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Ill-Convergence of Godard Blind Equalizers 
in Data Communication Systems 
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Brian D.O.  Anderson, Fellow, IEEE, and C .  Richard Johnson, Jr., Fellow, IEEE 

Abstract-Godard algorithms form an important class of adap- 
tive blind channel equalization algorithms for QAM transmission. 
In this paper, the existence of stable undesirable equilibria for 
the Godard algorithms is demonstrated through a simple AR 
channel model. These undesirable equilibria correspond to local 
but nonglobal minima of the underlying mean cost function, and 
thus permit the ill-convergence of the Godard algorithms which 
are stochastic gradient descent in nature. Simulation results 
confirm predicted misbehavior. For channel input of constant 
modulus, it is shown that attaining the global minimum of the 
mean cost necessarily implies correct equalization. A criterion 
is also presented for allowing a decision at the equalizer as to 
whether a global or nonglobal minimum has been reached. 

I. INTRODUCTION 
N band-limited data communications systems that are I widely used today, each transmitted symbol is extended by 

the distortion of the analog channel over a much longer interval 
than its original duration, hence causing the undesirable 
intersymbol interference ( I S )  effect. Adaptive equalizers are 
currently the primary devices used by the receiver to combat 
IS1 introduced in telephone and radio channels. 

Successful blind equalizers do not require a known training 
sequence for adequate initialization as conventional adaptive 
equalizers do. Blind equalization has very important applica- 
tions in data transmission systems, particularly where sending 
a training sequence is unrealistic or costly. Among a number of 
blind equalizer schemes that have been introduced [1]-[3], a 
special class of blind equalizer proposed by Godard [3] is now 
well accepted and has been proposed for many applications, 
including the equalization of QAM (quadrature amplitude 
modulated) digital signals. 

The Godard family of blind equalizers, indexed by a param- 
eter p ,  generalizes the pioneering structure presented by Sato 
[2] (which is recovered as the special case when p = 1). The 
first indication that the blind Sato scheme can lead to false 
parameter convergence under adaptation and consequently 
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to poor performance of the equalizer was given by Mazo 
[4]. There he showed in the somewhat special case of a 
noiseless channel having no IS1 that an overparametrized Sato 
equalizer can lead to convergence to undesirable equilibria in 
the adaptation process. Macchi and Eweda [5] achieved similar 
results using a different analytical approach. A more significant 
contribution of [5] was to show that in the Sato scheme one has 
almost sure convergence to the ideal parameter setting once 
the eye diagram has opened. (See Kumar [6] for a similar 
result.) However, global convergence to one of the desirable 
equilibria (from an initially closed eye) of the Sato scheme 
has only been established for a nonpractical situation of an 
infinite number of equalizer parameters and for some specific 
continuous “symbol” distributions-the heuristic being that 
an alphabet of M-ary symbols may be approximated by a 
uniform distribution [ 11. Nonetheless, this result (which is 
one of many found in [ l ] )  is remarkable given the difficulty 
of the general problem of establishing global convergence 
only to one of the desired equilibria. In contrast, our work 
is directed towards showing that generally a practical Godard 
M A  equalizer with finite parameters never has this ideal global 
convergence property when the symbol distribution is discrete, 
as in all QAM digital systems. Godard [3] also considered the 
problem of false equilibria, and showed that for an infinitely 
parameterized equalizer with infinite delay, false equilibria can 
exist but these were later shown by Foschini [7] to be locally 
unstable and are thus insignificant. 

More recently Treichler et al. [SI, [9] provided an alternative 
development and interpretation of a special case of the Godard 
family where p = 2 ,  and labeled it the constant modulus 
algorithm or CMA. (While CMA has now been extended into 
a class of algorithms sometimes labeled CMA Version p-q  
for various integers p and q ,  conventionally CMA refers to 
the original CMA Version 2-2, identical to the Godard p = 2 
algorithm. In this paper we follow the same convention unless 
otherwise stated.) Stimulated by [8], [9], Johnson, Dasgupta, 
and Sethares [ 101 established local convergence properties of 
real CMA in a neighborhood of the desired equilibrium using 
averaging methods [ll]. This work relates closely to open-eye 
convergence results found in [5] but uses a different analysis 
technique. 

In this paper, after some background results (Section 11) 
we show that in principle it is possible to test for the ill- 
convergence of any of the Godard schemes without explicit 
knowledge of the actual input sequence, which would appear 
essential to be able to do in practice. Then we establish 
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(Section 111) the possibility of ill-convergence by deriving a 
set of undesired stable equilibria for the entire family of real 
Godard equalizers (when IS1 is present), including the impor- 
tant CMA scheme. Our results are subsequently generalized 
(Section IV) to the family of complex Godard equalizers. Our 
techniques stress constructive procedures providing a clear 
picture of why these blind schemes fail, thus complementing 
the earlier results for the p = 1 Sato special case [4], (51. Our 
results also stand in contrast to those of Godard [3] concerning 
false equilibria for the y = 2 case. His results presuppose 
an infinite length equalizer which can overparameterize the 
channel inverse; our (FIR) equalizers are constrained in length 
to exactly match that of the AR channel inverse such that we 
cannot encounter this particular type of false equilibrium. His 
theory is also incomplete in the sense that it only shows the 
existence of a particular class of false equilibria, which were 
later shown to be locally unstable for p = 2 by Foschini [7] 
(and thus of no practical concern), while the theory also fails 
to recognize the existence of the false equilibria exhibited in 
this paper. Finally, we mention an important work by Verdu 
[12], which motivated much of our work here. 

11. PROBLEM FORMULATION 

A.  Godard Equalizers 

Fig. 1 shows the diagram of a data communication system 
where a Godard equalizer is used. A sequence of i.i.d., digital 
signals { nk E C} is sent by the transmitter through a channel 
exhibiting linear distortion thus generating the output sequence 
{.rk E C}. The objective of the equalizer is to recover by 
inversion (modulo a delay) the original sequence from the 
received sequence { a . k } .  For a channel of AR(n) structure, 
with parameter vector given by H A [Bo H I  . . . H,,]’, i.e., 

T I  

H,.l.k-] = Uk (2.1) 
1=o 

one can use a ,VA(m) equalizer, with parameter vector H(k )  a 
[&(x) H^,(k) . . .  i j , , , (~) ] ’ ,  to generate an output 

zI, = 5 &(k).I& (2.2) 
1=0 

to help remove the channel ISI. In our analysis we first 
consider the case where there is negligible channel noise. Later 
in the analysis we introduce significant channel noise n k  which 
corrupts S k .  

The Godard class of algorithms [3] can be defined by 
specifying a positive cost function as follows: 

1 
.Jp(z)  -(IzI” - RP)’. p E {1.2;..}. z E C 

21, 
(2.3) 

where the dispersion constant RI, is defined in terms of the 
input signal { u k }  by 

(2.4) 
E {  M ’ P }  

RI, = 
E { l a k l P )  ‘ 

Algorithm 

Fig. 1. Diagram of Godard channel equalization system. 

Recall that p = 1 corresponds to Sato [2], and p = 2 to CMA 

The equalizer output (2.2) can be written Z k  = x ; e ( k )  by 
taking X I ,  a [.TI; a . k P l  ... xkam]’ as the regressor vector. 
Then from (2.3) and (2.4), the adaptive algorithm takes the 
form 

(Version 2-2) [SI-[lo]. h 

(2.5a) 

= F ( k )  - 1-1.’ zklzklP-*(Izklp - R p ) X z  (2.5b) 

where /L is the adaptation gain, _d denotes a complex 
( k )  

vector differentiation operation (gradient) with respect to $ ( k )  
(i.e., + A), and Xg represents the complex 

conjugate of Xk. When y = 1 the update is defined as being 
zero at z k  = 0. In the case of single carrier QAM (i.e., 
PAM) where all the signals and parameters are real valued, the 
algorithm ( 2 3 )  can be rewritten using sgii(zk) = zkIzkl-’. 

d R r [ B ( k ) ]  d I m [ B ( k ) ]  

B. Global Minima and the Justification of the Mean Cost 

In order to demonstrate that achieving the global minimum 
of the Godard mean cost necessarily implies the removal 
of ISI, we shall, in the remainder of Section 11, restrict our 
attention to symbol alphabets with unit constant modulus 
l a k l  = 1 (i.e., PSK) where the dispersion constant R, is unity. 

The Godard algorithm (2.5) may be interpreted as a stochas- 
tic gradient descent procedure on the mean cost surface 

where the expectation is to be_taken over all { n k }  data 
sequences. The mean cost &(  O ( k ) )  clearly h achieves the 
minimum value of zero when coefficients H,(k) = eJmQ2 V i  for 
any 4, i.e., when the equalizer is correctly tuned [3]. What we 
shall argue now is that under a generally satisfied condition 
the converse holds, i.e., if the global minimum is achieved, 
then necessarily the equalizer is correctly tuned. 

Result 1: Express the combined channel-equalizer transfer 
function (taking a k  to z k )  as 

where {ho, Irl .  h2. . . .} is BIB0 stable with h, E C, and sup- 
pose we have an arbitrary data sequence {. . . . u k - 2 .  a k - 1 .  ak .  

f .  .} with symbols a k - ,  E C n A taken from an alphabet 
A a { a ,  /?, y. . . .} of distinct QAM symbols, none of which 
is zero. Then if the equalizer output Zk a CEO h,ak-, at 
time k satisfies a constant modulus property for all time and 
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all data sequences, i.e., [5] ,  and [IO], there will be an averaged equilibrium 8 when 

for some fixed constant p E R, then this implies perfect 
equalization, i.e., 

From (2.12), it is evident that g = 0 and, for PSK (where 
R, = 1) 

Zk = h b U k - 6 .  v { U , } .  v k  (2.9) 

for some fixed decoding delay 6 E Z+ independent of {U,} 
and k .  In addition, the distinct symbols in alphabet A must 
have equal modulus, i.e., la/ = I,B = IyI = . . . .  and also the 
magnitude of the complex scalar h6 must satisfy lh61 = p / l a l .  

I7 
For a proof of this and all subsequent results, see the 

Appendix. This result requires no statistical model of the 

$such that lzkl = IXkgI = 1. V k  (2.13) 

are among the average equilibria for the Godard Algorithm 
given in (2.5). In fact, the equilibria satisfying (2.13) are the 
desired equilibria. Using Result 2 the undesirable $ = 0 will be 

elements of the { u 3 }  sequence, cf. a similar style of result 
based on a comparison of the distributions of the symbols in 

w e  now explain the relevance of this result to the iustifica- 

Seen to be 
has a local maximum at zero 

because the error surface JP ( ’(‘)) 
the subspace 7n E ‘1 

(since J,(m) has a local maximum at zero). If the equilibria 
Of (2.13) are stable and if they represent dl the existing stable 

A and the distribution of zk, found in [I]. 

tion of the choice of J,(zk) when the dispersion constant R, 
is unity. In this case p = 1 and we conclude that the input 
sequence { a k }  and the equalizer output { z k }  have the same 
constant modulus property lakl = l z k l  = 1, V { u k } .  Further, 
if we denote hfi = elo,  then reflecting on (2.3) with R, = 1, 
we may write 

Thus, the global minimization of the mean cost 3, ( $ ( k ) )  to 
zero (requiring / z k l  = 1 almost surely) is compatible with 
achieving a solution $ ( k )  that eliminates ISI. 

Before moving on to look at local minima, we give a trivial 
relationship for later use between the user specified (scalar) 
cost function .J, (2.3) and the mean cost surface J, (2.6) 
guiding adaptation. 

Result 2: The scalar cost function J p ( . )  can be recovered 
from the mean cost function 3,(.) as follows: 

1 
3,7,(rH) = -E{ ( 1 - 1 ”  - = .J,(lrl) = J p ( Y )  

21, 
vr E a3 (2.11) 

with = 1. 0 
Nore: i) If we examine the mean cost J,(.) constrained 

to the one-dimensional (I-D) subspace { m 8 ,  m E C} then 
we recover the original (user supplied) scalar cost function. 
ii) There will be other choices of cost J ( . )  for which J ( z k )  = 
0 if and only if lzkl = 1. For example, there may be advantages 
in using a new J ( . )  with memory. However, Result 2 still 
holds for more general J ( . ) .  

where 0 is the channel parameter vector satisfying XLd = 

C. Local Minima of the Mean Cost 

We study the properties of the algorithm (2.5) by examining 
the incremental update when R, = 1 (PSK). Following [3], 

equilibria, then the algorithm of (2.5) can achieve the objective 
of producing a constant modulus output zk and eliminate the 
ISI. 

Thus, the most important questions facing us are as follows. 
Are there any other equilibria besides the origin and the ones 
specified by (2.13)? Are they locally stable? We answer these 
two questions in the remaining sections of this paper. But first, 
we consider the crucial question of how measurements at the 
equalizer could be used to distinguish the convergence to unde- 
sirable equilibria from the convergence to desirable equilibria. 

D. Testing for Undesirable Convergence 

Note that when channel noise 7 ik  is present or when 
there is imperfect modeling (e.g., if the equalizer is under- 
parametrized), a precise condition like (2.8) or (2.9) cannot 
hold exactly. In this case the equilibria corresponding to de- 
sirable behavior may not be distinguishable by measurements 
of J,(.) from any of the undesirable ones, because both will 
be nonzero. We therefore proceed to develop another test for 
distinguishing the correct equilibria from the undesirable ones 
(if they exist). While the test is developed for the zero noise, 
perfect modeling situation, it will evidently be robust in the 
face of modest departure from these ideal conditions. 

Let !J* denote the complex conjugate, and g H  denote the 
complex conjugate transpose of vector y E C‘f .  The inner 
product of (2.12), given R, = 1, with $ yields the following 
necessary condition: 

- E {  Izk I”} 
=U. (2.14) 

This condition also holds for PAM systems (i.e., real signals). 
To explain the condition of undesirable convergence, we 

will need the following two simple properties. 
Property I: Let the equalizer output Z k  be a real (PAM) or 

complex random variable (QAM). If E {  lzkI2”} = E {  I z ~ I ’ }  

. - . . . . . . - .. .. . ... . . .. . . . . . .. ... . . . . . . . . .. .. . - -. . . . . . . . .. - - . . - - - - -_ . . . . . -. .. . . .. . , . ” _ . .  . I.. .... .......... 
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for some p E {I,  2 .  . . .}, then either 

i) / z k l  = 1 almost surely. or (2.15a) 

ii) E {  1 z k I z p }  < 1. (2.15b) 

0 
Property 2: For the equalizer output Z k ,  if E { l Z k l ' }  < 1, 

0 
From (2.14), we know that the algorithm in (2.5) reaches 

equilibrium only if E {  Izk/'*} = E{ I z k l " } .  Therefore, we 
can invoke Property 1 directly. Equation (2.15a) is exactly the 
ideal constant modulus objective of the blind algorithm, so that 
the associated equilibria are the desired ones. On the other 
hand, if the algorithm has reached an equilibrium but (2.15b) 

then E {  / Z k l l l i }  < I, V I 5 m 5 1. 

case involving QAM transmission will be discussed separately 
in Section IV since for QAM we require E { n z }  = 0 [3] ,  
which is not possible in PAM transmission systems. Thus, the 
analysis involving PAM is not a special case of QAM system, 
as the stability results will show later. 

A .  Derivation of Undesirable Equilibria 

Consider a particular real AR(n)  channel 

and correspondingly, a general M,4(77) equalizer 

7 1  
h 

holds instead, then the resulting equilibrium is undesirable 
and by Property 2, we have &)z-' = & ( k )  + H 1 ( k ) z - l  + . "  + Z , J k ) z P .  

(3.2) 
As a result, we know that if an equilibrium of the Godard 
algorithm (Vp E Z+) applied to an AR channel with unit 
modulus input is undesirable, then after convergence the 
following two statistical conditions are satisfied: 

h 

Ideal equalization occurs when ~ ( k )  = f-0 f [ l  0 . . . () 

, , , H , , ] I  denote an equilibrium of the  real 
Godard algorithm (2.5) satisfying (2.12) that we seek ex- 

Notice that the autoregressive channel output ,l'h from (3.1) 

Let $ = [go 

E {  Izk I }  < 1 the magnitude test (2.17a) PlicitlY. 

(2'17b) can be written as E {  J z ~ \ * }  < 1 power test. 

By using time-averages, conditions (2.17a), (2.17b) help to 
indicate whether, after apparent algorithm convergence, it is an 
undesirable or a desirable equilibrium which has been reached. 
Testing in this manner does not require explicit knowledge 
of the input sequence { o k }  other than that it has constant 
modulus. 

Before proceeding to the following sections where we 
explicitly derive some undesired equilibria for the Godard 
algorithm, we first introduce the following property which 
will be useful later for characterizing the moments of ~ ' k ,  the 
channel output (Fig. 1). 

Property 3: If  E {  1:ck.l) 2 1 and n, is an integer greater 
than 1, then either 

i )  ~ { l . ~ ~ j ~ ~ ~ )  > ~ { l . r k l r ~ ~ - ~ }  > . . .  > ~ { l r k l ' }  

> E{ l , r k l } .  if' Pr{I,rl # 1) > 0. or 

x 

which means that for X E Z,, the random variables .rk,  
. i ' k - l 1  . . . . ~ ' k - , ~ + l  are independent of one another. Further 
since nk has zero mean, we easily deduce E{,rk} = 0 for 
a stable channel ( l ( 1 1  < I) .  

As noted in [3] ,  to solve for all the solutions (equilibria) 
of (2.12) based on (3.3) can be extremely difficult, even 
though the zero vector and f H  are known to be three of 
the existing solutions. Instead, we shall look specifically 
for equilibria of the form $ = [0 0 . . . 0 $,,I I ,  H,, # 0, 
for which the equalizer output signal degenerates to z k  = 
X'(k)H = Hn.rk -,, . Consequently, the equilibrium definition 
(2.12) becomes 

111. UNDESIRABLE EQUILIBRIA FOR REAL GODARD 
EQUALIZERS 

In the preceding section, we have discussed the possi- 
ble existence of some undesirable equilibria and presented 
conditions which are necessary for convergence to one of 
these equilibria. In this section, we shall display explicitly 
some undesirable, locally stable equilibria for a simple one- 
carrier (PAM) systems with a real channel and equalizer, 
and with zero-mean i.i.d. stationary input symbols, i.e., 0 < 
E((ak.1') < x and E { a k }  = 0. These central results are 
valid for alphabets with arbitrary dispersion constants Rrl (i.e., 
here and in Section IV, we do not assume l ak l  = I). The 

/ 

Due to the independence of X k ,  , i ; k - l .  . . . . : ~ ' k - ? ~ + l ,  it follows 
that the above equations for s i  = I. 2 .  . . . . n - 1 are automati- 
cally satisfied given E{rk-i}  = 0. Thus, only two equations 
(those for .i = 0 and i = 71) remain nontrivial in the n~ + 1 
equations of (3.4). Note that from (3.3), we can also get 

E{sgn(  H T t ~ k - - n )  / ~ k - , ,  I " ' x ~ }  = - n E { s p (  8 ? l ~ k - T , )  
ni 

' 1:l;k-nl (3.5) 

Therefore, the two remaining equations in (3.4) for i = 0 and 
i = 71 are related through a multiplicative factor of -a, and 
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thus we are down to a single equation At either one of the pair of undesired equilibria given by (3 .Q  

Multiplying through this equation by $, reveals two nonzero 
solutions for this equation 

(3.7) 

We therefore have arrived at a pair of undesirable equilibria 
for the real Godard algorithm 

We can verify directly that the magnitudeipower conditions 
of (2.17) hold at this pair of undesirable equilibria when 
1ak.1 = 1 (PSK) for which R, = 1. It follows from (3.8) that 

( C a u ~ h y  - Schwartz Inequality) (3.9) 

with equality if and only if l.r# = p, p E R. But from 
Result 1 this equality cannot hold if a # 0. Thus, we have 
E{1-~1*”} < 1, and from Property 2, the magnitudeipower 
conditions of (2.17) are verified. 

B. Stabiliry Conditions of the Undesirable Equilibria 

In discussing the stability (attractiveness) of the average 
equilibria of the adaptive algorithm, we shall use the well- 
known fact that the equilibrium $ is locally stable (attractive) 
if the Hessian matrix 

(3.10) 

is positive definite. The commutativity of differentiation and 
expectation in (3.10) follows by the smoothness of J,(.) for 
p 2 2 .  For p = 1 (Sato), difficulties arise: a Hessian can be 
defined but the commutativity fails and the analysis becomes 
formidable. We shall study the local stability of the undesirable 
equilibria only for p 2 2 .  

At any given equilibrium $ of (2.12), we have for p 2 2 

In analyzing the positive definiteness of this specific Hessian, 
we can reach the following stability condition. 

Stubilig Condition I :  For the set of undesirable equilibria 
given by (3.8), the Hessian matrix of (3.1 1) is positive definite 
if and only if 

p 2 2 .  (3.13) 

0 
Therefore, the pair of undesirable equilibria for the real 

Godard equalizer are both locally stable if the condition (3.13) 
holds. This expression will prove essential in our example to 
follow. 

C. Consequences of Ill-Convergence 

The convergence of the pair of undesirable equilibria (3.8) 
makes the equalizer merely a scalar plus 71-sample delay, 
thus no channel distortion (ISI) can be removed. Therefore, 
if the channel is sufficiently dispersive such that the initial 
eye diagram of . rk  is closed (requiring an equalizer), then 
after convergence to these undesirable equilibria (3.8) a blind 
equalizer will not have opened the eye. In this case a nearest 
element decision device will not recover { ( L A . }  and poor error 
probability performance will ensue. 

As a common practice, a decision-directed algorithm is 
used in conjunction with a blind equalizer-once the blind 
equalizer has reduced enough ISI, the decision-directed algo- 
rithm takes over. It is apparent, therefore, that if the Godard 
algorithm converges to any member of the set of undesirable 
equilibria which do not eliminate any ISI, subsequent switch- 
ing to a decision-directed mode can prove futile when the 
channel is highly dispersive. 

D. Examples of Stable Undesirable Equilibria 

Consider the special Godard algorithm of p = 2 ,  which 
is also known as the constant-modulus algorithm (CMA) 
[8]-[10]. It can be shown from the AR equation of (3.4) that 

- -. 

. I _ . .  . I.. .... .......... . - . . . . . . - .. .. . ... . . .. . . . . . .. ... . . . . . . . . .. .. . - -. . . . . . . . .. - - . . - - - - -_ . . . . . -. .. . . .. . , 
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v la1 < 1 if 3 ( ~ l u i / ) ~  >  la;^. (3.15) 

Hence, the stability condition (3.13) is satisfied as long as 
3(Elaz1)2  - Elail > 0. 

For the typical M-ary PAM signal { u k }  uniformly dis- 
tributed over M ( M  > 1, even) discrete levels { - ( M  - l)d, 
. . . . -3d. -d. d. 3d. . . . . (M - l)d}, the stability condition 
becomes 

M / 2  

3 (Eia$1)2  - Elail = 3 -d2 ( 2 i  - 1)2 [:i i=l l 2  
h1f2 

- -d4 (2 i  - 1)4 
2 

M 
i=l 

= 3 -(A42 - l)d’I2 [: 
1 
15 

- - ( M 2  - 1) ( 3 M 2  - 7)d4 

2 
15 

Thus, it can be concluded that the undesirable equilibria 

= -(M4 - l)d4 > 0. (3.16) 

- e =  - ‘  
1 - a4 

3 E ( ~ z ) ( 1  + a 2 )  - 2R2(1 - a 2 )  
(3.17) 

resulted by substituting (3.14) into (3.8), are a pair of stable 
equilibria for CMA when the input is the uniformly distributed 
hl-ary PAM signal. 

As a concrete example, let the channel have the simplest 
AR(1) form with a = 0.6 whose input U k  and output 5 k  

satisfies 

-l‘k + 0.6Jk-1 = (Lk. Pr (arc = k1) = 0.5 (3.18) 
A A h  

and the equalizer parameter vector is simply B = [ 00 811 I. The 
ideal equilibria for CMA are e = k[l 0.61’ and the pair of 
undesirable equilibria that were shown to be locally attractive 
are at e = &[0 0.55751’. Due to the stochastic gradient descent 
nature of CMA, the locally stable equilibrium of its adaptive 
algofithm correspon$s to a local minimum of the mean cost 
Jp (8 ) = E { Jp  ( X i 0  ) } . Thus, if the mean cost J p  is plotted 
as a function of $0 and $1, we should observe local minima at 
all these four equilibria and possibly at some further-points; 

In Fig. 2(a), the 3-D plot of 3 2  ( B ^ )  as a function of 8 1  and 80 
is displayed. A contour plot of Jp is given in Fig. 2(b). They 
clearly show two global minima achieving 3 2  = 0 at the 
ideal equilibria e = &[l  0.61’. Furthermore, two additional 
local minima also appear at the undesirable equilibria 8 = 
&[O 0.55751’. Thus, our analytical results are verified in this 

f 2  

global minimum global minimum 

I -  

0.5 - 

0 -  

-0.5 - 

I -  

-‘.:I , , , , I , , 1 ,  
-2 -1s -1 -0s 0 0 5  1 1 5  2 

(h)  

Fig. 2. Mean cost for binary transmission without channel noise under the 
.4E(l) channel. (a) Three-dimensional plot of the mean cost. (h) Contour 
plot of the mean cost and simulation trajectories. 

simple example. Note, additionally, there are four saddle point 
solutions of (2.12) plus the maximum at the origin, leading to 
a total of nine “equilibria” (which theoretically exhausts all 
possibilities in this case). Notice that since the cost function 
is even, the contour of the mean cost is symmetric to the 
origin [0 01’ as Fig. 2( b) clearly shows. In addition, the results 
of computer simulation (stepsize p = 5 x of this 
equalization sy_stem are also presented through the plot of 
Q 0 ( k )  versus B l ( k )  also shown in Fig. 2(b) under various 
initial conditions. The simulations show clearly that the pair of 
undesired equilibria 8 have considerable regions of attraction. 
The possibility for CMA to converge to either one of these 
undesired equilibria exists and is definitely not negligible. 

We now maintain the same system except to let the input 
sequence {Q} be from an eight-level PAM, i.e., a k  uni- 
formly distributed over {-7, -5. -3. -1. +l. +3.  +5, +7}. 
We present t_he 3-D and the contour plot of the mean cost 
function J 2  ( e )  in Fig. 3(a) and (b), respectively. As we have 
shown analytically, while global minima exist at f [l 0.6]/ ,  
two additional local minima are present at f [ O  0.68301’. The 
3-D and the contour plots bear the same features as in the 
case when the input is binary. Simulation results ( p  = lop5) 
of & ( k )  and & ( k )  initialized at the same four points as 
in Fig. 2(b) are also shown in Fig. 3(b) to have converged 
similarly to both the desired and the undesirable equilibria. 
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(b )  

Fig. 3. Mean cost for 8-ary transmission without channel noise under the 
.If?( 1) channel. (a) Three-dimensional plot of the mean cost. (b )  Contour 
plot of the mean cost and simulation trajectories. 

E. Channel Noise 

Having established the possible ill-convergence of the 
Godard (CMA) algorithm under multilevel PAM input 
both analytically and experimentally, one important question 
remains unanswered, i.e., whether or not the presence of an 
additive noise r t k  will change the surface of the cost function 
so that the undesirable equilibria either disappear or become 
very shallow such that they are almost unattractive to the 
algorithm. To answer this question, we will add in each of 
our two previous examples a white Gaussian additive noise 
n k  at zk, independent of the input sequence { u k } .  Let the 
SNR at the channel output be 10 dB. We repeat the resulting 
3-D and contour plots of the mean cost 3 2  ( H  ) in Figs. 4 
and 5 for the binary transmission and the 8-ary transmission, 
respectively. (Of course, this requires a modification to the 
earlier analysis; details are omitted due to space limitations.) 
The contour plots are drawn at the same levels for both the 
noiseless and the noisy cases in order to illustrate the changes 
that occurred as a result of the additive noise 71k .  

A comparison reveals that the shapes of the mean cost 
surface in both cases have been deformed by the inclusion 
of noise. Not only are the locations of the local and the global 
minima changed, but the depths of the two global minima 
have also been made shallower than for the noiseless channel. 
However, the regions of attraction for all the minima remain 

almost the same size. We can therefore expect simulations 
starting at a given location (initialization) to converge to the 
same type of (global and local) equilibria in both the noisy 
and the noiseless situations. Simulations under noise using 
the same stepsize ( p  = 0.005 and respectively) as in 
the noiseless cases are also illustrated in Figs. 4 and 5. They 
show the convergence of the four simulations to the same 
global and local minima as in the noiseless simulations. We, 
hence, can conclude that in general, the inclusion of small 
additive noises (SNR = 10 dB) at the channel output does not 
diminish the domain of attraction of the undesirable equilibria. 
While the existence of random noise makes it easier for the 
algorithm to escape from the local (undesirable) minima due 
to the possible large deviations, it also makes it easier for the 
algorithm to escape from the global (desirable) minima due to 
their reduced depth as a result of the noise effect. The hope 
that modest noise will decrease the chance of ill-convergence 
by the Godard algorithm is unsubstantiated. 

F. Robustness 

It is of interest to ask whether for an arbitrary AR channel 
of order n, rather than one of the special form (3.1), there can 
be undesirable stable equilibria. In fact, the same question 
can be posed for any channel model. This can be viewed as 
questioning the robustness of our results to perturbations in the 
model assumptions. A continuity argument indicates that for 
a channel close to (3.1), there will be undesirable equilibria 
close to (3.8). As one possjble illustration for this, we sjmply 
draw the 3-D plot of J p ( 6 ) )  ( p  = 2 )  as a function of 00 and 

for an M A  channel consisting of the first three terms of 
the impulse response of our above example (3.18), i.e., the 
channel defined by 

~k =  CL^ - 0.6nk.-l + 0.36nk-2. (3.19) 

{ u k }  is again i.i.d. uniform 8-level PAM and the SNR = 
10 dB. A plot analogous to Fig. 2 is given in Fig. 6. It is appar- 
ent that undesirable equilibria remain. This result indicates the 
phenomena that we are studying are not dependent on the AR 
channel modeling assumption and it is only in the interest of 
clarity and simplicity that we isolated this analytically tractable 
situation. 

Another robustness issue involves the assumption of the 
channel input being i.i.d. Although this assumption is common 
in most of the publications regarding (blind) adaptive equal- 
ization, IS1 removal under correlated data input is an important 
problem. Our results of this paper can be generalized in prin- 
ciple to accommodate nonwhite inputs. In fact, in our computer 
simulations the input sequence is only pseudorandom and 
small correlation does exist between successive symbols. 

Finally, we comment on the relationship between the unde- 
sirable equilibria developed here and in [3]. In [3], both for 
the case p = 1 and p = 2, a set of undesirable equilibria 
is defined in terms of the combined impulse response of the 
channel cascaded with the equalizer; in particular, the equalizer 
parameter vector that exhibits the undesirable equilibria of 
[3] is of infinite length, which is not a practical assumption. 
In addition, these undesirable equilibria have been shown to 

. I _ . .  . I  
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global minikum \ global minimum 
local minima 

global minimum global minimum 

(a) 
(a) 
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( b) 

Fig. 4. Mean cost for binary transmission with channel SNR = 10 dB under 
the .AR( 1) channel. (a) Three-dimensional plot of the mean cost. (b)  Contour 
plot of the mean cost and simulation trajectories. 

be locally unstable for p = 2 and are hence not detrimental 
to the p = 2 Godard algorithm in practice. Observe that 
this excludes the undesirable equilibria that we have just 
developed here, which depend on the finite parametrization of 
the equalizer system. Hence, our results and those of Godard 
are complementary. 

Iv. EXISTENCE OF UNDESIRABLE EQUILIBRIA FOR THE 
COMPLEX GODARD ALGORITHM 

In the previous section, we displayed a pair of stable 
undesirable equilibria with large domains of attraction for the 
real Godard algorithm. In this section, we shall analogously 
derive a set of undesirable equilibria for the complex (QAM) 
Godard algorithm, and establish their local stability condition 
which differs in form from the real case in a nontrivial way. 

A.  Derivation of Undesirable Equilibria 

Consider now the complex case using the same AR(n) 
channel as in (3.1) and (3.3), except N E C, la1 < 1. 
Suppose { a k }  is an i.i.d., process which has zero mean, 
and the constellation has certain symmetries such that 

as in [3]. Notice again from (3.1) that the channel outputs 
xk, xk-1. . . . . xk--n+l are independent identically distributed 
random variables satisfying E { x k }  = E{Re(xk)} = 

E{Re2(ak)} = E { h 2 ( a k ) }  = E{(akI2}/2 and E { a i }  = 0 

1 -  

0 5 -  

0 -  

-0 5 

1 -  

Fig. 5 .  Mean cost for 8-ary transmission with channel SNR = 10 dB under 
the .AI?( 1)  channel. (a) Three-dimensional plot of the mean cost. (b) Contour 
plot of the mean cost and simulation trajectories. 

E{Irn(xk)} = 0 since u k  has zero mean and I Q (  < 1. For 
this AR(n . )  channel, a general M A ( n , )  equalizer is required 
to eliminate IS1 whose parameter vector is repre2ented by (3.2) 
except the coefficients must be co_mplex, i.e., O ; ( k )  E C. Let 
the output be given by 21; = XL.O(k). 

Again we search - -  equilibria of the form e = [0 0 . . . en]' 
for which Zk = xL6' = 6 ' n ~ k - 7 1 - .  In solving (3.1) the details 
mimic those of the real case and lead to the solution 

I \ 1 I P  

which defines a one-dimensional manifold of undesirable 
equilibria for the complex Godard equalizer. So again we see 
that a simple nontrivial channel leads to a set of equilibria 
for the complex blind Godard algorithm not associated with 
correct equalization. However, the question of stability for the 
complex algorithm requires a nontrivial extension from the 
real case and so it is here at this crucial point that we detail 
our analysis. 

B. Stability Condition for the Undesired Equilibria 

In order to examine the stability of this set of equilibria 
using the predominantly real stability theory, we need to 
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= [(z;zI;)"' - R p ]  ( z k z k ) p ' 2 - 1 x I ; z k .  

(4.5) 

The updating of the equalizer parameters is accomplished by 

6 ( k  + 1) = 6 ( k )  - /1[(zLzk)pi2 - R p ] ( Z ; Z I ; ) p / 2 - 1 z x k Z k .  

(4.6) 

This is actually a real arithmetic algorithm realization of the 
complex update scheme in (2.5). The average equilibrium e 
of the Godard algorithm satisfies 

( 6 ' ( k ) X k X L 6 ( k ) ) " *  - Rp] 
global minimum global minimum 

(a)  

s , 2 ' , " z ' '  
I 1 5  

Note that any particular solution 6 ( k )  = e of (4.7) has 
associated with it a manifold of equilibria 

- 
0, 4 T,.e. 41 E [0.27r] (4.8a) 

I - I  S t  where (let I,L+l denote the n + 1 x n + 1 identity matrix) i 
I 

-2 - 1 s  -1 -0s 0 0 s  1 1 5  2 
2 '  ' ' ,  , " ' 1 bo 

( b) 

Fig. 6. Mean cost for 8-ary transmission with channel SNR = 10 dB under 
the . l f . l ( L )  channel. (a) Three-dimensional plot of the mean cost. (b )  Contour 
plot of the mean cost and simulation trajectories. 

due to the cost function Jp(zI;) being insensitive to the phase. 
For the complex AR,(n,) channel (3.1), we may express the 

desired manifold of equilibria through 

consider a real arithmetic implementation of this complex T,,[l 0 ' . .  0 o! 0 0 " .  0 01, 

?/I E [0, 2T] .  (4.9) 
algorithm (2.5). Write 

Similarly, the manifold of undesirable equilibria (4.8) may be 

l/P 

Rk a Re[:ck x k - 1  . . . zk-,,]' arid 

SI; 2 Irn[:L.k. x - 1  . . . Z k - n ] ' .  (4.2) written 

- E {  IxkI ' }  0,. 2 TL> 
We now redefine the regressor matrix X I ;  and parameter vector 
0 ( k )  as follows [13]: ( E { I ") 
Hence, the equalizer o_utput can be represented as 21; a 
[Re(sk) Im(s~;)] '  = X; ,O(k) .  With this new notation, we can 
rewrite the cost function E { J p ( z k ) }  (2.6) as 

I>  +It11 

qi E [0,27r]. (4.10) 

In order to discuss the local attractiveness of this set of 
E{.Jp(Zk)}  = -E{ [ ( e ' ( k ) X 1 ; X L 6 ( k ) ) ' / *  - Rp] * }  . average equilibria, we need to consider the Hessian matrix H 

1 

defined as 2P 

Further, the gradient (incremental algorithm update) is given 

. I _ . .  . I  
. - . . . . . . - .. .. . ... . . .. . . . . . .. ... . . . . . . . . .. .. . - -. . . . . . . . .. - . . - - - - -_ . . . . . -. .. . . .. . , 
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+ [ (c l  0 xkxk t)p-l - RP(~txkx;6)p'2-1] we have 

.xkx; . (4.11) 1 
Towards this end we present two key results. 

Result 3: The one-dimensional smooth manifold of equilib- 
ria (4.8) is locally attractive if at every point on the manifold: 

a) the Z(n + 1) x 2(n + 1) Hessian matrix (4.11) is non- 
As a result, it follows that for p = 2 

E{ 1xk12p-2} 1 E {  lXklP-2} = E {  IZk l2}  

b) the eigenvector corresponding to the zero eigenvalue is E{ I Z k 1 2 P }  E{IQIP) E {  l X k 1 4 }  

_ -  negative definite with rank 2n + 1; and 

tangent to the manifold. 0 
Result 4: For the one-dimensional manifold of parameter 

1 
- 

vectors specified by 2E{ Izk12} 

- 

> 0. 
0, = T,Oo, $1 E [0,27r] (4.12) 

H ( 0 , )  has the same eigenvalues for all 11 E [O, 27r]. At every 
value of $, the eigenvector uo (0,) corresponding to the zero 

- - 

eigenvalue of H ( 0 , )  is always tangent to the manifold. 0 Vial < 1 if ~ ( E I C L ; ~ ) ~  - Elail > 0. (4.16) 
In our study of the Godard equalizer used for complex 

i lR(n)  channel equalization, the actual Z(n + 1) x 2(n + 1) 
Hessian evaluated at 00 is given by Consider the typical QAM where u k  is uniformly dis- 

tributed over the constellation in which Re{uk} and Im{ u k }  

both can take values from the same discrete levels { - ( M  - 

gular 16-QAM and 64-QAM). Then, it easily follows that 
( P  - 1)10012P-4~~k-n~2p-4 - R P ( P / ~  - 1)  1)d. .  . . ~ -3d,  -d, d. 3d. .  . . , ( M  - 1)d) (e.g., CCITT rectan- 

1 

(4.13) 

Stability Condition 2: For the complex AR(n) channel 
defined by (3.1), the above Z(n + 1) x 2(n + 1) Hessian matrix 
H(Oo)  is nonnegative definite with rank 2 n + 1  if and only if 

In addition, its eigenvector vo corresponding to zero eigen- 
0 

Thus, if (4.14) holds, the Hessian matrix H ( 6 )  has 
rank 2n + 1 on the manifold of undesired equilibria 
0, T,&, and at each point Gyi, its eigenvector 
corresponding to zero eigenvalue is tangent to the manifold 
0,. Therefore, the conditions of Result 3 are satisfied 
and the set of undesirable equilibria e+ is locally stable 
if (4.14) holds. This is a sufficient condition for the 
set of undesired equilibria given by (4.10) to be locally 
stable. 

As an example of applying (4.14) we test the stability of 
the undesirable equilibria for the ( p  = 2 )  CMA algorithm. 
From the autoregressive equation of (3.3) and based on the 
assumptions about the complex input sequence { u k }  [3] ,  

value is the tangent of the manifold 0uc: at $ = 0. 

- 

- 

- 2E ( l R ? { ~ } ~ l  lIln{ a k 1 2 1 )  

= 2 [ 3 ( E ~ R e { n ~ } 2 ~ ) 2  - EIRe{ak)'l] 

= -("4 - l )d4  > 0. 
4 
15 

(4.17) 

Therefore, for the complex CMA algorithm, the set of un- 
desired equilibria given by (4.10) are locally stable when 
the typical QAM constellation as described above are used 
for which Stability Condition 2 holds. In fact, the stability 
condition also holds for inputs from the CCITT V.29 16-QAM 
constellation. 

The remarks of Sections 111-E and -F regarding robustness 
of the results also apply to the results of this section. 

V. CONCLUSION 

Aspects of the convergence behavior of Godard blind equal- 
izers for QAM signal reception have been studied. It is 
shown that the global minimum of the mean cost under 
constant modulus input corresponds to the elimination of 
IS1 by the equalizer setting. The Godard algorithms can be 
interpreted as an attempt to minimize a certain mean cost 
through adaptation of equalizer parameters, and through this 
view the existence of undesirable, i.e., incorrect, equilib- 
ria for Godard algorithms was demonstrated. It is shown 
with a simple system setup that these particular undesirable 
equilibria are locally stable for many useful and popular 
QAM constellations. Our examples and simulation confirm 
our findings. While in the original setting the channel noise 
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was assumed zero and the channel was assumed to by an 
AR type, our examples and simulations show that violation 
of either condition does not result in the disappearance of the 
undesirable equilibria, contradicting many wishful conjectures. 
We hope that our findings will stimulate more research on 
many of the important and interesting issues of blind equal- 
ization, including searching for potential algorithms of global 
asymptotic optimality. 

Our results proved the existence of ill-convergence by the 
Godard algorithm. They lack the generality one might desire 
due to the assumption of AR channel models. It will be of great 
interest and importance to extend these results into other, more 
general types of channel models in support of our simulation 
results. Although (3.8) also represents undesirable equilibria 
for the algorithm of y = 1 (Sato), a closed-form expression 
for their location and local stability condition have not been 
successfully determined due to the difficulty caused by the 
discontinuity of the gradient of the cost function at the origin. 
However, simulations similar to that in Fig. 6 reveal the local 
stability of the undesirable equilibria of (3.8) for the simple ex- 
ample. Further work is needed to derive the associated stability 
condition. Also, our convergence test derived in Section I1 
is derived for channel inputs of constant modulus. Further 
study is needed to establish a similar test for a more general 
class of QAM inputs. The main results of this paper motivate 
the need for further work in the development of equalizer 
initialization tactics that can help to prevent Godard algorithms 
from exhibiting ill-convergence to undesirable equilibria. 

APPENDIX 
PROOFS OF RESULTS, PROPERTIES, 

AND STABILITY CONDITIONS 

Proof of Result 1: Suppose h, # 0 and h ,  # 0 for at 
least two integers I # J .  Consider four different data sequences 
labeled (ai”},  ( a y ’ } ,  ( a f ’ } ,  { a y ) } ,  where a(’) k - n i  - - ( L k - m  (’I - - 

( 3 )  - a(4)  = 
( ik-r , ,  - k - m  a k ,  ’d ~1 # 1 ,  rri # J and 

~ 

. -  ..................................... . . . .  .- . . . . . . . . .  . . . . . .  I.. . . . . . . . . . . . . . .  _ 

With cy # 0, it  then follows that z i l )  = R + h,o + h,a 
where R = h,ak-,,,. Similarly, we have z p )  = 

R + h,n + h,/1, zf )  = R + hzfl + hJ0,  and z p )  = R + 
h,,’j + hlJ .  Here z l l ) ,  zf ) ,  zf), and zi,4) can be seen as four 
different vectors in the complex plane. It is clear that 

Thus, zf),  zf), zf),  and z p )  must be four vertices of a 
parallelogram in the complex plane (or they can also lie in a 
line which is also a special parallelogram). But since we have 
by hypothesis that /zr)I  = Izy)I = 1zp)1 = \zp) l  = p, it is 

(A. 1.1) 

1323 

evident that this parallelogram has to be a rectangle centered 
at the origin. Hence we can conclude that R = 0. 

Since R = 0, it follows from Izf ) (  = 1zp)l that la( = IpI, 
i.e., cy = /3ej4 where 4 # 2nn-, n E 7,. Consequently, from 
(A.1.2) we have 

which means either h, = 0 or h, = 0. The last equation 
contradicts our assumption of h, # 0 and h, # 0. Thus, 
we can conclude that there exists only one hb # 0 for some 
b E Z+. Now from 

= / h b ~ l ; - b l  = p,  V ak-6 E A 

(A.1.4) 

it is clear that all symbols A 4 { a . [ j . ~ .  . . . }  satisfy (a1 = 
0 

Proof of Property 1: By the Cauchy-Schwartz inequal- 
ity, it is known that for random variables x, y, E2{xy} 5 
E{r2}E{y ’ }  with strict equality if and only if x = Ay, X E 
W. Now let x = JzJp and y = 1. Then E2{IzIp} 5 E {  lzl”} in 
which the equality holds if and only if IzI’ = A, for some /I E 
R. But by the hypothesis E’{ Izl’} 5 E {  IzI’”} = E (  lzl’} 
which gives E{ IzI”} 5 1 with strict equality if and only if 
lzlp = X = 1 or IzI = 1 (except on a set of measure zero). 

0 
Proof of Property 2: (Outline) It i5 easy to verify that the 

real polynomial ms‘ - 1x7“ - m + 1 for 5 2 0 and 1 2 m 2 1 
has a global minimum at s = 1, and therefore takes only 
positive values. Thus, (lettings = IzI), m(/z / ’ - l )  2 ~ ( I z ( ~ ‘ -  
1), Vz E C, V l  2 m 2 1. Therefore, by hypothesis and taking 
expectations 0 > m ( E {  IzI’} - 1) 2 1(E{ Izlm} - 1) which 

0 
Proof ofProperty3: (Outline) It is easy to verify for 

arbitrary 7, (1n.l‘ - 1)(1x1 - 1) 2 0, V 5 E C with equality 
only when 151 = 1. Therefore, taking expectations we obtain 
E {  l.rlz+l} - E{ I T [ ‘ }  - E( IxI} + 1 2 0 with equality only if 
1x1 = 1 almost surely. The desired result now easily follows 

Proof of Stability Condition I :  Write the Hessian (3.12) 

/PI = J y /  = . .  ., and thus lh6) = p/ laI .  

readily leads to the desired result. 

from the hypothesis. 0 

as 

where 

Using the independence between x k - i ,  i = 1 , 2 , .  . . .  n - 1 and 
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,rk--n [and hence f ( . ~ k - ~ ) ] ,  we get (A.5.3) as shown below. = [I  - pH(O)]  ’ [ 0 ( k )  - 01 
From the independence of Uk and Xk-rL and the channel 
characteristics, it is positive definite if and only if + 0 ( / l 6 ( k ,  - q2). (A.6.3) 

E { J - - J ( L r d }  = le,, )’-2E ( 2 p  - 1)J% J1llxk--nJ 2 p  Since 0, of (4.8) defines a 1-manifold of equilibria for the 
average system, we shall define a special Lyapunov Function 

V ( X )  a irif G(k.1 - 0, /I. (A. 6.4) 

0, , we can find a G,, I on the 1-manifold that is closest to 
For 6 ( k )  in the neighborhood of the one-dimensional manifold 

G(k.1. Clearly, 

L ! I  
- 

I - R,(P - l ) I T k - , J P  

i 
= pR, /e, IP-’E{ /sk I”}  > 0 (A.5.4) 

which is always satisfied and 

E { f ( ~ ’ n - n ) }  = J Q r l I  E ( 2 p  - 1 ) J ~ , L / P / ~ ~ - n / L p - 2  V ( k )  = IlG(k) - 0, (A.6.5) 
- p - 2  i 

- ( p  - 1) l . l . h  > 0. I 
(ASS)  

Therefore, H(H) given in (A.5.1) will be positive definite if 
and only if the scalar expectation in ( A S S )  is positive. This 

0 
Proof of Result 3: From ( 2 3 ,  the average system is 

condition is equivalent to (3.13). 

By denoting , q ( 6 ( k ) )  = E { T ~ ~ k ~ J 1 l ( k ) } ,  the equilibrium of 
the average system is given by 

g O ( k )  = 0. (A.6.2) 

Let 0 be a solution to (A.6.2) which is hence an average 
equilibrium. Then the average system can be linearized in the 
neighborhood of 0 (Euclidean norms are understood) 

r , >  

G ( k  + 1) - 0 = G ( k )  - 0 + p g ( 0 )  

and 6 ( k )  - gLl is orthogonal to the tangent plane of the 
manifold a, at d)’, otherwise 0, I cannot achieve the infinum 
of (A.6.4). The eigenvectors of H ( 0 ,  ( )  are all orthogonal, 
since H ( O ,  j )  is symmetric, and so (under the hypotheses) 
6(k)  - w, 1 must be in the space spanned by those eigenvec- 
tors of H ( O ,  J )  corresponding to the positive eigenvalues. 
Thus, for 11 small, [ I  - p H ( 0 ,  I ) ]  is a contraction for 
[ 6 ( k )  - G, I ]  and we have 

/ I  [ I  - pH(G, I ) ]  [6(k) - 0, / ]  1 1  5 +(L) -GI  1 . I1 

!/6(k + 1) - GL ( 1 1  5 1 1  [ I  - p H (  O)] ‘ [S(X) - s, t ]  I /  
+ f # ( k )  - G, 1 . II 

1 1  

0 < / ) < 1  (A.6.6) 

with p independent of d) ‘ .  Now given t > 0, we can find 
1 1  (->(L) - 0, 1 1 1  small enough such that 

‘mall eIlollg11 t > 0 

5 ( p + c )  6(k) - 0, I 1 1  (A.6.8) 

with p + t < 1 

/16(k + 1) - 0, I ) I  < IlG(k) - GI 1 1 .  (A.6.7) 

Therefore, for 8(k) in the neighborhood of the manifold G, , 
we have 

~ ( k  + 1) = irif 6 ( k  + 1) - O ,  
I / I  - I1 
5 ( ( 8 ( k  + 1) - s, < I ( G ( k )  - GIL ( 1 1  

= S 7 ( k ) .  (A. 6.9) 

We hereby conclude that the 1-manifold 0,. is locally stable. 
0 

(A.5.3) 
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Proof of Result 4: It can easily be verified that 
- 
0: X k x p ,  = o;x,x;oo. 

S k  Xk T, = T,, Xk X ;  , and 
T,T: = TlT, = I .  (A.7.1) 

These identities and (4.8) may be used in (4.11) to prove the 
simple relationship 

H (  0,) = T, H (  Go)T,’. (A. 7.2) 

Thus, if X is a positive eigenvalue and 71 the corresponding 
eigenvector of H ( GO), such that 

H (  go)’!] = X 7 J  (A.7.3) 

then 

H (  0, )T ,  7’ = T, H (  GO)TL’T, is = T, H (  0 0 )  ( I  = AT, 7 r .  

(A.7.4) 

Proving that X is an eigenvalue and Tb?, the corresponding 
eigenvector of the Hessian H (  0, ) .  Because T, is full-rank 
T, (~ # 0, and so H (  0, ) has the same set of eigenvalues as 
H (  Go) for all 8 ’ .  

In addition, if the eigenvector 7’0 of H (  0”) corresponding 
to the zero eigenvalue, is tangent to the one-dimensional 
manifold 0, at 2 ’  = 0, i.e., 

(A.7.5) 

then the corresponding eigenvector T, ,710 of H ( gL.) clearly 
satisfies 

which is the tangent of the 1-manifold at 4). 0 
Proof of Stability Condition 2: Our assumptions are those 

which constrain attention to symmetric complex constellations, 
i.e., 

E{Re2(ak ) }  = E{Ini2(nk)} = Elnk12/2 and En; = 0. 
(A.8.1) 

Hence, it follows easily that E{Rc(ak )  Im(nk)} = 0, and 
it can be shown for the A R ( ~ L )  channel defined by (3.1) 
(1.1 < 1) that 

E{ R e ( ~ k ) ~ }  = E{ Im( . rk )*}  = E {  l . r k l z } / 2  

(A.8.2) and E{Re( . rk)  Ini(.rk)} = 0. 

From the above equations and the independency condition 
of . rk-7 as well as (3.3), we have many zero entries off 
diagonal in the Hessian (4.13), except at entries involving 
.rk-,l and ,rk. Thus, through the use of all the independency 
relations plus (A.S.l)-(A.8.2), it  can be shown as follows 
below in (A.8.3), in which we have let 

0 
0 

. . .  R C > ~ ( O )  + ElnJy  0 . . .  0 -Re(@) -Re(tr) Ini(cu) 0 

. . .  E I z ~ I  y . . . 0 0 0 0 2l 
0 0 . . . E {  /:l.k12}y o 0 

-Re(@) 0 . . .  0 1 Irri(a) 
-RP(Q)  I I I~(o)  0 . . .  0 Irn(a) Im2(n) + EJa: 

0 0 . . .  0 0 0 

0 
0 

0 
0 

. .  0 0 0 

. .  0 0 0 

0 
0 
0 

0 

. . .  0 
0 

Y 0 
. . .  
. . .  

(A.8.3) 

-- 
. I _ . .  . I.. .... .......... . - . . . . . . - .. .. . ... . . .. . . . . . .. ... . . . . . . . . .. .. . - -. . . . . . . . .. - - . . - - - - -_ . . . . . -. .. . . .. . , 
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It can be shown that this Hessian has the following eigenval- 
ues: 

(A. 8.5 a) 

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 39, NO. 9, SEPTEMBER 1991 

A3 = p R p /  G,lp-2E{ IskJP}E{ l 0 ~ k 1 ~ ) y .  (A.8.Sb) 

A* = PRpJ BolP-2E{IzklP}E{ lzk12}? 

V 3 < i 5 2n + 1, (A.8.5~) 
X 2 n + 2  = 0. (A.8.Sd) 

Therefore, the Hessian H (  0 0 )  is nonnegative definite and 
has rank 2n + 1 if and only if 

and the eigenvector corresponding to its zero eigenvalue is 
710 = [0 0 . . .  0 11’. Using the results of Lemma 4, we have 

0 thus proved Stability Condition 2. 
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