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Abstract-The  concept of adaptation  in  digital  fiitering has proven to 
be a  powerful and  versatile  means of signal processing  in  applications 
where precise a priori filter design is impractical.  Adaptive  filters have 
traditionally  been  implemented  with FIR structures,  making  their 
analysis  fairly  straightforward but  leading to high computation  cost in 
many cases of practical  interest (e.g., sinusoid  enhancement).  This 
paper  introduces  a class of adaptive  algorithms  designed  for use with 
IIR digital  filters  which  offer  a  much  reduced  computational  load  for 
basically  the  same performance.  These  algorithms have their basis in 
the  theory  of  hyperstability, a concept  historically  associated  with  the 
analysis of closed-loop  nonlinear  the-varying  control systems.  Exploit- 
ing  this  theory  yields H A W ,  a  hyperstable  adaptive  recursive  fiitedng 
algorithm  which  has  provable  convergence  properties. A simplified 
version of the  algorithm, called SHARF, is then developed  which  re- 
tains  provable convergence at  low convergence  rates and i well suited 
to real-time  applications.  In  this  paper  both HARP and SNARF are 
described  and  some  background  into  the  meaning  and  utility of hyper- 
stability is given. En addition,  computer  simulations  are  presented 
for  two  practical  applications of IHR adaptive fiters: noise and multi- 
path  cancellation. 

I. INTRODUCTION 
HE CONCEPT of  adaptation in digital filtering has  proven 
to be a  powerful  and versatile means  of signal  processing 

in applications  where precise a priori filter design  is impractical. 
§elf-adjusting or  adaptive filters have been successfully applied 
to  a wide  spectrum  of  problems, ranging from  channel equaliza- 
tion to antenna  beam-forming  and  noise cancelling [l] -[4] . 
For the most  part,  such signal  processing applications have re- 
lied upon  the  well-known  adaptive  finite impulse response 
(FIR) filter configuration. Yet,  in practice, situations com- 
monly arise wherein  the  nonrecursive  nature  of  this  adaptive 
filter results in a heavy computational load. Consequently, 
in recent years, active research  has attempted  to  extend  the 
adaptive FIR filter algorithms to the  more general feedback or 
infinite impulse response  (IIR)  configuration.  The  immediate 
reward lies in the substantial decrease in computation  that  a 
feedback filter can offer over a  nonrecursive filter. 

Several authors 151 - [9] have recently suggested various 
procedures for adjusting the parameters  of  an IIR filter based 
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on a  data-dependent  gradient search. Primarily,  these algo- 
rithms  represent  a  generalization  of the gradient-estimation 
procedures serving as the  foundation  for FIR adaptation. 
However,  due to  the feedback  configuration,  compounded  by 
the nonlinear  nature  of the  adaptation  process,  a  rigorous 
analysis of convergence properties  has not been established, 
and  consequently  a simple and  broadly  applicable  algorithm 
has not emerged. 

This paper  presents  an  alternate  approach for adapting the 
parameters  of the I1 filter that is  based on  the  theory  of 
hyperstability [lo] , [ I l l ,  a  powerful  concept that was de- 
veloped for the stability analysis of  time-varying  nonlinear sys- 
tems [I21 . As will  be shown, the adaptive IIR process can be 
viewed  as a linear system having time-varying  nonlinear  feed- 
back.  The  updating  procedure can be  chosen to assure that 
the resulting closed-loop  configuration is hyperstable,  and 
hence  convergent. The resulting algorithm will be derived in 
two stages. The first technique,  which  has  been  designated the 
hyperstable  adaptive recursive filter (HARF) [ lo] ,  has  been 
proven  convergent for a  broad class of  circumstances.  The 
second  technique I l l ]  represents  a simplified version  of the 
first,  hence  the  acronym SHARP;, and is hyperstably  con- 
vergent only  for slow rates of  adaptation. However, the 
SWARF algorithm is more  amenable to real-time implementa- 
tion, as its required  computation is on  the  order of that of the 
LM§ algorithm E131 used in adapting FIR filters. 

To develop the adaptive  algorithm  Section I1 of this paper 
reformulates the IIR filtering problem in a  framework that 
dlows use of results from output error identification [14] , 
El51 ; the HARF algorithm is a direct consequence. Since 
the  concept  of  hyperstability  has not previously been  applied 
to adaptive signal processing,  Section 111 discusses its require- 
ments  and  implications in the  context  of  adaptive filtering. 
Section IV presents the simplified algorithm (SHARF) and 
demonstrates  the resulting performance.  In  comparison  with 
another  adaptive IIR filter algorithm [7], it is  seen that 
convergence is not  only  guaranteed,  but actually accelerated. 
The  remaining  two sections describe  two typical applications 
where adaptive  IIR filtering using SHARF proves to  be  of 
significant value: adaptive noise  cancelling [I 61 and  adaptive 
multipath cancelling [17] . 

11. ADAPTIVE IIR FILTERING 
A. Gradient-Based Formulations 

The  basic notation  and  structure  of  the  adaptive filtering 
problem is shown in Fig. 1. A discrete input  sequence x @ )  
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Fig. 1. Adaptive  fiiter structure and notation. 

is  applied to a  digital  filter having a  parameter  vector 8, to 
produce output sequence y(k). It is desired that  the filter's 
parameter  vector be designed in such  a  manner that  the  out- 
put closely approximates some external signal d(k), and that 
the error  between the  two, 

e(k) = d(k) - Y(k),  (1 1 
be small. Typically,  the  squared-error cost function is called 
upon as  a design performance measure due to  its mathematical 
simplicity: I 

J=- e2(k - I ) .  A 1  

2 I = O  

To alleviate the necessity  for  careful a priori measurements 
of x(k) and d(k),  the filter  can  be made self-adjusting as shown 
in Fig. 1. By allowing variations to the  internal  filter  param- 
eters  in 8 determined by  a performance  feedback  algorithm, the 
filter  ideally converges to optimal design 8" minimizing J. For 
FIR filters,  such  convergent  algorithms  are readily available 
and  are  robust  under  a wide class of  input  environments. 

One such  family  of  adaptive  procedures [ 131 is based on  a 
gradient  search of the performance  surface. If the  parameter 
vector at time k is  denoted as 8 (k),  then  the updating algo- 
rithm  is given by 

t 1) = e (k )  - p(k) ve~(e(k)) (3) 

where p(k) is a scalar sequence  and Ve J is the gradient of the 
cost  function  with  respect to  the parameter  vector 8. For 
proper  choice  of  sequence p(k) convergence can  be  assured; 
however,  only  when  the  cost  function  is  unimodal  with  respect 
to 8 will convergence be to  the globally optimal design 8" for 
arbitrary  initial  choice of 8(0). When the  true  gradient is un- 
available, unbiased estimates will suffice  in  certain cases. For 
adaptive FIR filters,  gradient-based  algorithms owe their use- 
fulness to 1)  the ease of  computation  of  the  gradient  and 2) 
the  hyperparabolic  nature  of the squared-error  cost  function 
in the filter  parameter  space. 

For  adaptive recursive filters,  these  two  features  no  longer 
apply. The  output of an adaptive  IIR  filter  can be expressed 
as an autoregressive moving  average (ARMA) process driven by 
x@) , 

M N 

j = O  i = l  
y(k) = Sj(k)x(k - j )  + a^j(k)y(k - i). (4) 

Note  that  the N parameters Qj(k) are  feedback  coefficients, 
and M t 1 parameters Sj(k) are  feedforward  coefficients. 
The time-varying nature  of  each  adjustable  parameter is 
implied by  the argument k .  The adapted  parameter  vector 
is then 

The  optimal  IIR  filter  occurs  for 8(k)  e", where 

This necessary condition  reduces to a  set of scalar equations, 

1 < i < N  ( 7 4  

O < j < M .  (7b) 

Note  that  these  equations dismiss interdependence  of the 
filter  parameter  set; as such, (7a) and  (7b)  represent  a  greatly 
simplified version of the  true gradient  formulas that would 
result  in the presence  of  parameter  adaptation.  The  effect 
of  parameter  adjustment  in  a  feedback  filter  manifests  itself 
as additional  filter  dynamics, making unbiased  gradient  estima- 
tion  a  function  of  filter  time  constants. 

Due to  the feedback  characteristics  of the  IIR configura- 
tion, this simplified set of gradient  equations is nonlinear,  and 
in general it  can  be satisfied by multiple  extrema.  For a specific 
numerical  example,  refer to [18] . Consequently, seeking the 
optimal design 8" by  a  gradient  search of the performance 
function will not necessarily be successful. Convergence to 
local minima will invariably occur  for  certain  initial values of 
parameters.  Furthermore,  the  computation  of  the  gradient,  as 
indicated by (7b),isitself  a recursive process,  and  can  represent 
significant computation [ 191 . 

Summarizing, the general  problem  of designing IIR  filters, 
adaptive or  not, lacks  the  mathematical advantages that have 
made least-squares  performance  useful  for  estimation. Also, 
the general gradient  search  framework is  less suitable to 
develop an  adaptation  strategy to seek an  IIR  fdter  design. 

B. Output Error Identification Approach 

itself be a  bounded ARMA process driven by x@), 
Consider a less general,  more  structured  problem.  Let d(k) 
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Fig. 2. Output error  parameter identification. 

where the generating  parametersai  and bj are  constant. Assume 
further  that sufficient variables are  provided in the adaptive 
filter to span the parameter space generating d(k), i.e., M >  
Md and N >Nd.  Without loss of generality the assumption 
that M = M d  and N = N d  is permitted,  with  any  excess  generat- 
ing parameters  equaling zero. The error process e(&) becomes 

N 
t {aid@ - i )  - @j(k)y(k - i ) }  . (9) 

i = l  

It is sufficient to choose E bj and &j =ai to minimize J .  If 
so, then 

N 

i = l  

and  due to  the  bounded-input  bounded-output (BIBO) stability 
of (8), 

lim e(k) = 0. 
k - t  m 

Once steady  state has occurred,  this  choice  of  parameters, as 
would be  expected, yields a  minimal  squared  error. 

With the  fiter design problem  stated in this fashion, it is a 
restatement  of  the output error identification problem [14], 
[15] shown in  Fig. 2. In  this  situation, an unknown ARMA 
plant  has  input x(k) and output d(k), perhaps  measured in the 
presence  of noise. It is  desired to estimate  or  identify its  in- 
ternal parameters ai and bj in  an  unbiased fashion. This can be 
done  by using a parallel model  [20] , driven by  the same input, 
the  output y(k)  of  which is compared  with the plant output 
d(k).  On the basis of this output  error,  the  parameter  estimates 
are formed. However, there is an important distinction: In  the 
identification problem  a  performance  measure based on  the 
error is  used only as a  means  of attaining small parameter error; 
in  the filtering problem,  a small output error is instead the 
desired end. In certain cases, a filter can  tolerate substantial 
parameter error and still perform satisfactorily. 

Many of the same computational  problems  that  burden  adap- 
tive IIR filtering also  plague output error identification, i.e., 

x ( k )  UNKNOWN 
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5 d(k) 

x ( k )  - 
- EQUATION 

- EQUATION 
ERROR 

IDENTIFIER 1 M N 1 y ( k ) =  Z i , x ( k - j )  + Z a , d ( k - i )  
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Fig. 3. Equation error  parameter identification. 

parameter  evaluation  by  gradient  search  remains  a nontrivial 
task.  Consequently,  approaches to identification other  than 
output  error, e.g., equation error 1211 , E221 , shown in Fig. 3 ,  
have beenmore widely  accepted  at  the cost of  potential  param- 
eter bias. Rather than modeling  with the feedback  structure 
of (4), the  actual  plant  output d(k) is substituted for the model 
output  on  the right-hand side, giving  rise to  the series/parallel 
model  [20] 

M 
y(k)  = Gj(k)x(k - j )  t Bj(k)d(k - i). 

N 
(12) 

j = o  i =  1 

With sufficient degrees of  freedom, simple gradient-based 
adaptation  of  the  parameters assures consistent  convergence, 
with  one  important  exception. Whenever d(k) is measured 
in the presence  of  observation noise, the  parameter  estimates 
will, in general, be biased [23] . 
C. The Hyperstable Adaptive Recursive Filter 

Landau [14] has  recently  introduced  an  unbiased output 
error procedure  for seeking parameter  estimates  of an ARMA 
plant,  the hyperstable output error identifier. Presented  here 
is an IIR  adaptive filtering algorithm based on  this  hyperstable 
output error identifier. This  technique,  the  hyperstable  adap- 
tive  recursive filter (I-IARF) [lo],  embodies  two  modifications 
of Landau’s algorithm  making it more suitable for the signal 
processing context.  First, Landau’s technique calls  for dimin- 
ishing adaptation gain factors,  ultimately converging to zero. 
When identifying a plant  with  constant  parameters,  such  an 
algorithm is acceptable;  however, it has  been recognized that 
for  most  adaptive filtering problems,  adaptation  must remain 
active to track  changes in the signal environment  [13] . Sec- 
ondly,  the hyperstable identifier is not  strictly causal, requiring 
the  current  output sample d(k) to form  the  current  parameter 
values $j(k) and &i(k).  Again,  while this  condition is reason- 
able  for  parameter  estimation, it is undesirable  for real-time 
filtering. 

The HARF  algorithm  represents  the first technique  proposed 
for adaptive IIR filtering which  has  provable convergence 
properties. Despite  its  moderate  computational  complexity, 
a careful study  of  its behavior  allows simplifications to be 
made, preserving most  of  HARF’s desirable properties  while 
reducing  the  required  computation. 

The  HARF  implementation is shown in Fig. 4 for use in the 
following discussion. Notice  from the figure that in addition 
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Fig. 4. Implementation of HARF. 

to  the principal adaptive filter that forms the  output y(k), 
there is an auxiliary process  generated: 

N 
f ( k )  = ai@ t l)f(k - i) t & ( k t  l)x(k - j ) .  (13) 

M 

i = l  j = o  

This ARMA process is  used both  in forming the  output 

N 
~ ( k )  = ê i(k)f(k - i) t &k)x(k - j ) ,  (1 4) 

M 

i =  1 j = O  

and in  the adaptive  algorithm, to appear  shortly.  The  param- 
eters in these  two  equations are separated in time by one  sample; 
that is, weighting coefficients used in (13) have undergone  one 
additional  update  versus  those in (k4). If conIergence  should 
occur,  then ai(k t 1) =ai@) and bj(k t 1) = bi(k), and y(k)  
asymptotically converges to f (k ) .  However, in the transient 
stages of  adaptation,  the  distinction between y(k)  and f ( k )  
proves  necessary. 

Suppose at each  sample the adaptive filter coefficients are 
updated  according to the  formulas 

P tc cz{d(k-Z- l ) - f (k -Z-  l)}, O=Gj<M,  

(15b) 

I =  1 1 
where 4(k) is a  normalizing  factor greater than  unity, 

and pj and pi are  arbitrary positive constants.  In  addition, the 
P constants cl are chosen  by the designer so that  the discrete 
transfer function 

P 
1 t C qz-1 

G(z) = 
1 = 1  

N (17) 
1 - QiZ-' 

i =  1 

is strictly positive real (SPR) [26] . The  implications  of  this 
requirement  are discussed in Section 111. 

Under  these  conditions,  proof  can be given [lo] that  the 
moving  average quantity 

= (d (k )  - f@)) + 5 C l ( d ( k  - 1) - f (k  - 1) )  (18) 
I =  1 

converges to zero  and as a result 

Y(k)  + f W  -+ (19) 
whichis  the  desiredperformance.  For  further details see [lo] . 

Before  proceeding to a  discussion of the SPR  assumption 
necessary for  this hyperstable  formulation,  consider briefly a 
heuristic description  of  the  HARF  updating  algorithm.  In (15) 
it can be seen that, aside from  assorted positive scaling factors, 
the  update to each coefficient is  basically a  product  of  two 
components. First is the value of  the signal corresponding to 
the given weight in the  output  equation (14). For  example, 
the  update to a,(,%) depends on f(k - I ) ,  and  their  product 
&@)f(k - 1 )  appears in (14). The  second  factor  [appearing 
in  brackets in (15)] is dependent on  the  instantaneous per- 
formance  of the  filter, disguised by  a moving  average expres- 
sion. Therefore,  for  a given quality  of  performance, largest 
adjustment is made to  the coefficients contributing  the  most 
to  the  output via (14). These features are  shared by  a family 
of  adaptation  procedures.  Readers familiar with gradient- 
based FIR  adaptation  procedures will recognize  a similarity. 
However, as noted,  the complexity  of  an IIR  structure results 
in specific differences that  cannot  presently  be  accounted  for 
by  means  of  a  gradient  descent  approach. 

111. HYPERSTABILITY AND ADAPTIVE FILTERING 
The  concept  of  system  hyperstability,  upon  which  this  adap- 

tive IIR filtering algorithm is based, was developed by V. M. 
Popov [12] , and  provides  a generalized description  of output 
stability in time-varying  or  nonlinear cases. Use of this analy- 
sis has  occurred  primarily in the  control  theory  literature. 
For  example, it has  recently  been  applied to  output error 
identification via the  model  reference  adaptive  system struc- 
ture [14] . However, the signal  processing community  has  not 
satisfactorily benefited  by  this analysis technique.  In  this sec- 
tion  the hyperstability  theorem is stated  and  a heuristic descrip- 
tion  of  its  conditions and  implications is given. In  addition, 
its relationship to adaptive filtering algorithms is shown. 

Hyperstability is defined for the  discrete-time case  as follows 
[24] , [25] . Let G(z) be a rational scalar transfer function  for 
a linear time-invariant  system  driven  by u(k) and  responding 
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with y(k). The  system is said to be hyperstable if its  state 
vector  remains  bounded over time for all driving sequences 
u(k) satisfying jointly with the  output 

2 u ( l ) y ( l ) < K 2  V K o .  (20) 

The  present discussion deals with  a  stronger variation of this 
definition,  rigorously  denoted as asymptotic  hyperstability, 
which  requires that  the  state vector  decay to zero for the 
same  class of  input  sequences;  references to hyperstability in 
this  section will actually  imply this latter  definition.  Note 
that if G(z)  has  a  proper rational form,  the  output y(k) will 
likewise decay to zero. 

The  hyperstability  theorem [ 121 , [24] is a simple statement: 
The system  described above  is hyperstable if and  only if its 
transfer function G ( z )  is strictly positive real  (SPR) [26] , i.e., 

Re [G(z)] > 0, z = e j e  . (21) 

That is, a  SPR  system will  have a  bounded  output  when driven 
by  any  input  (including  certain divergent  sequences) satisfying 

The  hyperstability  theorem  has  an interesting interpretation 
in  terms  of  system passivity [24] , [25] . A familiar physical 
example arises in network theory, in a  continuous-time context. 
It is  well known that  the driving-point impedance Z(s) of  a 
passive network is SPR,  and relates driving current to response 
voltage at a network port. Consider a state realization where 
each  state variable corresponds to  an energy storage  component. 
For  any  current  such that  the energy delivered into  the network 
is bounded, i.e., 

I = 0  

(20) * 

E = ~ T v ( t ) i ( t ) d t < K 2  V T ,  (22) 

then  the energy  stored internally must  be dissipated, Le., 
Ilx(t)II +O. By analogy,  any  system that is SPR  can  be 
thought  of as  dissipative in a  mathematical sense. 

It is in the closed-loop  configuration that system  hypersta- 
bility becomes  useful in adaptive filtering; parameter  adaptation 
of digital filters can be restated in such  a  configuration  [25] . 
Let u(k) be  a  sequence derived  as a  nonlinear  time-varying 
function  of  the  output,  denoted as a general feedback  element 
3 in Fig. 5(a). Had the feedback  been linear, F(z)  as indicated 
in Fig. 5(b), BIB0 stability is  easily checked in the  frequency 
domain,  by locating the zeros  of 

1 + F(z)   G(z) .  (23 1 
A zero  not inside the  unit circle  implies instability. A physical 
interpretation,  of  course, requires that  loop gain  never be - 1 at 
any  frequency, Le., give  rise to 180" phase  shift. A sufficient 
but  unnecessary  condition  would  be to restrict F(z)  and G ( z )  
each to contribute less than 290" at all frequencies.  That is, 
if both  are SPR, the closed loop is guaranteed stable. 

Still, such  a  condition is not  useful when analyzing cases in- 
volving nonlinear  time-varying  feedback.  Instead, a condition 
must be  stated  in  terms  of  the  time  domain behavior of 5. 
Note  from Fig. 5(a) that  the feedback  element 3 is  driven by 
u(k), and  responds  with w(k)  = -u(k). Then if 

(b) 
Fig. 5. Undriven closed-loop system. (a) General  feedback element. 

(b) Linear feedback  element. 

K 
u(Z) w(Z) 2 -7; , V K  > 0, 

I = O  

it follows that 

K 
u(z)y( l )<Y;,  V K > O .  

z = o  

Consequently,if G ( z )  is  SPR then  the closed loop is hyperstable. 
This represents  a  means  of generalizing the positive reality con- 
cept to  the nonlinear time-varying feedback  element 3. For 
linear elements, it can  be shown  by using eigenfunction analysis 
that this condition  indeed assures that phase response at all 
frequencies  not exceed +90". From  a  more  physical  standpoint , 
if the energy delivered into  the  feedback  element 5 

2 v( l )w( l )  
I = 0  

is bounded  below as in (24), then 3 is  dissipative feedback. 
(Firhis  is analogous to the positive restriction on  the physical 
energy delivered to  a passive network.) Alternatively, (24) 
requires that  the "sign" of  the  feedback  element "on the 
average," implied by  the  summation,  should be bounded 
below. 

The hyperstability  theorem  guarantees stability for a class 
of intrinsically nonlinear  time-varying  systems. Clearly, the 
requirement given by (20) represents  a sufficiency condition, 
and as such is  overly restrictive. In  the simple linear case 
cited above, both  the strict positive reality of  the  forward 
path, and  the positive reality of  the  feedback  path are un- 
necessary for stability.  Consequently, in the general case, 
one  would  expect  the  conditions to be unnecessary. While a 
less restrictive criterion for nonlinear  systems is of  interest, 
the  formulation given here is satisfactory for use  in  analysis 
of  a class of  adaptive filtering algorithms. 

To  demonstrate  the relationship of hyperstability to adaptive 
filtering, first define  an auxiliary error quantity 
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q k )  i2 d(k) - f ( k )  

where d(k) and f ( k )  are given by (8) and (13). Note  that F(k) 
is closely related to e(k) of (1); as noted,f(k) -+y(k) as param- 
eter convergence progresses, implying that Z(k) -+ e@). For 
practical convergence  rates, the error quantities  are virtually 
identical; the  distinction is necessary in the  interest  of rigor. 
An  equation  for  the auxiliary error can be  formed in  the same 
manner as (9), 

M 
F(k) = [bj - &(k t l ) ]  x (k  - j )  

j = O  

N 
t [aid@ - i )  - ai(k t I ) f ( k  - i)] . (26) 

i =  1 

By adding  and  subtracting  the  term 

N 
a i m  - i )  (27) 

i =  1 

and  rearranging, 

Z(k) = aj{d(k - i )  - f ( k  - i ) }  
N 

i =  1 

N 
+ {ai - @i(k -I- l)}f(k - i )  

i =  1 

+ {bj - &(k + l)}x(k - j )  
M 

j = O  

N 
= a j q k  - i )  - w(k) (28) 

i =  1 

where 

w(k) = - [ai - ai(k + l)] f ( k  - i )  I N  i =  1 

-I- [bj - ;j(k + l)] x(k - j )  . 
M 

j = o  1 (29) 

Thus, the auxiliary error F(k) is an Nth order  autoregressive 
process  whose  poles are identical to those  of  the  unknown 
ARMA plant.  The driving function w (k)  is a  function  of  the 
parameter errors (bi - &(k t 1)) and (ai - a i@ + 1 ) ) .  This rela- 
tion is shown  diagrammatically in Fig. 6(a), where 

N 
A(z )  = 1 - a i z - i .  (30) 

i =  1 

Note that  the filter input x(k) enters  into  the  computation  of 
w (k )  as a  time-varying  factor. 

are  updated using performance  feedback.  This effectively closes 
the  loop, producing Fig. 6(b), where the  update  algorithm  de- 
termines the  functional  form  of 3. Note  that  the feedback is 
in general nonlinear/time-varying;  therefore,  choice  of  an algo- 
rithm that satisfies the.conditions  of  the  hyperstability  theorem 

In the adaptive case, the  parameter  estimates ai(,%) and 

Z(k1 

(dl 

Fig. 6. Adaptive filter in hyperstability  context.  (a)  Open-loop. (b) 
Adaptation  feedback.  (c) Linear preprocessor. (d)  Hyperstable 
adaptation. 

embodied in (24) is suitable to assure  convergence  of the  aux- 
iliary error. 

To  meet the hyperstability  conditions, the forward  element 
must  be  SPR. In general, the simple autoregressive  form 
l / A ( z )  will fail. A  means of augmenting it  to force  SPR can 
be achieved by  separation  of S into a linear preprocessor C(z) 
followed by  a general  element, as in Fig. 6(c). The  output of 
the C(z)  is an auxiliary process u(k), i.e., (18), 

u(k) = Z(k) i- P ClZ(k - E ) .  

E = 1  

In this case, u(k) is simply  a  weighted average or  smoothed 
version  of the  output  error. Rearranging  the  system gives 
Fig. 6(d), with  a  forward  composite linear element 

i =  1 

In  this  form,  the closed-loop output becomes u(k), a moving- 
averaged  version of  the auxiliary error. This error enters  into 
the fEnction 3, for  updating  the  adaptive filter weights ai&) 
and bi(k), and  generating  the driving sequence w(k).  If the 
values of cz are  chosen to assure the SPR  of G(z) ,  and the 
algorithm using u(k) satisfies the relation (24), the closed-loop 
system is hyperstable  and u(k) -+ 0. The error quantity F(k), 
expressible as an  internal  state variable of G(z ) ,  must likewise 
converge to zero. The  HARF  update  algorithm  described in 
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~ 

Fig. 7. Second-order system, region o f  SPR. 

Fig. S. Second-order  system, region of SPR with error  smoothing. 

the previous  section is shown in [lo] to satisfy the  hyper- 
stability conditions. 

The coefficients cz that  form  a moving  average  of the  output 
error represent  a set of P design parameters,  chosen to assure 
the SPR of G(z) in (32). The  denominator,  determined  by  the 
unknown ARMA process d(k), contributes  a  phase  that  must 
be  tempered  by  zero  placement, i.e., choice  of cl ,  to bound  the 
net  phase  by 590". As an  example,  consider Fig. 7. Assume 
that d(k) is produced  by  a  second-order filter having complex 
poles. If the transfer function 

1 
G(z) = 

1 - a, z-1 - a2 2 - 2  
(33) 

were analyzed,  for  only certain conjugate pole-pairs would it 
be SPR; the SPR region  is shown in relation to  the  unit circle 
as an  unshaded oval. Thus,  by effectively eliminating the flexi- 
bility of  a  numerator for G(z), only certain pole-pairs allow the 
use of  the hyperstability  formulation. It is interesting to  note 
that  this  excludes  the vicinity near z = 1, the region where  poles 
of an oversampled  continuous  process will cluster. 

Once  the  numerator  of (32) is introduced,  the region of SPR 
pole  location  can  be  purposely  deformed to encompass  parts 
of  the unit circle within  which the unknown poles are likely 
to  be  found. Fig. 8 demonstrates this effect for several  values 

of  a single smoothing coefficient c1 . Note  that c1 = 0 produces 
the oval region as before; as el becomes negative, and G(z) 
gives a zero on  the positive real axis, the SPR  region  is deformed 
toward z = 1. Finally, for c1 = - 1 the region becomes circular, 
tangential with the  unit circle at z = 1, and  encompasses  the 
low-frequency  pole locations. The  introduction of the cz 
parameters not only tailors the region of SPR, but also influ- 
ences convergence  behavior [ 1 11 , as shown in a later section. 

The  most serious practical consideration in choosing the cz 
coefficients to guarantee SPR of  (32) is that  the  denominator 
is unknown. Given some a priori knowledge  about  the  dy- 
namics  of  the  process d(k), a  reasonable  choice of  a numerator 
for G(z> is simply an estimate  of the  denominator. Clearly, 
a  perfect  estimate  produces  a total cancellation  of  numerator 
and  denominator, giving a degenerate SPR result, and  a  deter- 
ministic  algorithm  equivalent to an equation error variant, 
e.g., LMS. Inaccurate estimates, although not cancelling the 
dynamics  of G(z), may serve to contain  the phase angle. For 
example,  a biased estimate for the denominator  parameters 
derived via the  equation error technique  has  been faund to 
give strict positive reality of  (32)  for certain SNR levels [27]. 
As a rule, placement of a zero in the vicinity of each  pole 
provides  a  reasonable set of coefficients cz. Currently,  in- 
vestigation is proceeding 1281 - [30]  on  a  joint self-adaptive 
algorithm for adjusting the cz coefficients, parallelling recent 
suggestions in output error identification [31] . 

IV. THE SIMPLE HYPERSTABLE RECURSIVE FILTER 
While the  hyperstability  formulation of the  adaptive  IIR 

filtering problem provides a useful perspective, the resulting 
HARF  algorithm suffers from  two significant sources of com- 
putational  complexity.  First,  examination  of (15) indicates 
that an auxiliary ARMA  process f(k) is  necessary to compute 
not only the filter output,  but  the weight updates as well. 
Secondly,  the  HARF  algorithm  includes  a  normalizing scale 
factor q(k), computed for each  iteration.  Both  of these com- 
ponents  of  the  algorithm substantially increase algorithm cost 
in terms of hardware  and/or sampling rate. 

To make the adaptive IIR filtering algorithm  more  amenable 
to real-time processing, certain reasonable simplifications can 
be made. By specifying  the rate constants p and p to be suffi- 
ciently small as in successful gradient  approximation  proce- 
dures [19], the weights  change  very little from iteration to 
iteration;  therefore, 

2i(k + 1) z 2;(k) 

bj(k + 1) bj(k). 
A A 

A comparison  of (1 3 )  and (14) indicates that 

f(k> Y (k>. 

(34) 

(35) 

The  output equation (14) becomes 
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and the moving  average process u(k) in (18)  becomes 

P 
474 {d(k) - Y(k))  + e1 - 0 - Y(k - 0 1  

1=1 

P 
= e(k) t qe(k - I ) ,  

c=1 
(37) 

a simple  moving  average of  the  output  error. Finally, note 
that 4(k) in (16) is a simple normalizing  factor that  controls 
the  instantaneous  adaptation  rate,  reducing  the effective step 
size for large  values of filter input and output. Once again, 
assuming that p and p are sufficiently small, 

q(k) LZ 1. 

Using these  approximations, (1 5) becomes 

ai@) at(k - 1) + piy(k - 1 - i) ~ ( k  - l), 1 < i < N  (38a) 

gj(k) !z $j(k - 1) + p p ( k  - 1 - j )  ~ ( k  - l),  0 < j  < M .  (38b) 

The set (36)-(38) has  been  denoted  the simple hyperstable 
adaptive recursive filter,  SHARF. 

Note that significant reduction in computation  and  storage 
has  been realized; the  update to each  weight requires only  the 
knowledge  of  the  smoothed output error process u(k). This 
computational savings  was accomplished  at  the cost of no 
longer  rigorously satisfying the  hyperstability  condition (24), 
so that convergence  is no longer  guaranteed for  arbitrary posi- 
tive p and p .  For practical purposes,  however, slow adaptation 
maintains close approximation to a  hyperstable  structure. 

It is interesting to  note  that certain earlier attempts  at adap- 
tive IIR filtering, notably  the recursive LMS algorithm [7], 
are clearly special cases of (38). Its  update  equations,  extrap- 
olating from similar equations used  in adaptive FIR filtering, 
are 

ai(k t 1) = aj(k) + pe(k)y(k - i) (394  

Zj(k + 1) = gj(k) t pe(k)x(k - j )  (39b) 

where 

e(k) = d(k) - y(k). (40) 

Note that  this is equivalent to the  constraint that cc = 0 for 
I = 1 to   P in  (37), Le., 

u(k) = e(k). (41) 

According to the  hyperstability analysis, convergence is as- 
sured  only if p and p are small and  the autoregressive function 

i = ~  

is SPR. As shown in Section 111, in general, zero  placement is 
necessary for  SPR satisfaction. 

To  demonstrate  the  behavior  of  the  SHARF,  a series of 
simulations were conducted.  The  desired process d(k) was 

INITIAL 
MODEL PLANT  POLES x *UNIT CIRCLE 

Fig. 9. Pole trajectories for  simulation of the SHARF algorithm.  (a) 
c1 = 0, 160K iterations. (b) c1 = -0.8, 160K iterations. (c) c1 = 
-1.0,  120K iterations. (d) c1 = -2.5,40K iterations. 

second  order,  generated  by filtering white noise with 

0.057 
1 - 1.645 Z-' + 0.9025 z-' ' 

(43) 

The  migrations  of  the  adaptive filter's two poles  are shown 
in Fig. 9, starting a t  the imaginary poles, 0.6e'j900, converg- 
ing to the  poles  of (43), 0.95e'i300. The  four trajectories 
show the effects of  a single smoothing coefficient el, begin- 
ning with el = 0 and ranging through c1 = -2.5.  Pole  migra- 
tion,  of  course, is a  complicated  transformation  of the  adap- 
tive  weight locus, and as such provides a  distorted view of 
filter behavior. However, on  a qualitative level, it can be seen 
that  the variation of  the  smoothing  parameter not only 
reduces  meanderings but also speeds  convergence.  This is 
partly due to the effect that smoothing  has  on  the  strength 
of  the  error process u(k), in turn  reducing  the average  size of 
the algorithm's update  terms in (38). 

In this example, it is worth  noting that despite violation of 
the  SPR  requirement,  for  example, when el = 0, convergence 
did still occur.  This  simply indicates that  the sufficiency  con- 
dition was  overly restrictive in the example.  Consider  a  second 
case,  involving a  second-order  process  generated  by  a filter 

1 
1 - 1.72-' + 0.7225 z-' ' (44) 

having a pair of real  poles at  0.85.  In this case, the  SHARF 
algorithm was simulated using el = 0 and c1 >, -1; the first 
case does not satisfy the  SPR  requirement, while the second 
case does. To eliminate  the  ambiguities  of  convergence  rate, 
the  adaptive filter was initialized to have its poles at  0.845, 
within 0.005 of  the  true  location.  Despite  the  proximity  of 
the adaptive filter to its desired  parameter set,  for el = 0, i.e., 
recursive LMS, (in this nonpositive real  case) the weights 
quickly  readjusted to an alternative configuration, involving a 
single low  frequency pole, effectively discarding the second 

Authorized licensed use limited to: Cornell University Library. Downloaded on August 01,2020 at 22:29:40 UTC from IEEE Xplore.  Restrictions apply. 



436 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-28, NO. 4,  AUGUST 1980 

Fig. 10. Pole trajectories for the recursive LMS and SHARF algorithms. 
(a) Recursive LMS (c1 = c2 = 0). (b) SHARF (CZ = -1.0, c2 = 0). 

SIGNAL 
SOURCE PRIMARY 

INTERFERING q”x‘8 
NOISE SOURCE :(;; 

FILTER 

MEASUREMENT 

P 

ESTIMATE 
SIGNAL 

SIGNAL 

rj2)(k) P CANCELLER 1 
NOISE y ( k )  

REFERENCE H(z)  

(b) 
Fig. 11. Noise cancelling signal model. (a) Physical model. (b) Lumped, 

linear model. 

degree of  freedom.  In  the  second case, convergence was con- 
sistent to  the unbiased pole estimates (see  Fig. IO). 

V. SHARF APPLIED TO ADAPTIVE NOISE CANCELLING 
The  next  two sections discuss  some applications of  the 

SHARF algorithm which clearly benefit  from IIR filtering 
[ 161, [ 171. Previous work in these areas has been done  suc- 
cessfully with adaptive FIR filters; however, situations can 
exist where the IIR configuration is almost a requirement  for 
real-time processing. 

The use of adaptive filters in signal enhancement  and noise- 
suppression has been the focus of much research in past years 
[I]-[4], [32]-[34],  and can be found  in  applications ranging 
from biomedical measurements to antenna beam-forming. In 
particular, 141 presents the basis for adaptive noise cancelling 
(ANC), and describes several potential  applications. Fig. 11 
depicts a model  for  the ANC situation. It is desired to esti- 
mate  the signal component s(k), measurable only in the 
presence of  an additive uncorrelated noise  process n(‘)(k); this 
observed process is  called the primary input 

z (k )  = s(k)  + n q q .  (45 1 
By virtue of the geometry, a second sensor is able to provide a 
reference measurement  of a related noise process 

x(k) = n(2)(k). (46) 

Proper filtering of the reference process, as shown in Fig. 

Il(b), can provide a substantial  reduction in the interfering 
noise in  the primary,  thereby improving the  estimate  of s(k). 

From Fig.  11(b), the  lumped, linear model  of transmission 
path characteristics between noise source and sensors, it is 
clear that  the ideal noise cancelling filter 

would result in  perfect cancellation of noise in the signal esti- 
mate.  Two possible situations are noteworthy: 1) the refer- 
ence path,  modeled as GR(z), is characterized by a spectral 
region of  low energy and  2)  the primary noise path Gp(z) 
possesses a resonance. In  either case, the ideal filter H*(z)  
contains poles and requires an IIR configuration. 

Because a pyion’ design of  the noise canceller is impractical  in 
real applications involving unknown,  nonstationary noise 
statistics, the noise cancelling filter is normally  implemented 
adaptively; in particular, [4] uses the FIR LMS adaptive algo- 
rithm. To acheve suitable noise reduction  with an FIR filter, 
its impulse response must  be long enough to span the signifi- 
cant  portions of  the ideal impulse response. In cases where 
H*(z) possesses dominant pole behavior, this means that an 
FIR approximation may require an  unwieldy number of ad- 
justable  parameters, resulting in 1) a heavy computational  load 
and 2) a convergence rate slowed  as  necessary to control  per- 
formance  degradation  due to parameter “mi~adju~tment” 
1131. The  latter effect sacrifices a principal advantage of 
adaptive filtering, specifically, the  ability of the processor to 
track changes in  the noise environment. 

If an adaptive IIR filter were used instead, the potential 
,exists  for improving noise suppression while requiring less 
computation.  Examination  of Fig. 12 indicates that a rear- 
rangement of the original noise  cancelling configuration yields 
the same output error  identification  problem described in 
Section 11. The  only  addition is  an independent “noise” s(k) 
present at  the  output of H*(zz). Heuristic arguments can be 
made as to why  this “observation noise” has no effect on  the 
converged model, Le., the noise  cancelling filter [ 161. 

For  the purposes of demonstration,  the results of a simple 
simulation are given,  where the  assumption  of  matching  order 
is met.  The noise source  emits a unity power white Gaussian 
noise  process. The transmission paths are explicitly 

implying that 

(49) 

In the time  domain, this optimal impulse response is  given  by 

h*(k) = 0.1630(0.9)k 

. {cos (0.2618k) t 3.732 sin (0.2618k)) 

whose envelope decays to under 10 percent  only  after 21 
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u 
Fig. 12. Noise canceller as output error  identifier. 

d k i l  
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TIME 

(b) 

(c) 
Fig. 13.  Performance of SHARF noise canceller. (a)  Noise-corrupted 

primary input. (b) Signal component. (c) Signal estimate, the noise 
canceller output. 

terms. For this simulation,  the interfering noise n(')(k) is a 
narrow-band process of  center  frequency  fJ24  where f, is the 
sampling  frequency.  Refer to Fig. 13(a), which shows a  typi- 
cal trace of 1000 samples of the primary  measurement.  The 
signal component,  which is present in this primary trace is 
seen alone to scale  in  Fig. 13(b). Note that  it is a simple 
periodic, impulsive waveform,  completely masked by the 
strong  noise  component n(')(k). If  an IIR filter with  one 
numerator  parameter  and  two  denominator  parameters were 
updated using the SHARF  algorithm  with p = 0.005 and 
1 = 0.1, in about  2000  adaptations  a  reasonable degree of 
noise suppression  can  be  detected,  around 13 dB  improve- 
ment.  In Fig. 13(c), the corresponding output trace is shown. 
Qualitatively speaking, the signal spikes have become easily 
detectable in the residual noise. For this simulation,  a single 
ci coefficient was used, c1 2 -1.0.  In Fig. 8 it i s  indicated 
that such  a value  assures the SPR  of  (32) in this case. 

For  comparison,  a  conventional FIR noise  cancelling filter 
is applied to  the same data.  The filter was allowed six adaptive 
weights, i.e., requiring 50 percent  more  computation  than  the 
adaptive IIR filter previously  simulated. The adaptive  rate was 
chosen to provide convergence in about  1500  iterations, re- 
quiring  approximately  a  comparable total  computational 
effort.  At  convergence,  only about 5 dB  noise  suppression 
was achieved. For  the same rate of  convergence,  increased 
number  of  adaptive  weights will improve  performance,  but 

only at  a severe increase in computation: 

9 weights 10  dB 
12 weights 11 dB 
15  weights 12 dB. 

Note that  the improvements are limited by misadjustment 
noise effects as the number  of  weights increases. 

As a  demonstration  of  the  robustness of the  SHARF ANC 
processor,  another  simulation was formulated.  Two  major 
additions were incorporated,  both reflecting practical con- 
siderations. First,  an  independent noise component was added 
to  the primary input process. This  would  be typical for  most 
applications, where  multiple noise sources  could  be  responsible 
for signal interference. Naturally,  such an uncorrelated noise 
component provides a  bound  on  the  achievable  suppression, 
since it cannot  be removed by noise cancelling. Secondly, 
the  adaptive filter was constrained to an insufficient number 
of parameters.  In practice, this might  occur if the  exact  order 
were  unknown,  or if the  transmission  paths were of  a  non- 
rational nature,  due to distributed  system  effects.  For this 
case, the ideal noise cancelling filter would  require  four 
numerator coefficients and  three  denominator coefficients, 
whereas  the  SHARF noise canceller was allowed  only  four 
parameters  equally divided between  numerator  and  denomi- 
nator.  Independent  white Gaussian  noise  was added at  the 
primary  input  of relative power level - 10 dB. At  convergence, 
roughly 7.5 dB of  noise reduction was achieved. By no means 
does  this  adaptive  processor  provide  optimal noise suppression 
in the least-squares sense. Interestingly, however, noise can- 
celling  based on the SHARF IIR filter is quite successful, 
despite violations of the basic input assumptions. 

VI. SHARF APPLIED TO ADAPTIVE MULTIPATH 
CANCELLING 

The received  signal in a  communication link may be subject 
to many  forms  of  degradation,  among  them are the effects of 
multipath propagation. In  such cases, the received energy 
usually results from  the convergence of distinct reflections. 
Associated with  each scatterer is a path  length  and  correspond- 
ing propagation  time,  and  a scaling factor  determined  by 
spatial losses, reflective cross section,  and  energy  absorption 
by the reflector. Ideally, the received  signal  is a linear com- 
bination  of  delayed versions of the  transmitted signal. Since 
each reflective path  contributes  a  portion  of  the  transmitted 
signal at  a given time delay, the result in high  bit-rate digital 
transmission can be gross intersymbol  interference;  the  path 
having the largest delay  time  defines  the  necessary  inter- 
symbol  guardband  and  hence  the available bandwidth  and 
allowable  bit rate [35]. 

In many  communication  systems the  data rate cannot  be 
reduced to accommodate  intersymbol  interference. In such 
cases, the effects of  multipath on a single element receiver 
must rely upon  a form of  bandwidth  equalization, similar to 
techniques used to overcome spectral distortion  due to re- 
ceiver characteristics, modulation  schemes,  or  channel re- 
sponse.  Recently,  a  multipath  equalization  technique was 
presented  based on the principle of adaptive linear prediction, 
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implemented using the  FIR configuration [35]. The adaptive 
nature of the processor eliminates the requirements for cer- 
tain a priori design information, while allowing flexibility to 
track changes in the constellation of reflectors. 

As discussed in [17], [35], in its simplest form ideal multi- 
path can  be characterized in discrete time by a received  signal 

~ ( k )  = s ( k )  + as(k - A>, < 1 (5 0) 

where s(k)  is the  transmitted signal. Note that only a single 
reflection is considered significant. This so-called “two-ray” 
case  is of fundamental  importance in point-to-point  communi- 
cations. The channel’s equivalent transfer function is then 

G(z) = 1 + az-* (51) 

and requires an ideal equalizer 
1 

to remove the accompanying amplitude and phase distortion. 
While (51) characterizes multipath effects in the frequency 

domain, a more meaningful interpretation can  be had by 
viewing the received  signal’s autocorrelation function, 

R,(Z) = (1 t a2)R,(Z) t aR,(l - A) t aR,(Z t A). (53) 

If the channel suffers from a resolvable multipath with respect 
to  the bandwidth requirements, i.e., 

R,(Z)R,(Z- A) 0, (5 4) 

then equalizer given by (52) can  be implemented adaptively in 
the linear predictor configuration shown in  Fig. 14. The filter 
H(z) predicts an estimate of x(k) from observations that are at 
least L samples removed. It can  be shown that  the predictor 
provides an output whose autocorrelation ideally has been 
eliminated beyond lag L.  

From  the configuration of Fig. 14, it can  be shown [ 171 
that ideal equalization will  be achieved if the predictor’s filter 
is chosen as the  IIR expression 

H(z) = 
(Yz-* 

1 +(Yz-A* 

The FIR implementation described in [3.5] provides only an 
approximation to  the ideal predictor  and  its performance can 
be seriously degraded as a approaches unity. 

On the  other  hand, use of an adaptive IIR filter as a linear 
predictor, driven by  the SHARF algorithm, can provide ideal 
multipath cancellation. To demonstrate, the results of a 
simple experiment will be presented. A stochastic signal s(k) 
was generated by filtering bipolar white noise samples with  a 
moving average filter of length  ten.  The signal’s autocorrela- 
tion was then triangular, 

The multipath was  given strong  amplitude, (Y = 0.9, and a 
sizable delay, A = 30, 

~ ( k )  = ~ ( k )  + 0.9s(k - 30). (57) 

DISCRETE  INPUT PROCESS 

LINEAR DISCRETE 
PREDICTION 

Fig. 14. Discrete linear predictor. 

INPUT PROCESS 

L. OUTPUT - PROCESS 

Fig. 15. SHARF multipath canceller. 

SAMPLE  LAG 

(a) 

SAMPLE  LAG 

(c) 

(dl 
Fig. 16. Normalized autocorrelation of processed data. (a) Prior to 

adaptation. (b) 1000 iterations.  (c) 10 000 iterations.  (d)  25 000 
iterations. 

Note that  the multipath is resolvable, since the correlation 
time of  the transmitted signal, ten samples, is  less than  one- 
half of the multipath delay, A = 30. As the samples were 
taken  at the receiver, they were processed by an adaptive 
multipath canceller, having the configuration shown in  Fig. 15. 
Note that  the bulk delay was 15 samples, exceeding the 
correlation  time of s(k). The 40 adaptive weights were initial- 
ized to zero. 

Since the goal of the processor is to reduce the intersymbol 
interference caused by multipath transmission, evaluation of 
performance can be made by examining the  autocorrelation of 
the prediction  error. Fig. 16 shows this  autocorrelation, 
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normalized to unity  power, as the adaptive  processor evolves 
over time. Fig. 16(a) shows the  autocorrelation  of  the re- 
ceived data prior to processing. Notice  the  two resolvable 
peaks, one  corresponding to the direct path  and  the second 
due to the reflected path.  After 1000 samples  have  passed 
through the adaptive  filter, the error process  is characterized 
by the correlation  of Fig. 16(b). Note  that  the primary peak 
is relatively untouched, while a significant reduction  of the 
multipath effects has  begun. At 10 000 iterations, Fig. 16(c) 
shows that  further improvement  has  been realized. Finally, 
Fig. 16(d)  shows  the  correlation achieved after 25 000 sam- 
pling intervals. At this point,  the  intersymbol  interference has 
been virtually eliminated. 

Of course, the  fact  that  the final correlation is  very  close to 
that of the  transmitted signal does not necessitate good 
fidelity. However, in this  simulation the adaptive coefficients 
converged to values  very  close to those given by ( 5 5 ) ;  conse- 
quently,  the error process  is indeed  a good estimate  of ~ ( k ) .  
This particular simulation, while dramatic, was actually 
bordering on worst case conditions.  The  choice  of large CY 

meant  that  the poles of the adaptive  prediction filter must 
approach the  unit circle, thereby resulting in high sensitivity 
to small random variations in the coefficients. 

VII. CONCLUSIONS 
The  work  described in this article has  produced a class  of 

algorithms particularly suited to adaptive IIR filtering. Two 
members  of  this class here  highlighted here, HARF,  a  moder- 
ately complex  algorithm  with  provable convergence properties, 
and  SHARF,  a  much simplified version of  HARF  which retains 
provable convergence for small  values of  the  adaptation  con- 
stants. It is interesting to  note  that  the LMS algorithm,  used 
for  both  FIR  and  IIR adaptive filtering, is a special (albeit very 
important) case of the SHARF  algorithm. 

This paper  has  outlined  the basis of the HARF  algorithm, 
discussed the applicability of the  hyperstability  concept to  the 
adaptive filtering problem,  and  has  presented  the  development 
of the SHARF  algorithm. In  the process  several examples  of 
its convergence characteristics were  demonstrated  which show 
significant performance  improvement over  various gradient 
schemes which have been suggested. In  addition,  two practical 
signal  processing examples have been  presented  which  demon- 
strate  the  utility  of  an  IIR  adaptive filter. In  short  we have 
developed  a class of  adaptive  algorithms  which  make it pos- 
sible to obtain  the  often  dramatic  performance/computation 
advantages offered in many  applications  by IIR filters. Even 
so, many  questions  remain to be answered before this class  is 
fully characterized. Some  of  them are as follows. 

1) How should the vector  of auxiliary coefficients {c~};=~ 
be  chosen  and can this be  done  adaptively? 

2) Can the convergence characteristics of the algorithm be 
predicted? 

3) What  are practical upper limits on  the choice  of  the 
adaptation  constants,  and  hence  the convergence rates, for  the 
SHARF  algorithm? 

4) How do observation noise and additive input noise affect 
the performance  and  convergence  properties  of SHARF and 
HARF? 

5) What happens when the filter has insufficient complexity 
to achieve zero  error? 

Further  understanding in these areas  will only  enhance the 
attractiveness of  adaptive IIR filtering for signal  processing 
applications. 
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