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Abstract—The turbo decoder was not originally introduced as a
solution to an optimization problem, which has impeded attempts
to explain its excellent performance. Here it is shown, that the
turbo decoder is an iterative method seeking a solution to an intu-
itively pleasing constrained optimization problem. In particular,
the turbo decoder seeks the maximum-likelihood sequence (MLS)
under the false assumption that the input to the encoders are
chosen independently of each other in the parallel case, or that the
output of the outer encoder is chosen independently of the input
to the inner encoder in the serial case. To control the error intro-
duced by the false assumption, the optimizations are performed
subject to a constraint on the probability that the independent
messages happen to coincide. When the constraining probability
equals one, the global maximum of the constrained optimization
problem is the maximume-likelihood sequence detection (MLSD),
allowing for a theoretical connection between turbo decoding and
MLSD. It is then shown that the turbo decoder is a nonlinear
block Gauss—Seidel iteration that aims to solve the optimization
problem by zeroing the gradient of the Lagrangian with a La-
grange multiplier of —1. Some conditions for the convergence
for the turbo decoder are then given by adapting the existing
literature for Gauss—Seidel iterations.

Index Terms—Constrained optimization, maximum-likelihood
decoding, turbo decoder convergence analysis.

1. INTRODUCTION

LONG with being one of the most prominent commu-

nications inventions of the past decade, the introduction
of turbo codes in [3] began a new era in communications sys-
tems achieving unprecedented performance. The creation of the
turbo decoder introduced a new method of decoding these codes
which brought the decoding of complex codes within the reach
of computationally practical algorithms. The iterative decoding
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algorithm, while being suboptimal, performs well enough to
bring turbo codes very close to theoretically attainable limits.
An accurate justification for the decoding strategy’s perfor-
mance is still incomplete. While it has been proven that turbo
codes have good distance properties, which would be relevant
for maximum-likelihood decoding, researchers have not yet suc-
ceeded in developing a proper connection between the subop-
timal turbo decoder and maximum-likelihood decoding. This
is exacerbated by the fact that the turbo decoder, unlike most
of the designs in modern communications systems engineering,
was not originally introduced as a solution to an optimization
problem. This has made explaining just why the turbo decoder
performs as well as it does very difficult. Together with the
lack of formulation as a solution to an optimization problem,
the turbo decoder is an iterative algorithm, which makes deter-
mining its convergence and stability behavior important. Much
of the analytical work concerning the turbo decoder, then, has
focussed on determining its convergence and stability proper-
ties. Significant progress along these lines has been made with
EXIT style analysis [4] and density evolution [5], but these tech-
niques ultimately appeal to results which become valid only
when the block length grows rather large. Other attempts, such
as connections to factor graphs [6] and belief propagation [7],
have been hindered from showing convergence due to loops
in the turbo coding graph. The information geometric attempts
[8]-[12], in turn provided an intriguing partial description of
the problem in terms of information projections, which allowed
for linearized local stability results in [9], [10], but complete re-
sults have been hampered by an inability to efficiently describe
extrinsic information extraction as an information projection.
None of these convergence frameworks, so far, have identi-
fied the optimization problem that the decoder is attempting to
solve. Within the context of belief propagation [13], a general
family of algorithms which includes the turbo decoder [6], [7],
several authors [14]-[19] have shown that the turbo decoder
is related to an approximation in statistical physics which is a
constrained optimization, but the development there is based
on ideas from statistical physics which are not essential for the
analysis of the turbo decoder. In particular, [14]-[18] and [19]
show that the stationary points of belief propagation and thus
turbo decoding minimize the Bethe approximation to the vari-
ational free energy. While this approximation has a long and
established history within the context of statistical physics, its
intuitive meaning within the context of turbo decoding is less
than transparent. Indeed, given that the Bethe approximation can
not be expected to be exact in factor graphs with loops (a class
within which all turbo codes are bound to lie), it is not clear why
minimizing it can yield such good performance in these cases.
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This paper takes a different approach, choosing a different ob-
jective function and constraints which both have clear intuitive
meaning within the context of the turbo decoder and still yield
the stationary points of the turbo decoder as critical points of the
constrained optimization’s Lagrangian.!

After introducing our notation and reviewing the turbo de-
coder in Section II, we will show in Section III that the turbo
decoder admits an exact interpretation as a well-known itera-
tive method [1] attempting to find a solution to a particular in-
tuitively pleasing constrained optimization problem. In our for-
mulation of the constrained optimization problem, it will be-
come clear that the turbo decoder is calculating a constrained
maximum-likelihood sequence detection (MLSD). This is to be
contrasted to the suggestion in [14], [15], [17], [18] that belief
propagation decoding results in estimates of the maximum-like-
lihood bitwise detection (MLBD), partially owing to the fact
that the existing proofs of convergence within that arena are pri-
marily based on the loopless case for which bitwise optimality is
well established [6]. Of course, the constraints in the constrained
MLSD bias the turbo decoder away from the exact MLSD, so
that in general it can be expected to be neither exactly the MLSD
nor the MLBD. Properly identifying the iterative method that is
being used then allows us to give some conditions for conver-
gence of the turbo decoder by borrowing convergence theory for
the nonlinear block Gauss—Seidel iteration in Section IV.

II. PRELIMINARIES AND NOTATION

Before we get to answering some key questions about the
turbo decoder, we will need to discuss some preliminary topics.
In the following development, we will find it useful to consider
families of probability measures on the possible binary words
of length N. This will lead us in Section II.A to consider the
geometric structure of this family of probability measures by
finding parameterizations of it that will be useful in the sequel.
Next, in Section II-B we will consider a formulation of max-
imum-likelihood sequence decoding which is rather atypical,
but bears important resemblance to the turbo decoder. We then
briefly review the operation of the turbo encoder and decoder in
Section II-C, which may be helpful for some readers, and should
also reinforce the information geometric notation that we will
use in the remainder of the development.

A. Information Geometry

Let B; € {0,1}¥ fori € {0,...,2" — 1} denote the binary
representation of the integer ¢. Then, by forming the matrix
B = (Bo,B1....,Box 1) € {0,127 %N
we can create a matrix whose rows collectively are all the pos-
sible binary words of length N. Given a random binary word
of length N, call it £, we will be interested in different proba-

bility mass functions (PMFs) on the outcomes {{ = B, }. Since
there are a finite number of such outcomes, we can completely

I Although it is well beyond the scope of this paper, the reader familiar with
the Bethe approximation to the variational free energy may wish to consult [20],
[21] and [22] for the interplay between these two different optimization frame-
works that yield the same critical points.
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characterize such a measure g, by simply listing the probabili-
ties {¢(B;) = Pr[¢ = B;]}. Furthermore, because ¢ is a PMF,
we must have ¢(B;) > 0 and

> q(Bi) =1

i

We are then content, that, to parameterize the set F of all PMFs
on the outcomes {¢ = B,}, it is sufficient to consider the set F,,
of vectors of the form

n=(q(Bo),q(B1),....q(Bax_1))"

whose entries are nonnegative and sum to one. We shall also find
it convenient later to work with the log coordinates for PMFs in
F. Given a PMF ¢q € F, its log coordinates are the vector 6
whose ¢th element is given by

0; = log(¢(B;)) — log(g(Bo))
Given, then, a vector @, we see that we can uniquely determine
its corresponding wordwise PMF ¢, by using the list of proba-
bilities in the vector 7, which can be written in terms of # as

n=exp(0 —(0)), ¢(8) :=log(|[exp(@)[l1) (1)

where || - ||1 is the I-norm (sum of the absolute values of the
components of a vector argument). In fact, one may show that
1(0) is actually the convex conjugate [23] and dual potential
under the Legendre transformation [24] to the negative of the
Shannon entropy, so that

¥(8) + H(n) > (8,n)

with equality iff # and 7 are coordinates for the same PMF,
where H is the negative of the Shannon entropy

H(n) = (n,log(n))

It is often to convenient to work with the log coordinates of
PMFs, since if the random binary words &, x, ¢ satisfy Pr[¢ =
B,] = Pr[x = B;]Pr[{ = B,] for all 4, we have that

bc = Oc + by @

‘We will find it useful to parameterize the subset P C F which
contains those probability measures Pr on {B;} that factor into
the product of their bitwise marginals, so that

Pr(x) = H Pr(z;)

One can show [9], [10], [17], that this set may be parameterized
by the vectors A € R of bitwise log probability ratios which
have elements of the form

The log coordinates of a factorable measure Pr € P then take
the form

6 =B\ 3)
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By combining the facts (2) and (3), we may represent the
log coordinates of a wordwise PMF which results by weighting
a likelihood function whose log coordinates are @ with a fac-
torable PMF with bitwise log probability ratios A as BA + 6.
A fact that we will use later is that the gradient of ¢)(BX + 0)
with respect to A is in fact the vector whose ith element is the
marginal probability that the 7th bit is one according to the PMF
with log coordinates BA + 6.

Vay(BA+0) = Vylog(||exp(BA +6)]||1)
v exp(BA+6)
~ 7 [lexp(BA+0)]x

T
=B 5210
= PB)1o “4)

Here we have used the notation 7y to represent the PMF vector
of the measure with log coordinates #, and pg to represent the
vector whose +th element is the probability that the th bit is one
according to the measure with log coordinates 6.

We will also be interested in handling cases where zero
and one bitwise probabilities are possible, which correspond
to vectors of log probability ratios As with some elements
that are infinite. In particular, for the cases when A con-
tains some infinite values, decompose it into A = A + Ag
where Ao, € {#o00,0}" and Ag € R™. Given any func-
tion f RY — R, we will define f(A) by extending
FA) = limy—,o0 f(tAs + Ar) where A, is any vector of finite
log probability ratios whose signs match those of A, so that
sign(As) = sign(As). In every case we shall encounter in this
article, these limits will be the same regardless of the choice
of As, so long as sign(As) = sign(A). This definition has the
nice property that if we rewrote f(A) in terms of the vector
of bitwise probabilities p € [0,1]" corresponding to A, and
then evaluated it as the probabilities corresponding to A (with
possibly infinite values and thus some probabilities in {0, 1}),
we would recover the same value for f(\).

We will exploit (4) later when we are discussing the operation
of the turbo decoder. First, we will reexamine maximum-likeli-
hood decoding for a generic encoder.

B. Maximum-Likelihood Decoding

In a typical decoding situation, a binary message £ is encoded
and transmitted over a channel to create the received data r.
Given r we would like to reconstruct the original message &.
There are two senses of “optimal” when it comes to decoding
£ in the situation where we have no prior probabilities for the
outcomes {£ = B;}. In one situation, we wish to minimize the
likelihood of selecting the wrong sequence € so as to minimize
the block error rate. In another situation we wish to minimize
the probability of selecting the wrong bit §; so as to minimize
the bit error rate. The former yields MLSD, the latter MLBD.
The MLSD is then

/ = ar max r
€mLsp gse{o,l}"’p( 3,

> plrlx)

x|zi=¢&;

and the MLBD is

£ MLBD = arg max
¢i€{0,1}
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where p(r | €) is the likelihood function which results from con-
catenating the encoder with the channel.

One can set up maximum-likelihood parameter estimation
problems which yield these detectors as their solutions. In par-
ticular, consider a parameter estimation problem where we are
trying to determine the factorable prior PMF on £ which yields
the maximum a posteriori probability of having received r. This
problem then takes the form

quL = arg rqneagzp(r |€ =B,)q(B)) ©)

We know from Section II-A that to parameterize the set P, it is
sufficient to use a vector of log probability ratios A, thus we can
set this problem as selecting

AL = arg max p(r|A)
AER|J{FooHN
—arg  max > p(r|€=Bi)g(B; |

AER|J{FooHN 5

In particular, since we know that for any A we must have

> a(Bi|A) =1

i

we see that the ¢ that maximizes (5) takes the form

a(Bi|A) = 4 1 Bi=&uwso
0, otherwise

since putting any probability mass on any other word would not
yield as high a likelihood. This then implies that )‘MLA are the
infinite log probability ratios associated with the word &y;1,9p-

One can also set up a set of maximum-likelihood parameter
estimation problems whose answers are the MLBDs. In partic-
ular, consider the set of estimation problems

S p(x | €)Prléi A
3

AiML = arg  max

AeR [ J{£oo}

=arg max Pr[{; =1])]

AeR [ J{£oo}

S lxlg)

£1&=1

> prlg)

£1£:=0

+ Pr[& = 0|)\]

From the latter form, it is evident that

Pr[€; = 1| A mL]
_J
_%7
which shows that S\iML is the (infinite) log probability ratio
corresponding to the MLBD.
With these preliminaries, we now review the turbo encoder
and decoder, which are suboptimal, yet have been shown via

simulation to have near optimal performance at a reasonable
complexity.

25\51:1 p(r[&) > Zg|gi=0 p(r &)

otherwise
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Fig. 1. Parallel concatenation of two convolutional codes with interleavers.
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Fig. 2. The parallel concatenated turbo decoder.

C. The Turbo Encoder

Consider the parallel turbo encoder depicted in Fig. 1. A
block of N bits £ is interleaved to get x = II(§). (We will
denote the deinterleaved 1171 () by x for convenience in no-
tation.) Then, € and x are encoded with two, possibly different
systematic convolutional encoders. We then pass the systematic
bits, parity check bits from the first encoder, and parity check
bits from the second encoder, over a noisy memoryless channel
to get the channel outputs rg, ro, and ry, respectively, which
we collect into a large vector r = (rg, rg,r7).

The optimal decoder, in the sense of minimizing block error
probability, at the receiver would choose é to be the message
which maximizes the likelihood function

£

arg max p(r,,rg,r
B ety P rom 1)

=arg ma rs,r ri|x=1I
B max  plrs,ro | §)p(ry[x = 11(€))

where the second factorization is admitted by the memoryless
nature of the channel. As discussed in Section II-B, this is equiv-
alent to choosing the prior factorable PMF for £ that maximizes
the a posteriori likelihood function subject to the constraint that
x = €. To see this select log probability ratios A to parameterize
the prior PMF for &, and write the a posteriori likelihood func-
tion
Prrue(Ta, T0, 11| X) = D p(ra,ro, 11 |€ = B)Pr(€ = B, | ))

i
This is maximized when

Pr(é = Bi | A) = { 1 i= arg.maxjp(rs,ro,rl |€ =Bj)
0 otherwise
so that A corresponds to the (infinite) log probability ratios cor-
responding to the maximum-likelihood sequence detector.
Unfortunately, such a procedure is not computationally fea-
sible at the receiver. To cope with this problem, the parallel turbo

decoder makes use of an exchange of information between com-
putationally efficient decoders for each of the component codes
as depicted in Fig. 2. Denoting by

[00); = log(p(rs, 1o |€ = B;)) — log(p(rs,ro| € = By))
[01]; = log(p(r1|x = By)) — log(p(r1 | x = Bo))

and denoting Ay and Ar as the vectors of information ex-
changed between the two decoders, one may write the parallel
turbo decoder succinctly as iterating

AP = (BAY +60) - Al
AT = (BAY +01) - A

where 7 takes a log PMF to its bitwise marginal log probability
ratios, and thus may be written as

m(6)=log(B” exp(6—1(0))) ~log((1-B)" exp(6—1(6)))

where we denoted by 1 the 2V x N matrix whose entries are all
one.2 If we denote by pg the vector of bitwise marginal proba-
bilities of the bits being one according to the wordwise log PMF
0, we may also write the turbo decoder as

Po(AL AL) = A0,
Py (AT T PeA® 9,

since the extrinsic information vectors /\gC ) are first chosen so
that they match the a posteriori probabilities from the first de-
coder when they are added to its prior information /\(k), and

2For consistency with the references, we have chosen the original decoder
formulation from [3], [25] which explicitly includes r in only one of the com-
ponent decoders. The reader unfamiliar with this form of the parallel turbo de-
coder may verify that the systematic information from r is still used (via the
extrinsic information vectors Ar) in both decoders, although it is not explicitly
included in 8,
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Fig. 3. The serially concatenated turbo encoder.

similarly for AEHD With respect to the second decoder and prior
information /\Tk ),

The serial turbo encoder is depicted in Fig. 3. A block ¢ of
M information bits are encoded with a systematic convolutional
encoder to get &, which is then interleaved to get x = I1(£), and
then encoded with another encoder, which may not be system-
atic, and passed over a memoryless channel to give the received
vector r.

At the receiver, the optimal decoder, in the sense of min-
imizing the block error probability would select the decoded
message & to be the message which maximizes the likelihood
function

CuL = aTgCGI{T&X}N p(r[¢)
In fact, one can shgw, following a technique similar to that from
Section II.B, that (;;, can be related to an estimation problem.
In particular, consider the problem of estimating the factorable
PMF for &, parameterized by a vector of log probability ratios
A, which maximized the likelihood function

Avir, = argl}lea}Zp(rlf = Co(€))Pr[€ = Co(C) | A]
¢
=argmaxy p(r|§ = Bi)o(B)PrlE = Bi[A]  (6)

where A := (R|J{Zo0})" and in the second line we have used
the indicator function for encoder 0:

1, B, isinencoder 0's codebook
¢(B:) = {0, otherwise

and we have used C to represent the function which takes inputs
to encoder O to their encoded codewords. Once again, realizing
that we must have

ZPr[f:B,«,|,\]:1

we see that the Ay, which maximizes (6) is the one which sat-
isfies

1, B;=Co(Cy
PriB: | e = {01 0tf1erwi§e<<ML)

so that Ayp, are the infinite log probability ratios corresponding
to the encoded version of the MLD.

Unfortunately, as in the parallel case, this optimal decoder is
not feasible. To cope with this problem, the serial turbo decoder
makes use of an exchange in information between computation-
ally efficient decoders for each of the component codes as de-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 12, DECEMBER 2006

picted in Fig. 4. Denoting by

[0o]; = log(p(r |€ = By)) — log(p(r |€ = By))
Ji = log(¢(B;)) — log(#(Bo))

{2

where we will assume that B (the all zero codeword) is in en-
coder 0’s codebook, which is satisfied, for instance, if the inner
code is linear. Denoting Ay and Ar as the vectors of information
exchanged between the two decoders, one may write the serial
turbo decoder succinctly as iterating

B, is in encoder 0's codebook
otherwise

AW = (B,\(L’f> n 00) —aW %)
A = (BAY +6,) - AP ®)
or, equivalently
pB(/\(Uk)+)\(Tk)) = P44, ©)
(10)

Pe(AST4A) T PeAl) 10,

since the extrinsic information vectors /\gf ) are first chosen so
that they match the a posteriori probabilities from the first de-
coder when they are added to its prior information )\8“ ), and
AEHD with respect to the second decoder and prior
information ,\gUf" ). Here, we have repeated the same notation for
the serial decoder and the parallel decoder to emphasize the fact
that they have the same form when written on this abstract level.
The only important difference, aside from the fact that # and
0, are determined in different ways for the serial and parallel
concatenated cases, is that in the serial decoder it is probabil-
ities for the output of the first encoder Co({) which are being
exchanged, as opposed to the original message bits £ in the par-
allel turbo decoder. For this reason, we have deliberately chosen
& to denote both the input to the parallel encoder in the parallel
concatenated case, and the output of the outer encoder in the se-
rial concatenated case, so that it is always probabilities for bits
in € that we are exchanging in either the serial or parallel con-
catenated case.

similarly for

III. THE TURBO DECODER AS AN ITERATIVE SOLUTION TO A
CONSTRAINED OPTIMIZATION PROBLEM

Here we will somewhat demystify the turbo decoder by
showing both the sense in which its stationary points are op-
timal, as well as by identifying the iterative method which is
being used to find these optimal points. We must first consider
a system which, although it is not exactly equal to that in which
the turbo decoder operates, is the system which the turbo de-
coder assumes in its sense of optimality. We will then provide
the optimization interpretation of the turbo decoder, followed
by some commentary and conclusions.

A. A Convenient Independence Assumption

In describing the operation of the turbo decoder, it will be ad-
vantageous to describe a system like that in which the parallel
turbo decoder operates, but in which the messages & and x are
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Fig. 4. The serially concatenated turbo decoder.
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Fig. 5. The system which the parallel turbo decoder assumes.
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Fig. 6. The system which the serial turbo decoder assumes.

chosen completely independently of one another as depicted in
Fig. 5 for the parallel case and in Fig. 6 for the serial case [2].
Under the false assumption that £ and x were chosen indepen-
dently of one another according to factorable PMFs with (de-
terministic) bitwise log probability ratios A;; and Ar, the likeli-
hood function for the received data would be

p(rs,ro,r1 | Av, Ar)

<Zp(1“a ro|§=B;)Pr({ =B, |)\U)>

x | D p(rilx =B;)Pr(x = Bj|Ar)
i

|| exp(BAu + o) |1 || exp(BAr + 61)|l1

[exp(BAv)[li [lexp(BA7)|1
in the case of parallel concatenation and
p(r | AU7 AT)

(Z p(r|€ =B;)Pr(£ = B;| m)

X Z ¢(B;)Pr(x = B; | Ar)

|| exp(BAu + o) |1 || exp(BAr + 61)]x
| exp(BAy)|l1 | exp(BA7)]|1

[
AL bY/
Code 0
SISO Ar
Decoder

-

Au

in the case of serial concatenation. Thus, recalling the definition
of ¢ from (1), the log likelihood function in either (serial or
parallel) case is

log(p(r | Az, Ar)) = —¢(BAy) — (BAr)
+y(BAy + o) + (BAr + 6,)

Furthermore, the decision statistics which the parallel turbo de-
coder uses to make its decisions, which are the bitwise posterior
probabilities at the output of one of the component decoders and
have the log probability ratio vector A¢s + A7, may be interpreted
under this notation as

[Pr(fz =Xi = 1 |§ =X AUvAT)] = pB(Au-l-AT)

or the collection over all the bits of the probability that the 7th bit
of € and x are equal to 1, given that £ = x and £ and x are chosen
with factorable PMFs with log probability ratios Ay and Ar,
respectively. Since we have assumed that the first component
encoder in the serial turbo encoder is systematic, the serial turbo
decoder uses the same statistics for its decisions, but only the
elements in PB Ay +Ar) that correspond to systematic bits from
that first encoder are needed.

To control this false assumption of independently choosing &
and x, we will be interested in choosing Ay and A so that the
two densities so chosen have a large probability of selecting the
same word. This is because we know a priori that £ and x are the
same, and thus, although we are relaxing the constraint that they
be exactly the same in doing the decoding, we want to enforce
that they be similar. Thus, at the decoder, we will be interested
in the constraint set

C={(Av, A7) |Pr(€ = x| Av,Ar) = c}

which is the set such that the probability of choosing the same
message for & and x, given that we chose them independently
according to the factorable densities whose bitwise marginals
are Ay and Ap respectively, is fixed to some constant c. We will
now use the notation

. _ _expBidy)
Pr(é =Bi|Av) = || exp(BAy)||1
P = B; ~ Tlexp(BAr)|1

f(x i | A7) [l exp(BAT) |1
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in order to rewrite

Pr(€ = x| A\v, Ar)
= Z Pr(€ = B; | Av)Pr(x = B; | A7)

[ exp(B(Av + A7))ll1
| exp(BAy)||1[| exp(BAr)|lx

so that
log(Pr(§ = x| Av, Ar))
= log(||exp(B(Auv + A7))||1)
— log(|| exp(BAv)|l1)
— log(|| exp(BA7)|[1)
=¢Y(B(Av + Ar))
— (BAvy) — ¢(BAr).
Thus, we can write the constraint set as

C={(Av. A7) [¥(B(Av + Ar)) — ¢(BAv)
—(BAr) = log(c)}.

B. An Exact Characterization of the Turbo Decoder

In the next theorem we show that the turbo decoder is an iter-
ative attempt to find the maximum-likelihood estimate for bit-
wise log probability ratios Ay and A7 under the false assump-
tion that € and x where chosen independently of one another
according to the bitwise factorable PMFs with log probability
ratios Ay and Ap, respectively. Furthermore, this optimization
is performed subject to the constraint that the probability of se-
lecting the same message when selecting € and x in this manner
is held constant.

Theorem 1 (What is turbo decoding?): The turbo decoder is
exactly a nonlinear block Gauss—Seidel iteration bent on finding
the solution to the constrained optimization problem

log(p(r | Ay, Ar)).

max

(A, A7) = arg
v (Av,Ar)ec

In particular, the turbo decoder stationary points are in a one to
one correspondence with the critical points of the Lagrangian
of this optimization problem with a Lagrange multiplier of —1.
The turbo decoder is then a nonlinear block Gauss—Seidel iter-
ation on the gradient of this Lagrangian.

Proof: For the proof, form the Lagrangian

L(Av, Ar) = log(p(r [ Av, Ar))
+ n(log(Pr[€ = x | Av, Ar]) — log(c))
= —(BAy) — ¥ (BAr) + ¢(BAy + o)
+Y(BAr +6,)
— (Y (BAv) +1(BAr))
+ pp(B(Au + Ar)).
Taking its gradient gives

VasL = =pPgy, + P, 46,
Tu (_pB/\U + pB(/\U+AT))
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V)‘TL = _pBAT + pBAT+01
tu (_pBAT + pB(/\U+)\T)) .
Selecting a Lagrange multiplier of = —1, we have
V’\U L= pBAU"l‘oO - pB(AU+AT)
V’\T L= pBAT“l‘ol - pB(AU-l'AT)'

If we break this system of equations into two parts

Fo(Au,Ar) = =V, L

= pB(Au-i-AT) ~ P, 40, (1D
Fi(Av,Ar) = =V, L
=P +Ar) T PBAS 4, (12)

then we can see that the turbo decoder solves Fq for Ay given a
fixed Ay = /\%C ) to get )\gc)’ and then solves F; for Ay given a
fixed A\y = L’f) to get /\(TkH), that is

AP = A such that Fo (Au, A%) = 0
A%HD A such that Fy (Ang) — 0.

This is exactly the form of a nonlinear block Gauss—Seidel iter-
ation. Furthermore, the system of equations it is trying to solve
are the necessary conditions for finding a solution of the pro-
vided constrained optimization problem, which are

Vi, L=0
Va.L=0
subject to a Lagrange multiplier of y = —1. O

An important fact which sets this formulation apart from most
constrained optimization problems is that one does not get to
specify the value of ¢ = Pr[§ = x| Ay, Ar] before decoding;
rather, a Lagrange multiplier 4 = —1 is selected which then
results in a value of the constraint. If the turbo decoder con-
verges, one may evaluate the constraint function —i)(BAy) —
Y(BAr) + 9 (B(Ay + Ar)) at the convergent Ay and Ar to get
the log(c) for which the turbo decoder stationary points are crit-
ical points of the optimization problem. Note also that if we have
¢ = Pr[l§ = x| Av, Ar] = 1 so that log(c) = 0, then the glob-
ally optimal solution to the optimization problem is actually the
MLSD. This then suggests that for convergent values of log(c)
close to 0, the turbo decoder will provide a detection close to a
critical point of the wordwise likelihood function, provided con-
tinuity in log(c) of the solutions to the optimization problem.

While it may seem odd to select a Lagrange multiplier pn =
—1 rather than a value of the constraint log(c), we note that this
too has a possible intuitive interpretation within the context of
the turbo decoder, although it is less rigorous than other develop-
ments in this paper. In particular, selecting » = —1 requires that
the gradient of the constraint V log(c) be equal to the gradient
of the approximate likelihood function V log(p(r | Ay, Ar)) at
a turbo decoder stationary point (Af;, AT). Thus, the change in
the likelihood function from its value at a turbo decoder sta-
tionary point log(p(r | Ay, Ar)) — log(p(r | Af;, AT)) is, to first
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order, equal to the change in the constraint from its value at that
turbo decoder stationary pointlog(c(Ay, Ar)) —log(c(Af, AT))
within a neighborhood of that stationary point. When the turbo
decoder is used is practice, one takes decisions on its convergent
values Aj; + A to get the bits (€ = x € {0,1}) which are
passed on to the rest of the receiver. We use Aj;+ A7, because the
ith element of this vector is the log likelihood ratio associated
with the bitwise probability Pr[¢; = xi; = 1€ = x, Av, Ar]
and we condition here on & = x because we know it to be
true and wish to use that fact before passing our decisions to
the rest of the receiver. Taking these decisions (and thus setting
the new Ay and Ar’s equal to the likelihood ratios associated
with these decisions Ay, Ar = oosign(A}; + A%) € {+oo})
increases the value of the constraint probablhty to one, so that
log(¢(Ap, Ar)) = 0. Choosing the Lagrange multiplier ;1 =
—1, then, ensures that this largest possible increase in the con-
straint is accompanied with an equally large increase in the ap-
proximated likelihood function to first order. The sign of the
Lagrange multiplier ensures that increasing the constraint by
taking decisions increases the approximate likelihood to first
order, and the magnitude reflects that it is equally important
to have a large change in the constraint as it is to have a large
change in the likelihood. Although other interpretations of se-
lecting ;4 = —1 could be offered, the theorem and the intuitive
nature of the objective functions and constraints remain true. It
is also interesting to note that, with 4 = —1 in the constrained
Lagrangian, we recover the function used in [26, Th. 4], which
was obtained without recourse to likelihood concepts. An in-
vestigation of other values for the Lagrange multiplier as well
as other justifications for choosing —1 would be an interesting
topic for further research. Along these lines, for readers familiar
with the Bethe approximation to the Gibbs free energy from
statistical physics [18], [17], it may be noted that when eval-
uated at the turbo decoder stationary points, L | ,=—_1 attains the
same values as the Bethe approximation to the Gibbs free en-
ergy (see [17, p. 1795]), although for message values that are
not stationary points the equality does not hold. In fact, a pseu-
doduality relationship between the two optimality frameworks,
that is the constrained optimization problem from Theorem 1
and the Bethe free energy, can be shown [21].

Given the importance of selecting the Lagrange multiplier
1 = —1 in order to get the turbo decoder stationary points, we
henceforth select 1 = —1 when we refer to the Lagrangian. Be-
cause the condition that the gradient of the Lagrangian is equal
to zero is necessary, but not always sufficient, for a point to
be the global optimum, we must characterize the type of crit-
ical points which are possible. In particular, we wish to know
whether or not the critical points of the Lagrangian are at least
local maxima of the constrained optimization problem. Gener-
ally speaking one can converge to either a maximum, minimum,
or saddle point, although if one replaces the Lagrangian with the
expectation of the Lagrangian over the received data one can
guarantee that there is only a global maximum.

Theorem 2 (Critical Point Characterization): The expected
Lagrangian has only one critical point which is a maximum of
the expected constrained optimization problem. Here, the ex-
pectation is taken over the received information r using the ap-
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proximate likelihood function for r given Ay, A7 under the false
independence assumption.

Proof: To see this, consider the value of the Lagrangian
within the constraint space

L =log(c) = ¢¥(B(Av + Ar)) + ¢(BAy + o)
+ 1 (BAr + 61)
= —¢(BAy) — (BAr) + p(BAy + o)
+ (Bt + 61)

where in the latter equation we substitute in the constraint
log(c) = ¢¥(B(Au + Ar)) = —¢(BAy) — ¥(BAr). Now, note
from this that L thus is the sum of two log likelihood functions
within the constraint space

L= (=4 (BAv) + 9(BAvy + o))
+ (—=(BAr) + ¢(BAr + 01))
= log(p(rs,ro | Av)) + log(p(r1 | Ar)).

This then implies that the second derivative of the Lagrangian
within the constraint set has a mean which is the negative of the
Fisher information matrix, call it [, since the Fisher information
matrix is defined as

E 0
":_<0 V)
E .- /v2 2 108(0(x [ Av, Ar) (x| v Ar)dr

v [v2
where we have used V?{-} here to denote the operator which
takes a function to its Hessian matrix of second-order partial
derivatives. The well-known fact, then, that the Fisher informa-
tion matrix is positive semidefinite, then shows that the expec-
tation of the Hessian matrix of the Lagrangian L is negative
semi-definite. This implies then, by Theorem 4.5 of [23], the
function E[L] is concave, where E denotes expectation with re-
spect to p(r | Ay, Ar), and thus has a unique maximum. O

Two important distinctions are made in the previous the-
orem. First of all, while the expected value of the Lagrangian
is concave within the constraint space, and thus has a unique
maximum, we are not guaranteed that for a particular sample
rs,ro, r; there is only one solution to VL = 0. In fact, Fig. 7
shows that, even for N = 2, it is possible, depending on
r, o, rq1 for this convergent point to be either a maximum or
minimum. Another important distinction is that while the ex-
pected value of the Lagrangian is concave within the constraint
space, it is not necessarily concave outside of the constraint
space. In fact, one can show that outside of the constraint space

A, 0 (p(r [ A, Ar))}p(r | Av, Ar)dr

VZ

AU,AUL - P

BA,+0, ~ PBA,+0, pg)\u+0o

- (PB<AU+AT> - PB(/\U+/\T>P§(,\U+,\T>)
Vil =" (PB<Au+AT> - pB(AU+/\T>pg</\U+/\T>)
Vi,,,,,\,,,l- =Pg), 10, — P, 10, p]ﬁ)\u+00

T
- (PB(/\U+AT) - pB(/\U+)\T)pB(,\U+/\T))
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Fig. 7. L for two different sample values of 8, and 8, for N = 2 bits and simple parity check codes. Here, the line indicates C, and = marks the spot to which
the turbo decoder converges given an initialization at (% %) The po and p, axes are the bitwise marginal probabilities associated with Ay, and we are always
selecting A7 = 7(BAy + 69) — Ay . In one instance, we have converged to a local minimum along C, and in another to a local maximum along C.

where Py is the matrix whose ¢, jth entry is the probability that
both the sth and jth bits are one, according to the wordwise
measure whose log coordinates are #. From this we can see that
at a Turbo decoder stationary point, the diagonal elements of
V2L are all zero. Thus, the trace of the Hessian matrix is zero,
and, provided the Hessian is not identically zero, the stationary
points are saddle points of the Lagrangian when one does not
restrict oneself to the constraint space.

To conclude our remarks concerning the optimality of the
turbo decoder stationary points, we wish to emphasize the new
perspective that the constrained optimization problem can pro-
vide. Many researchers believe that the turbo decoder approxi-
mates the maximum-likelihood bitwise solutions (see, e.g., [17],
[18] or other literature about loopy belief propagation), partially
because the elegant theory for belief propagation considers the
special case when the graph has no loops [6], for which the belief
propagation does calculate the maximum-likelihood bitwise so-
lutions. The use of the forward backward algorithm [27], which
would calculate the MLBD given only rg, rg or rg,r; further
confuses the issue. These results do not apply to the turbo de-
coder, or even to the soft decoding of finite block length LDPC
codes, due to loops in the factor graphs of both of these de-
coders. Here, we have shown that the turbo decoder may be
interpreted as a constrained MLSD. The constraints generally
bias the stationary points away from the exact MLSD.

IV. CONVERGENCE ANALYSIS

In Theorem 1, we observed that the turbo decoder may be
understood as an iterative procedure to seek a critical point of
the Lagrangian L with a Lagrange multiplier ;n = —1.

Choose )\gf) such that VL (Agc)7 )\T) =0 (13)

Choose A"+ such that Vi, L (,\U,,\g”) —0 (14)

We then noted that such an iterative procedure may be con-
nected with the Gauss—Seidel iteration for solving the system
VL(Ay,Ar) = 0. From here on, to compact notation, and to
continue relation with the F and F; notation used in the proof of

Theorem 1, we will denote VL by F. Here we will elaborate on
the connection to the Gauss—Seidel iteration, and use it to gain
some convergence conditions for the turbo decoder. Before we
do so, it is important to note that there have been numerous pre-
vious works which discuss local stability of the turbo decoder
via first order Taylor approximation techniques, see for instance
the information geometry based work [9], [26], [10]. Global sta-
bility in turn, has been discussed in the context of belief propa-
gation via either convexity of the Bethe free energy or loop-less
factor graph cases, see e.g., [6], [28]. These and other exposi-
tions discussing convergence have already been mentioned in
the introduction. The conditions for global stability that we shall
discuss here, however, are derived uniquely via a connection to
the nonlinear block Gauss—Seidel iteration, and in fact are math-
ematically different from those mentioned previously and in the
introduction.

The Gauss—Seidel procedure has been discussed most
widely for linear systems of equations [29, pp. 480-483],
[30, pp. 251-257], [31, pp. 510-511], but can be generalized
to nonlinear systems of equations as well [32, pp. 131-133;
pp. 185-197], [33, p. 225]. In particular, the convergence of
nonlinear Gauss—Seidel methods received some significant
attention in the numerical analysis literature during the early
1970s. Relevant references include [34], [35], and [36], from
which our major result is adapted.

One of the major difficulties encountered when applying the
typical convergence theorems for nonlinear block Gauss—Seidel
iterations to the iteration (13) and (14), as in [1], is that the pa-
rameters are drawn from a different domain than the range of
VL. In particular, VL is a difference between bitwise proba-
bilities and thus is necessarily bounded within [—1,1]". The
variables that are being solved for, Ay and Ar, however, are
drawn from R . This foiled unmodified application of theorems
from [36], since those theorems needed surjectivity of VL onto
RY . The approach taken in [1], was then to modify the theorems
from [36], adding extra conditions so that the surjectivity was no
longer needed. Unfortunately, this resulted in conditions which
required the user of the theorem to check a containment rela-
tion of two parametrically defined sets in /N dimensions, where
N was the block size of the turbo decoder. It seemed doubtful
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that the theory would be useful without extra theory to deter-
mine when the conditions would be satisfied. Still, the reader
interested in characterizing the regions of convergence for the
case when the turbo decoder admits multiple fixed points may
consult [1].

We take a different approach here, focussing instead on condi-
tions on the likelihood functions of the two component decoders
that yield global convergence of the turbo decoder from any ini-
tialization to a single fixed point. We transform the domain of
the update equation VL = 0 from that of the difference between
two bitwise probabilities to the difference between two log bit-
wise probability ratios. In other words, rather than considering
the system (11) and (12) whose nonlinear block Gauss—Seidel
iteration is embodied by the recursion (9) and (10}), we use the
system

AU+AT—7T(BAU—|—00):0
AU+AT—7T(BAT+01):0

15)
(16)

whose nonlinear block Gauss—Seidel iteration is embodied by
(7) and (8) and is thus equivalent to the recursion defined by (9)
and (10). Since the range of the system in consideration is now
R2% it is easier to apply the results from [36], since surjectivity
can now hold. In particular, we have the following theorem, in
which we use the componentwise ordering, so thatx <y <=
Z; S yLVZ

Theorem 3 (Global Convergence of the Turbo Decoder): De-
fine the measures q whose log coordinates are BAy + 6y and
r whose log coordinates are BAr + 1. Define the matrices C
and G whose elements are

[Clij=al§;=1]&=1]—q[{; =1]|& =0
and

Glij =1l =11&=1]—r[& =1][& =0]

and define the matrix

I I-C
r=ile '3°]

Define the set D C R2" x R2" to be the set of (69,0,) for
which A is an M-matrix, or equivalently has non positive off
diagonal elements and all real eigenvalues positive [37]-[40].3
Then, if (8o(r),0:(r)) € D the turbo decoder converges to a
unique solution from any initialization (Arr, A7) € R?V.
Proof: The outline of our proof is as follows.
¢ The fact that A is an M-matrix shows by [36, Th. 3.6] that
F is an M-function everywhere in R? .
* We can linearly lower bound F componentwise, and thus
use [36, Th. 4.4] to prove surjectivity of F.
* We finally have that F is a surjective M-function. This al-
lows us to apply [36, Th. 6.4] to prove convergence.
First, calculate the Jacobian VF
I-G I

- fie 13

3See [37]-[40] for conditions equivalent to the definition of an M -matrix.
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where

[Clij =q[¢ =1|& =1]—q[§; =1|& =0]
and

[Glij=rl& =11&=1]—r[¢; =1]& =0]

We now see that the conditions in the theorem force VF to be
a M-matrix for all Ay, Ar € RY. Then Thm. 3.6 of [36] shows
that F is an M-function. Next, consider that

o B” exp(BAu + 6o)
5\ (1 = B)T exp(BAy + 6o)

BT exp(BAy) Qg
(1-B)T exp(BAr) T % <ﬂ_>

—Ay + log (%)
0

—log

v

where
ag = minfexp(fo)]i; o = max[exp(fo)];
and we used the componentwise division notation so that 3 for

a,b € RY is the vector whose ith element is a;/b;. Similarly,
we have

o BT exp(BAr + 61)
S\ (1 —B)T exp(BAr + 01)

> —-Ar+1llog <%>
1

where
a1 = minfexp(61)];, (1 = max[exp(d1)];.

Putting these two facts together, we have

which shows that
Tim [IF()]| = o0

whenever ||A;|| — oo and either Ay > Agy1 or Aprq > Ag.
This then implies that F is surjective by [36, Th. 4.4]. Thus, F
is a surjective M-function, and Thm. 6.4 of [36] proves that the
Gauss—Seidel block iteration on F is globally convergent.  [J

To illustrate the practical applicability of this theorem, we
consider now a very simple case in which the globally conver-
gent region D can be computed exactly. In particular consider
the case that N = 2, then A takes the form

1 0 0 -«
10 1 =g 0
A= 0 —vy 1 0
—o 0 0 1
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where

a=qll1=1[§=1]-q[§&1 =1 =10]
B=qllo=1[&=1]—q§o =1 =0]
y=rl& =16 =1 —rl& =1[& = 0]
o=rlfo=1[& =1 -rl =1 =0].

We must calculate the eigenvalues of A. The characteristic func-
tion of A is

(1= 0 0 —a
0 (1= -p 0
0 —y (1= 0
—0 0 0 (1-)X)

=[(1 =) = ao]l(1 = A)* = Br].

Setting this equal to zero allows us to solve for the eigenvalues

A=1+ao,1+ /By

Now, we see that as long as a, o, 3,7 > 0 we have that all of
the eigenvalues are both real and positive, since «, o, 3,y are
the difference between two probabilities and thus have modulus
less than one. It remains only to require that the off diagonal
elements of this matrix are nonpositive. If we define

exp(fo)
[lexp(fo)llr

Then we see that the condition that «, 3 > 0 is equivalent to

n= [770777177727773]T :

73 > T2 73 > m
m+ns " mo+mn’ m4ns T mo+m

which holds if and only if (iff)

mn2 < Mo”3 (17)

Denoting 6y = [0, 61, 02, 5], we see that (17) holds if and only
if

01+ 0y — 05 =10,1,1,—1]85 < 0 (18)
The same requirement (18) is necessary and sufficient for v, o
to be negative by replacing 6, = [0, 6, 01, 62]. Now, suppose
0, has elements which satisfy (18), and consider all log domain
pmfs of the form BAy + 0 for Ay € R2. These will satisfy

[07 17 17 _1](BAU + 00)
= [07 O]AU + [0 17 17 _1]00 < 0

We can thus see that D is exactly characterized as

[0,1,1,—1]6y <0, }

fp— 4 4
D = {(00701) € R X R [0717 17 _1]01 S 0

Thus, as long as r and the structure of the code yield a (6, 01) €
D, the turbo decoder converges to a unique fixed point from any
initialization (Ay, Ar) € RY x RV,

Continuing the example, suppose that we are using a parallel
concatenated code, with each component code a simple parity
check code with two systematic bits and one parity check bit and
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we are transmitting using binary phase shift keying (BPSK) over
a additive white gaussian noise (AWGN) channel, and assume
the all zero codeword was transmitted. This yields

0 0 O 0
0 1 1 1

0o = 10 0 Ao, 01 = 1 A
1 1 1 0

where A are the raw channel log likelihood ratios for systematic
bits and the parity check bit of the first code (rs,ro) and A is
the raw channel log likelihood ratio for the parity check bit of
the second code. The condition that 8y and @, lie in D is then
equivalent to the requirement that

0 0 O
01 1

[07 L1, _1] 1 0 1 A0 - [0,072]A0 <0
1 10

and 2\; < 0. This establishes that the turbo decoder for this
two bit parallel concatenated parity check code will converge
to a fixed point from any initialization as long as the channel
does not cause any errors in the parity check bits (i.e., as long
as the log likelihood ratios associated with the parity check bits
are less than or equal to zero).

It may seem odd that this result does not depend on the sys-
tematic bits, but this has a perfectly reasonable explanation. This
result does not depend on the systematic bits because we have
required the turbo decoder to converge from any initialization of
the a priori log likelihood ratios for the systematic bits. This is
equivalent to requiring the turbo decoder to converge regardless
of the received raw channel log likelihood ratios for the system-
atic bits. This shows that, generally speaking, any set of suf-
ficient conditions for global convergence of the parallel turbo
decoder must thus be insensitive to the received channel like-
lihood values for the systematic bits. Thus it is natural that the
raw channel log likelihood ratios for the systematic bits did not
appear when checking (6y,6,) € D.

Given the wide range of nonlinear dynamical phenomena that
the turbo decoder has been demonstrated to posses (e.g., limitcy-
cles [41] and even chaotic behavior [42]), it is important to char-
acterize the cases in which the turbo decoder avoids this bad be-
havior and instead converges to a single fixed point. The theorem
we have adapted from nonlinear block Gauss—Seidel iterations
gives us sufficient conditions for this robust behavior, which we
have demonstrated to be intuitively meaningful for a particularly
simple, yet nontrivial, 2-systematic bit case. It remains to be seen
whether or not the conditions of the theorem can be interpreted
in a similar manner for realistic codeword lengths.

V. CONCLUSION

The turbo decoder is a suboptimal heuristic method which
was developed through simulation. Although researchers have
been able to characterize its convergence behavior and perfor-
mance in the asymptotically large block length and cycle-free
factor graph cases, up until now the sense of optimality of its
stationary points relative to the desired maximum-likelihood
sequence detector design, the mechanism behind its conver-
gence, and conditions under which it converged all remained
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less understood. We have shown that the turbo decoder sta-
tionary points are critical points of the constrained optimization
problem of maximizing the log likelihood function for the
received data under a false independence assumption for the
messages for which the turbo decoder is exchanging soft in-
formation, subject to the constraint that the probability that the
messages so chosen are the same is fixed. If this probability is
1, then the global maximum to this constrained optimization
problem is the MLSD. Furthermore, we have shown that the
turbo decoder is actually a nonlinear block Gauss—Seidel itera-
tion on the system of necessary equations for this constrained
optimization problem specified by Lagrange with a Lagrange
multiplier of —1. Finally, by identifying the iterative method
that was being used to find the solution to the necessary condi-
tions, we identified the mechanism behind the turbo decoder’s
convergence. Using the existing theory for this convergence
mechanism, we were able to determine sufficient conditions on
the component likelihood functions for the convergence of the
turbo decoder from any initialization, which we demonstrated
to be intuitively reasonable for a particular simple parallel
concatenated code.
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