 1. A constant residual  sum-squared control  parameter  error remains Lyapunov stability foundation through  related stochastic  invariant set 
in both Figs. 5 and 6. Therefore  the probing signals (541 or  perturbation theorems [55].  

Authorized licensed use limited to: Cornell University Library. Downloaded on September 02,2024 at 06:10:08 UTC from IEEE Xplore.  Restrictions apply. 



870 IFEE TRANSACTIONS  ON  AUTOMATIC CONTROL, VOL. AC-23, NO. 5, OCTOBER 1978 

0 OPTIMAL RESPONSE 

rPARAMETER ERROR 
SUM SQUARED  CONTROL 

0 OPTIMAL RESPONSE 

STEP  RESPONSE 

IO 20 30 40 
ITERATIONS 

Fig. 1. Convergent  behavior despite plant  order over-estimation apd severe parpeter 
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Fig. 8. Adaptive input matching 9th OIIQut m-easureqent noise: unit step response 
(plant: H2(z);  initial estimates: D(0)=Fl(O)=F2(O)= GAO)=O; output  measurement 
noise: uniform [ -025, 0.251). 

D. Recawry from Plant Parameter Change 

In Fig. 9, the  plant H2(z), on the fortieth iteration, abruptly becomes 

by the doubling  of  the  denominator  plant  parameter weighting Y(k)  in 
the  difference equation description of Y(k + 1). If the optimal  controller 
for H2(z), with p= 1, remains  in  use after the  change  to  the unstable 
H3(z), an  unstable response  results. The adaptive  input matching con- 
troller,  however, rapidly  adjusts  to this change  in parameters  and con- 
tinues ta reasonably  track the reference  pulse train. This abrupt parame- 
ter  variation  is characteristic of any  plant suffering instantaneous  struc- 
tural or environmental alteration such as component failure [56]. Simi- 
larly,  this control scheme can be expected to properly adjust  to slowly 
time-varying plant parameters, a widely touted strength of adaptive 
mechanisms [57]. 

E. Two-Stage Adaptation 

Finally,  the  suggestion,  arising  from  (3.24), to recover  from inaccurate 
estimates of the  needed plant parameter 8, by its redetermination  upon 
the  convergence guaranteed by Corollary 1 is  followed.  Fig. 10 shows  the 
biased output resulting  in attempting  tolcontrol H 2 ( z )  to follow  the 
optimal  response of p= 1 with a choice of B,(O) slightly  less than half the 
correct  value. Incorporation of a second adaptive stagea  testing  the 
consistent  smallness of the error in (3.20) and  updating B ,  via (3.24) 
once this error is  sufficiently  reduced narrows the gap between  the 
optimal  and adaptive responses to the  reference  pulse train. The first 
correction  noticeably  occurs around the thirtieth iteration. Since the 
reference has assumed  basically only two different levels to  that point, 
dissatisfaction of (A.7) and therefore  exact parameter convergence 
cannot be  expected.  In fact, the improvement in E ,  is  observably 
incomplete at this early  stage. The feasibility of continuing this strategy 
is limited, however,  only  by the  recurrent  satisfaction  of Corollary 1 and 
therefore appears plausible. 

n 
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- - I  
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Fig. 10. Two-stage adjustment  for  inaccurate es+ate or 8,: pulse train response 
(plant: H ~ ( L ) ;  initialestimates: D(0)=F,(O)=Fz(O)=G2(0)=0,BI(O)=12). 

V. CONCLUDIRG REMARKS 

The primary contribution of this paper is the exposition of the  concept 
of implementing adaptive  control via input matching. This concept shifts 
the  focus of the  adaptive task and bypasses  several of the  restrictions of 
the  current techniques of simultaneous identification and control and 
adaptive  exact-output matching. The  concept of adaptive  input  forma- 
tion reduces the problem to  one of parameter estimation once  the 
structure of the  control law is established. W e  output  matching 
requires  the  development of ingenious  algorithms utilizing the  prestruc- 
tured error between a desired  response and  the  plant output, the  empha- 
sis is reversed for  input  matching to a necessity for the  clever production 
of an  input matching error to be utdked in easily  established  globally 
convergent adaptation algorithms. 

The  theoretical advancements of adaptive  one-stepahead  control via 
input matching expand the  range of feasible applications of adaptive 
control.  The control of power  systems  subject to component failure 
would  utilize  the adaptability of input matching to jump  parameters 1561 
in a  predominantly  steady-state environment.  Application to economic 
systems  with  goals  practically  established  in  terms of optimal loss func- 
tions 1581, 1591 would require the multivariable  optimal control basis of 
the adaptive  input matching  scheme  developed in this paper. The  direct 
structure of adaptive  optimal-input matching  could  also be used to 
model  the adaptive  human  control element in man-machine  systems [60& 
t611. 

APPENDIX 

This  appendix will establish a multivariable parameter estimation 
technique capable of providing  consistent  estimates, in most cases, of the 
entries in the q x  m parameter matrix 8 in the multivariable linear 
combination 

w(k) = e T x ( k )  (‘4.1) 

from  perfect  measurements of the q X 1 input vector X and  the rn X 1 
output vector W despite  the error in  the initial estimate of 8. The 
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parameter estimation  algorithm,  termed adaptive  due  to its capability to 
respond to slow  time  variations in 8, extends  the scalar equation error 
formulation  in [51, pp. 193-2081 based on Lyapunov's stability thmry 
for discrete-@e  systems,  first  presented in English in [62]. The  parame- 
ter  estimates 0 based on observations of X and W can be used to predict 
the  vector output via 

$(k)=B^'(k)X(k). ('4.2) 

Theorem A.I: If the  estimated  parameter  matrix e^ in (AZ) is updated 
by 

B^(k+I)=B^(k)+h(k)H(k)O(X(k)[W(k)-  F?(k)lT), (A.3) 

where 0 denotes element  by  element matrix multipfication, 

3 n , a n d H u 3 0 < H , $ H u ( k ) < H , < a ,  

Vk;ViE[l , . - - ,q];   Vj€[l; . . ,m] (A.4) 

where Hv denotes  the  0th element of H ,  

(A.5) 
and the scalar h(k) satisfies 

O<h(k)< 
2 Vk, Vj€[l;.-,m]. (A.6) 

H,(k)X,z(k> 
i= I 

Then,  unless 

( x ~ ( ~ ) = o  or ~ , ( k ) - W ; ( k ) = o )  and e - i ( k ) + o  vk>k,  

(A.7) 

where Xi(k) (or W,(k)) is the ith (or jth) element in the column vector 
X(k)  (or W(k)),  for  any initial  estimate e(0) 

B^(k)+B as k j c o  

where 0 is the parameter matrix in (AI). 
Proof: From (A.1) and (A.2),  (A.3) can be  rewritten as 

B ^ ( k + l ) = i ( k ) + h ( k ) H ( k ) Q ( X ( k ) X ' ( k ) [ O - B ^ ( k ) ] ) .  (A.9) 

Defining the  parameter  error as 

i ( k )  e - i ( k )  (A.10) 

and accordingly  rewriting (A.9) after  subtracting  both sides  from 0 yields 

i ( k + 1 ) = i ( k ) - h ( k ) H ( k ) O [ X ( k ) X ' ( k ) i ( k ) ]  (All) 

which  is a linear, time-varying free,  discrete-time  system. 
Define  the  scalar-valued  Lyapunov function  candidate 

V ( i , k )  2 H,(k)tr[  i ' (k ) ( i (k )a  H ( k ) ) ]  (A.12) 

where @ denotes element-by-element  matrix  division.  Obviously, V(0,k) 
= 0. Choosing a(. ) and p(.  ) as 

. ( 1 1 ~ 1 1 ) = [ ~ L t r ( ~ ' i ~ ] / ~ U  (A.13) 

B(llill)= [ Hutr(i=i)]/HL (A- 14) 

and 

and defining the  norm  as 

((SI1 tr(S'S) 

satisfactorily bounds V. 

(A.15) 

Equations (A.4) and (A.5) ensure  that  the first double sum in (A.17) is 
always  nonpositive;  therefore, (A.17) can be replaced by 

Utilizing (A.10) to expand (A.18) yields 

X [ B , ( k + 1 ) + B , ( k ) - 2 e V ] .  

Defining 

+(k)  W ( k ) -  k(k)=[B-B^(k)] 'X(k)  

results  in 

X [ h(k)H,(k)X:(k) e ( k )  -2ib(k)Xi(k)] 
or 

(A. 18) 

(A.19) 

(A.20) 

(A.21) 

-2h(k) 2 q ( k )  . 1) (A.22) 

Therefore, (A.6) would convert (A.22) to 

A V ( i , k ) < O .  (A.23) 

In  order to utilize  Lyapunov's main stability theorem, A V ( i , k )  must 
be negative definite  rather  than negative  semi-definite as shown by 
(A.24). The  inequality in (A.24) is possibly an equality for  any O # O  only 
if the  summation element in (A.21) is zero for some B#O.  This is avcrted 
by disallowing (A.7) for all time after some k = k, .  Reconsidering B(kJ 
as the  initial  estimate,  despite  previous  behavior,  completes  the  verifica- 
tion of (A.12) as  a  Lyapunov  function. Therefore, B(k) is asymptotically 
stable in the large  which  proves (A.8) regardless of the  initial 0. Q.E.D. 

The  injunction  against (A.7) and the failure of the  algorithm  to update 
the  parameter  estimates  despite  their  error  prohibits two major  difficul- 
ties of parameter identifiability [38, ch. 41, [63], [HI: input sufficiency 
and  parameter resolvability. The resolution of parameter ambiguity, 
however,  is actually of secondary importance in a  control  situation.  The 
consistent  construction of the output of the estimator  for use as the 
control  input  more realistically depicts the  estimator's practical use. 
Therefore, global unbiased convergence of the  output  estimate irrespec- 
tive  of the  Occurrence of (A.7) is  detailed in the  following  theorem. 

Theorem A.2: If the estimated  parameter matrix 0 in (A.2) is updated 
by (A.3) while  satisfying (A.4),  (A.5), and (k6), then 

@(k)+W(k)  as k-+oo. (A.24) 

Proof: If (A.7) is not satisfied,  then (A.8) is satisfied for  any initial 
estimate of B and from (A.20) it is obvious that (A.24) is true. Alterna- 
tively, if (A.7) proves  correct,  despite the cause,  the-offending  terms do 
not offer  any nonzero terms to the calculation of W .  Therefore, due to 
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the consistent coqvergence of the remainder of ê  irrespective of i(O), 
implicit in (A.7), W must be zero which supports (A.24). Q.E.D. 

A more  complete presentation of this estimation scheme appears in 
1651. 
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