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Relationships Between the Constant
Modulus and Wiener Receivers

Hanks H. Zeng,Student Member, IEEE, Lang Tong,Member, IEEE, and C. Richard Johnson, Jr.,Fellow, IEEE

Abstract—The Godard or the constant modulus algorithm
(CMA) is an effective technique for blind receiver design in
communications. However, due to the complexity of the Con-
stant Modulus (CM) cost function, the performance of CM
receivers has primarily been evaluated using simulations. The-
oretical analysis is typically based on either the noiseless case
or approximations of the cost function. The following question,
while resolvable numerically for a specific example, remains
unanswered in a generic manner:In the presence of channel noise,
where are the CM local minima and what are their mean-squared
errors (MSE)?In this paper, a geometrical approach is presented
that relates CM to Wiener (or minimum MSE) receivers. Given
the MSE and the intersymbol/user interference of a Wiener
receiver, a sufficient condition is given for the existence of a CM
local minimum in the neighborhood of the Wiener receiver. MSE
bounds on CM receiver performance are derived and shown to
be tight in simulations. The analysis shows that, while in some
cases the CM receiver performs almost as well as the (nonblind)
Wiener receiver, it is also possible that, due to its blind nature,
CM receiver may perform considerably worse than a (nonblind)
Wiener receiver.

Index Terms—Adaptive filters, blind deconvolution, constant
modulus algorithm (CMA), equalization, intersymbol interfer-
ence, local convergence, Wiener receiver.

I. INTRODUCTION

A. The Problem

Linear estimation of a random variablefrom observation
random vector is a classical problem. The well-known
Wiener receiver, often referred to as the minimum mean-
squared error (MMSE) receiver, is obtained by minimizing
the mean-squared error (MSE)
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where is the receiver parameter vector. As an alternative,
Godard [8] and Treichleret al. [24] proposed the constant
modulus (CM) criterion which minimizes the dispersion of
the receiver output around the dispersion constant

(2)

The locations in receiver parameter space of the local minima
of are referred to as constant modulus (CM) receivers.

Clearly MSE and CM are different criteria. The Wiener
receiver requires thejoint second-order moment of and

and has a closed-form solution. When the joint moment
is not known in practical applications, training data may be
needed. In contrast, the CM receiver is blind because it only
requiresmarginal moments of the observation and source
. However, the CM cost function may have local minima,

and CM receivers do not have closed-form solutions.
The main objective of this paper is to reveal connections be-

tween CM and Wiener receivers. We aim to answer (partially)
the following questions:

Q1: Does CM have local minima? If so, where are they?
Q2: What is the mean-squared error (MSE) performance

of CM receivers?
Q3: What is the relationship between (blind) CM and

(nonblind) Wiener receivers?

B. An Example

To obtain some insights into the above questions, let us
consider an example of -spaced equalization used in
[20]. The model for the fractionally spaced equalization is
equivalent to a multirate system [19], [26] shown in Fig. 1.
The up-sampler is an interpolator which inserts a zero between
successive symbols , while the down-sampler selects a
baud-rate sequence from . In this model, the transmitted
signal at symbol rate is a random sequence
taking values at with equal probability (i.e., uncoded
binary phase-shift keying (BPSK) signal). The channel impulse
response is , , , . The

-spaced equalizer has two taps, i.e., .
Thus we have

(3)

(4)
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Fig. 1. A T=2-spaced equalizer is equivalent to a multirate system.

Fig. 2. The CM cost function at SNR= 10 dB.

where is noise at the down-sampler output, and is
the overall response of the combined channel and receiver. By
the definition in [18, p. 603], when
and , the corresponding ’s are zero-forcing (ZF)
equalizers for and , respectively.

For BPSK signal, the dispersion constant
. According to (2), the CMA receiver

is obtained by minimizing

(5)

which is shown in Fig. 2. Fig. 3 gives the contours of
and the locations of the Wiener and CM receivers. Because

is symmetrical, only the two receivers estimating
indicated by and indicated by are considered.
These figures suggest the following.

• For Q1 and Q3, we observe that there exists a CM
local minimum, and the CM local minima ( and in
Fig. 3) are close to the Wiener receivers (and in
Fig. 3).

• For Q2, the MSE’s of the CM receivers (and in
Fig. 3) are and , respectively. Without
proper initialization, the CM equalizer may converge to

and have large MSE.

Although the above observations are based on this artificial
example, they turn out to be true in general, which will be
established analytically in this paper.

C. A Geometrical Approach and Main Results

Our approach to analyzing CM receiver with a finite number
of parameters is geometrical, which is in contrast to commonly
used methods of analyzing equilibria points of the CM cost
function and their local curvatures. The basic idea is based on
the Weierstrass maximum theorem [17, p. 40]. As illustrated
in Fig. 4, our approach is to find a compact regionwith
boundary in the parameter space, and an interior reference

such that the CM costs on the boundary are
greater than that of the reference . Consequently, there
must be at least a local minimum of CM in.

Critical in this approach is the selection of the shape of
, the location of , and the reference . In defining such

a region, our first goal is to have it as small as possible,
which leads to a more accurate description of the local
minimum and its MSE performance. The second goal is to
relate such a region to the location of Wiener receivers. In
addition to the description of a in the parameter space, we
aim to give a corresponding description in the Hilbert space
of the observations in order to provide insightful physical
interpretations.

While there are important differences between CMA in an
equalization problem for a single user and in beamforming for
multiuser (see [9]), the problem of fractionally spaced equal-
ization of intersymbol interference channels and the problem
of beamforming, i.e., separating the signal of interests from
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Fig. 3. The contours of the CM cost function.�, +, and � are the CM, Wiener, and ZF (zero forcing) receivers fors(k) respectively;
, �, and�
are the CM, MMSE, and ZF receivers fors(k � 1), respectively.

Fig. 4. Illustration of the idea.

interferences, share a common signal model. The approach
presented in this paper applies to both cases.

The main results of this paper include

R1: a signal space and matched filter interpretation of CM
receivers;

R2: an analytical expression to determine the existence of
CM local minima;

R3: an analytical description of regions that contain CM
local minima in neighborhoods of Wiener receivers;

R4: upper and lower bounds of the MSE of these CM
receivers.

It is important to note that our results apply only to those
CM local minima near the Wiener solutions. There are several
reasons to study these CM local minima. Due to the quadratic
nature of the mean-squared error cost function, any receiver
far away from the Wiener receiver has a large MSE. Therefore,
if there exist CM local minima in the regions defined in our

approach, one of the minima must be the global optimum (in
the sense of MSE) CM receiver. The other reason is the strong
relationship between the Wiener receiver and the CM receiver,
which, to our knowledge, has not been fully exploited except
in the well-known noiseless case.

Our results are established based on several assumptions.
First, we will restrict our investigation to the real case with
the white BPSK source. Extensions to the multilevel signals
and the complex case involving QAM type of signals are
reported separately [16], [29], [30]. Second, Results R2 to R4
are based on the invertibility of the channel, i.e., the signal
can be perfectly recovered. In the application to fractionally
spaced equalization, the invertibility condition implies that i)
subchannels do not share common zeros and ii) the equalizer
is sufficiently long [22]. Although the extension to the case
involving noninvertible channels is nontrivial, similar results
still hold true [10], [29].

D. Related Work

Existing analysis has been focused on three aspects of CM
receiver: i) the existence of local minima; ii) the error surface
of CM cost; and iii) the MSE performance of CM receivers.
We highlight next some connections among existing results
and those presented in this paper. Context-setting surveys can
be found in [11], [25], and [31].

Existence of Local Minima in the Absence of Noise:
Foschini was the first to show the global convergence of
a doubly infinite baud-rate equalizer in the absence of
channel noise [7]. For finite or one-sided infinite baud-
rate equalizers, the existence of undesirable local minimum
has been demonstrated by Ding and his co-workers [2]–[5].
Interestingly, for fractionally spaced finite-impulse response
(FIR) equalizers in the absence of noise, the convergence
of CMA is global [14] under satisfaction of the associated
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identifiability condition [21], [22]. Specifically, in the noise-
free case, zero-forcing equalizers are the only local minima.
When noise is present, however, the existence of local
minima and their locations have not been formally established.
Presented in this paper is a result that can be applied directly
to fractionally spaced equalizers inthe presence of noise. We
give a sufficient condition for the existence of local minima
and specify the region of their locations.

Error Surface of the CM Cost Function:Characteristics of
the CM error surface are discussed in [12] for the baud-rate
equalizer in the absence of noise. It is shown that the output
power of the FIR CM equalizer is between and for
BPSK signals, which defines loosely a region for all CM
local minima. In this paper, the same bound is obtained for
fractionally spaced CM equalizers in the presence of noise.

MSE of CM: In his original paper [8] published in 1980,
Godard observed in simulations that the CM equalizer almost
achieves the MMSE. Recently, MSE performance of CM
has attracted some research interest [15], [20], [23]. All of
the approaches taken in [15], [20], and [23] are based on
second-orderapproximationof the CM cost function. While
such approximations are valid asymptotically as the signal-to-
noise ratio (SNR) approaches to infinity, it is not clear that,
for a fixed finite SNR, the analysis is accurate. Furthermore,
the analysis typically presumes the existence of the CM
local minimum which has not been formally established.
In contrast, the analysis presented in this paper does not
involve approximations. When the sufficient condition of the
existence of CM local minimum is satisfied, the MSE bounds
of a CM receiver are derived. In simulations, our MSE
bounds are tighter than those obtained from the second-order
approximation approaches.

E. Organization and Notation

This paper is organized as follows. The system model is
presented and the problem is formulated in Section II. In
Section III, the CM receiver is shown to have a signal space
property, which leads to a canonical decomposition of the
receiver. In Section IV, locations of the CM local minima
are given and MSE bounds of CM receivers are derived. The
strong relationship between the CM and Wiener receivers is
revealed in both the parameter space and the Hilbert space
of the observations. Finally, in Section V, we return to the
example in the Introduction to illustrate key ideas of this paper.

The notation used in this paper is standard. Upper and lower
case bold letters denote matrices and vectors, respectively. Key
symbols are described in the following list.

transpose;
Moore–Penrose inverse [13, p. 434];
expectation operator;

-norm defined by ;

-norm defined by ;
identity matrix;

a unit column vector with at the th entry and
zero elsewhere;

-dimensional real vector space;

Fig. 5. The model.

the set of all real matrices;

range of [13, p. 430];

range of ;
the boundary of set ;
the complement of set .

II. PROBLEM FORMULATION

Both the FIR equalization of a single user ISI channel and
beamforming in array signal processing share the same vector
model illustrated in Fig. 5.

(6)

(7)

where is a vector of the random
source signal, is the vector of additive noise,

is the (deterministic) channel matrix, is
the received signal vector. is the receiver parameter
vector, is the receiver output, and the overall
response of combined channel and receiver. The explicit form
of the above model for equalization and beamforming can be
found in [22].

The following assumptions are made throughout this paper.

A1: has full column rank.
A2: Entries of are independent and identically distributed

(i.i.d.) random variables with equal probability from
the set .

A3: Entries of are i.i.d. Gaussian random variables with
zero mean and variance .

The first assumption satisfies an identifiability condition on the
channel [22] and ensures the global convergence of CMA in
the absence of the noise [14].

In estimating , the th element of vector , we consider
the minimization of the following objective functions:

CM: (8)

MSE: (9)

ZF: (10)

The CM cost measures the dispersion around the unit circle,
the MSE cost measures the dispersion over the signal constel-
lation, and the zero-forcing (ZF) criterion [18] measures the
worse case interference.

There are two important differences between the CM and
MSE/ZF criteria. First, the Wiener and zero-forcing receivers
are nonblind (trained) and can be obtained in closed form. In
contrast, there is no closed-form solution for CM receivers.

Authorized licensed use limited to: Cornell University Library. Downloaded on September 02,2024 at 23:20:48 UTC from IEEE Xplore.  Restrictions apply. 



ZENG et al.: RELATIONSHIPS BETWEEN THE CONSTANT MODULUS AND WIENER RECEIVERS 1527

Our approach is to describe the location of the CM minimum
in the neighborhood of the Wiener receiver for a particular

. Second, the CM cost function is not a function of.
This of course comes from the nature of a blind receiver.
When applied to the equalization problem,corresponds to
the overall response delay. As shown in the example in the
Introduction, CMA may converge to a local minimum near
a Wiener receiver with quite a large MSE for a particular.
However, in nonblind receiver design, an optimalcan be
selected to achieve the least MSE.

In Sections III and IV, we will derive the signal space
structure and MSE of CM receivers for . For brevity, we
shall drop the superscript in and . Generalization
to only involves different parameter partition [27], [29].

III. T HE SIGNAL SPACE STRUCTURES

Our first result shows that both Wiener/ZF and CM receivers
are in the “signal subspace” of the observation, which leads to
a matched filter interpretation. The so-called signal subspace
is defined by , the column space of the channel matrix

, whereas the noise subspace is its orthogonal complement
. The signal space property provides the basis of relating

the CM receiver to the Wiener receiver in Section IV.

A. The Wiener and Zero-Forcing Receivers
and Their Signal Space Properties

For the sake of comparison with the CM receivers, we
briefly give the forms of the Wiener and ZF receivers and
present their signal space properties.

ZF Receiver: A zero-forcing receiver minimizing
in fact making with minimum noise enhancement,
is given by

(11)

Since which shares the same column
space as , .

The Wiener Receiver:From (9), we have

(12)

where

(13)

Minimizing , we have

(14)

In (14) we have used the matrix inversion lemma.

B. The Signal Space Property of the CM Receivers

The CM receiver minimizes the error between the magni-
tude of the receiver output and a constant. Using A2 and A3,

the cost function of CM can be expressed as (see also [12]
for the noiseless case)

(15)

Note that is the variance or the power of the receiver
output .

Unlike the Wiener and ZF receivers, there is no closed-form
expression for the CM receiver which is a local minimum
of . The signal space property of CM receivers must be
proved indirectly.

Theorem 1: All local minima of the CM cost function (15)
are in the signal subspace . Furthermore, the output power
of any CM receiver satisfies

(16)

Proof: See Appendix A.

The signal space results are perhaps not surprising. In [6],
Ericson argued that for any “reasonable” criterion of goodness,
the optimal receiver includes a matched filter, and therefore,
the solution is in the signal subspace. In our case, however,
the CM cost function is not “reasonable” in the sense of
Ericson when the power of the receiver output is below.
The signal space result, while intuitively appealing and not
unexpected, does not follow directly from Ericson’s argument.
The important consequence of the signal space result is that
the CM receiver is made of a linear combination of filters
matched to the columns of the channel matrix.

A tighter upper bound on the power will be given
in Section IV. In the absence of channel noise, the power
condition (16) of all CM local minima was given in [12].
Geometrically, this condition implies thatall CM receivers
must be located in an elliptical “shell,” illustrated in Fig. 6 for
the two-dimensional case. For the ZF receiver, according
to (11) and (13)

For the Wiener receiver , according to (12) and (14)

Therefore, the output power of Wiener receivers is always less
than , whereas the output power of ZF receivers is greater
than . As SNR decreases, the output power of a Wiener
receiver approaches to zero whereas the output power of a
CM receiver is always above . This condition, particularly
the lower bound, is useful in determining if there is a CM
local minima near the Wiener receiver.

C. A Canonical Receiver Structure

From the signal space structure of the receiver, we derive a
useful canonical decomposition and give the equivalent MSE
and CM costs as functions of the overall impulse response
defined in (6) and (7).
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Fig. 6. Region of CM local minima.

Fig. 7. The decomposition of the ZF receiversHHHy and the linear combinerqqq.

The Zero-Forcing Front-End:Consider the combined
channel . If the receiver is in the signal space,
then

(17)

i.e., is made of the zero-forcing receiver bank at the front-
end followed by a “linear combiner” which turns out to
be the overall impulse response. This leads to the structure
of the receiver in Fig. 7. Define as the noise output of
the ZF receivers, i.e., , which is colored noise
with covariance of . The model in Fig. 7 is now
equivalent to that in Fig. 8.

While it may not be practical for implementation because
of the noise enhancement problem of the ZF front-end, the
canonical structure given in Fig. 8 offers an important decom-
position at the conceptual level. The design of the receiver
can be considered, without loss of generality, as a two-step
process that i) eliminates the interference and ii) compensates
the colored noise by processing the outputof the ZF front-
end through the linear combiner. It is the latter step where
all receivers with the signal space property differ.

In the case of Wiener receiver, it turns out that the design
of linear combiner depends only on the covariance matrix
of , the output of the ZF front-end, given by

(18)

Cost Functions in the Space of Linear Combiners:The
canonical structure of receivers in the signal space enables
us to carry out the analysis in the parameter space of the

Fig. 8. The canonical decomposition.

linear combiner , the overall response of combined channel
and receiver. The CM, Wiener, and ZF receivers are different
in their choices of the combiner. In the sequel, we shall use
the equivalent MSE and CM costs as functions of the linear
combiner

MSE: (19)

CM:

(20)

where is defined in (18). Note that the output power of CM
receivers can be obtained from the norm of receiver vector
and , i.e., .

IV. WIENER AND CM RECEIVERS

Most of our results rest on the connection between the
Wiener and CM receivers. Of particular importance is a
partition of the parameter based on the concept of a (con-
ditional) unbiased estimator. The region containing the CM
receiver is then determined only by the bias and interference
of the Wiener receivers. The interference can be either the
intersymbol interference in a single-user equalizer or the
interuser interference in a multiuser beamformer.

A. The Conditionally Unbiased Estimator

Consider the overall impulse responseof the combined
channel and receiver in Fig. 5. From (7), the estimate of signal

is given by

(21)

where represents the gain of the signal of interest. The
other components are gains of the interference.
By parameterizing as

(22)

measures the intersymbol/user interference (ISI/IUI) of
the receiver [18, p. 541]. This parameterization results in the
realization of in Fig. 9. The receiver output is a scaled
version of the unbiased estimateof (conditioned on ),
i.e., . The significance of using for detection has
recently been emphasized by Cioffiet al. [1].
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Fig. 9. Decomposition into unbiased estimator and gain.

Let and be partitioned according to (22), i.e.,

(23)

with appropriate definitions of, , and . As shown in Fig. 9,
is the part of the combiner that reduces the noiseusing .

It also introduces the interference due to .
is the magnitude of the receiver bias conditional on

, i.e., . The parameterization in
(22) that decomposesinto the unbiased estimator and a gain
factor holds the key to connecting CM receivers with Wiener
receivers. This will be further discussed after Lemma 1.

B. The Wiener Receiver

The Wiener receiver for , obtained by minimizing
in (20), is given by

(24)

Under the decomposition in the preceding section, we have
the following properties of the Wiener receiver. The proof
of Lemma 1 is important in establishing the geometrical
description in the Hilbert space of the observations.

Lemma 1: Let , , , , , and be the
corresponding terms in Fig. 9 for the Wiener receiver. We
then have

a) and are given by

(25)

b) the MMSE, bias and output power of the Wiener receiver
are related by

(26)

c) for any receiver , let be the extra mean-
squared error of the conditionally unbiased estimate
over the conditionally unbiased MMSE estimate, i.e.,

(27)

Fig. 10. Wiener receiver in the Hilbert space of the observations.

then

(28)

(29)

d) for any receiver with output power less than that of
the Wiener receiver, i.e., , the bias of
is greater than that of the Wiener receiver, i.e., .

Proof: Although the proof can be obtained algebraically,
we present a “Pythagorean” proof consistent with the geomet-
rical approach in this paper. Relationships of various random
variables in their Hilbert space are depicted in Figs. 10 and 11.

a) Note that is the covariance of the in-
terference , is the crosscorrelation bet-
ween the interference and , i.e., . The
MMSE noise cancellation of using is then given by

which leads to the unbiased Wiener receiver .
The variance of the unbiased Wiener receiver is ;
therefore, the scaling factor of the Wiener receiver is given
by .

b) From the principle of orthogonality, is orthogonal to
the error , as shown in Fig. 10. The projection of on
the is . From Fig. 10, due to the triangle similarity

(30)

where and . We then have
. Similarly, we can prove that

c) Consider the relationship between the outputof any
receiver and shown in Fig. 11. By scaling and ,
we have the corresponding unbiased estimatorsand ,
respectively. Since the orthogonal projections ofand on

are both , we have . Hence

(31)

Furthermore, from Fig. 11, we have

(32)

(33)
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Fig. 11. The Hilbert space of the observations.

d) From Fig. 11, this is immediate. Mathematically, from
(29), when

(34)

Remarks: From (29), the power of a receiver output can
be represented by and , where and are the
magnitude of the bias and the extra mean-squared error of
the conditionally unbiased estimator. The CM cost function
(20) is then given by

(35)

In the next section, in (35) can be bounded in terms
of . Thus the cost function is reduced to a function of
two important variables: and , both of which are direct
consequence of the parameterization given in (22).

C. The Location of CMA Local Minima

The basic idea, as discussed in the Introduction, is to find
a region in the linear combiner space such that all points
on its boundary have costs greater than the cost of (at least)
one point in this region in Fig. 4. Consequently, there is a
local minimum of CM cost function in . In our approach,
the selection of and is based on the structure of the
Wiener receiver. We shall also give the corresponding region
in the Hilbert space of the observations.

The Reference : In relating the CM with the Wiener
receiver, we choose, in the direction of the Wiener solution

, the reference point with the minimum CM
cost. From (35), is obtained by minimizing the following

cost function with respect to:

(36)

Setting leads to

(37)

(38)

Note that when . This can be verified
numerically by using

(39)

The Region in the Parameter Space:In the parameter
space of , the definition of the region is illustrated in
Fig. 12. Consider the cone with as its axis

(40)

The “radius” , defined in Lemma 1, is also the radius of
the sliced at corresponding to the zero-
forcing solution. The region considered here is a subset
of by slicing at and . Specifically

(41)
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Fig. 12. The regionB in the parameter spaceRn .

Fig. 13. The regionB in the Hilbert space of the observations.

The Region in the Hilbert Space of the Observations:The
corresponding description of in the Hilbert
space of the observations is shown in Fig. 13. The cone

and the region defined in (40)
and (41) become

(42)

(43)

where is the orthogonal projection of in the direction
of . The radius is the extra MSE between the unbiased
Wiener receiver and the unbiased receiver . The re-
lationships among the bias, MSE and the output power are
shown in Fig. 13. Comparing with Fig. 12, the sliced cone

corresponds to the shaded trapezoid in Fig. 13.
One of our objectives is to quantify and . Our goal

now is to find as small a and as small a as possible
such that all the points on the surface of

have costs greater than the cost at. Evaluating all points on
the boundary is difficult. The following lemma allows us
to bound the CM cost of on using the bias and
the intersymbol/user interference.

Lemma 2: Given the Wiener receiver . Let

be the reference defined in (37), (38). Then, for

any

equality holds iff (44)

where

(45)

(46)

(47)

Proof: See Appendix B.
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Fig. 14. The CM receiver outputqqq
c

in the parameter spaceRn .

From this lemma, we can see that, on , the
is lower-bounded by a second-order polynomial

of with coefficients and all of which are
functions of but not of . The region is
obtained by choosing , and such that
for all . If such , and exist, we have located
at least one CM local minimum.

Theorem 2: Consider a slice of a cone
defined in (41), and define

(48)

where and are given in (45)–(47). Under the
condition that , if , then there
exists a local minimum in where is the
smallest positive root of

(49)

(50)

Furthermore,

(51)

Proof: See Appendix C.

Remarks:

• Given , this theorem can be used
i) to detect the existence of a CM local minimum by
checking the sufficient condition and ii)
to determine the region .

• The condition in the theorem issufficientand can be re-
laxed. In [29], it is shown that if for
then there exists a local minimum in .

• Equation (51) shows that the region
shrinks to the Wiener/ZF receiver as noise vanishes.

D. The Bias, ISI/IUI, and Output Power of CM Receivers

Further characterization of CM local minima is possible
once the region containing a CMA local
minimum is obtained. Of particular interest are the bias, the
intersymbol/user interference, and the output power of the CM
receiver. The next result can be used to further tighten the
region .

Theorem 3: Let be the Wiener receiver.
a) Suppose

is a CM minimum. If , or equivalently by (26),
, the output power of CM receiver is less than

that of the Wiener receiver, i.e., ,
and the bias of the CM receiver is greater than that of the
Wiener receiver, i.e., . b) Suppose is the CM
minimum in , then .

Proof: See Appendix D.

Summary of the Relationships:We now summarize the re-
lationship among the CM, Wiener, and ZF receivers developed
so far. Fig. 14 shows the region and the
receivers in the parameter space. We note that , and
in general, the CM receiver is closer to the Wiener receiver
than the ZF receiver. Fig. 15 shows the relationship between
the outputs of the CM and the Wiener receivers and their
corresponding unbiased estimators. Again, the output power of
the CM receivers output must be less than that of the Wiener
receiver (in the shaded region). Hence, we can further obtain
a tighter via

(52)

E. MSE of CM Receivers

One of the most important properties of a CM receiver is
its MSE performance. The result of Theorem 2 enables us to
give performance bounds on MSE.
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Fig. 15. The CM receiver outputyc in the Hilbert space of the observations.

Theorem 4: Suppose . Let be the extra
MSE of a CM minimum versus the

MSE of the Wiener receiver, i.e., .
Then

(53)

Let be the extra MSE of the reference, i.e.,
. Then

(54)

(55)

Proof: See Appendix E.

Both and can be seen directly from the Hilbert
space in Fig. 15. is related to the longest distance
between the and any point in the shaded region. is
the distance between and .

The bounds involve the computation of . If the
size of the is small, the MSE of the CM receiver can be ap-
proximated by the MSE at the reference, and the CM receiver
is approximated by the reference point which is the scaled
version of the Wiener receiver. Interestingly, the MSE based
on the quadratic approximations in [15] and [20] has the same
second-order term as . It is, however, important
to note that in (54) is different from the approximation
and is shown to be more accurate in simulations.

V. AN EXAMPLE

In this section, we return to the example given in the
Introduction to illustrate the key ideas in this paper. While
this example is artificial, a more elaborate study of practical
multipath channels can be found in [28] and [29].

The channel impulse response is and the
equalizer has two taps. The corresponding channel matrix is a

matrix given by (see [28] for the definition of )

(56)

The receiver and the overall impulse response vectorare
two-dimensional vectors, i.e., . The signal-to-
noise ratio (SNR) is defined by

SNR (57)

where denotes the Frobenius norm defined by the trace
of . In the simulation, the are BPSK signals.

A. The Location of the CM Local Minimum

In the first experiment, SNR 10 dB. From (24), the Wiener
receivers are the columns of

(58)

The CMA receivers are obtained from the gradient search for
the local minima of (20) initialized at the Wiener receivers.

The Contours of the Cost Function:Fig. 16 shows the con-
tours of the CM cost function as well as the Wiener and CM
receivers. At the origin, there is a local maximum of .
The shape of looks like a sombrero. The “hatband”
(where the brim meets the crown) is the region containing
the CM local minima. According to Theorem 1, the energy
of a CM local minimum is between and which are
shown by two dashed lines in Fig. 16. This ring only roughly
describes the location of CM minima and is not very tight. The
signal subspace is the whole space in this example. From
Fig. 16, it can be seen that the CM local minima are closer to
the Wiener receivers than the zero-forcing receivers, and are
approximately in the directions of the Wiener receivers.
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Fig. 16. The contours of the CM cost function. Cross: CM receiver; star: MMSE receiver; circle: ZF receiver.

Fig. 17. The cone.

The Neighborhoods:First we determine the reference point
which has the minimum CM cost in the direction of .

To obtain , one needs only the MSE and the ISI of the
Wiener receiver . In this example, for ,

and .
According to (37), we have

(59)

The , , and are obtained according to Theorem 2.
Specifically, is the smallest positive root of . Note
that for . But for .
Theorem 2 is still applied to this case. Fig. 17 is a close-up

of a segment of Fig. 16. The cone in the two-dimensional
space is a sector. The upper/lower bounds ofturn out to be
tight, while the upper bound of is loose.

In Table I, we compare the CM and the Wiener receivers in
their MSE, output power, and ISI. Note that the MSE of CMA
for estimating is about four times larger than that
for estimating . A similar ratio exists for the
Wiener solutions with the two possible delays. Due to its blind
initialization, CMA may perform considerably worse than a
nonblind Wiener design with an optimal preselected delay.

B. The MSE Bound

In this experiment, we investigate the accuracy of the MSE
upper bound and the estimated MSE . We also
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TABLE I
COMPARISONS OF THECM AND THE WIENER RECEIVERS

� = 1 � = 2

MSE Power ISI MSE Power ISI

qqq�
m

0:4281 0:5719 0.2669 0:1118 0:8882 0:1719

qqq�c 0:4393 0:4271 0:3113 0; 1225 0:7039 0:1752

Fig. 18. Mean-squared errors. Solid line:Jm(qqqc); dashed line:
Jm(qqqc) + �EU ; dash–dot: Jm(qqqm); cross: Jm(qqqc) + �E . Dotted
line: Jm(qqqc) + �E . � = 1.

compare the estimated MSE to the value obtained
from the second-order approximation [15], [20], i.e.,

(60)

To examine the accuracy, we compare them with the actual
MSE of CM receivers and the MMSE at different noise levels.
The SNR varies from 10 to 15 dB.

Fig. 18 shows the comparison result. The upper bound is
very tight. The estimated MSE , which lies between the
upper bound and the actual MSE , proves to be
a good estimate and only requires two parameters for its
computation (see (37) and (55)). However, the approximated
MSE based on the second-order approximation [15], [20] has
large error at low SNR.

VI. CONCLUSION

In this paper, we presented a geometrical analysis of the
well-known CM receivers, which reveals connections between
the (blind) CM and the (nonblind) Wiener receivers. In answer-
ing three questions posted in the Introduction, we obtain the
following results:

C1: CM has local minima when noise is present. Interest-
ingly, when the MMSE is less than , the existence
of a CM receiver in the neighborhood of the Wiener
receiver can be established analytically by Theorem 2.
CM local minima in other regions are not addressed
in this paper. In other words, we have located “good”
CM local minima with low MSE.

C2: The MSE of those “good” CM local minima is bounded
in Theorem 4 using the magnitudes of the bias
and intersymbol/user interference of the Wiener
receiver. The upper bound (53) derived in this paper
is tight in both the artificial and the practical examples
(see [28]).

C3: We observe that the CM receiver is approximately the
scaled version of the Wiener receiver. This also implies
that the extra MSE of the CM receiver is simply given
by

(61)

Our analysis shows that the CM receivers can perform almost
as well as the nonblind/trained receiver design if undesirable
local minima can be avoided. How to achieve this by proper
initialization remains one of the most important issue in the
application of the CMA.

APPENDIX A
PROOF OF THEOREM 1

Given any , can be decomposed by the projec-
tions in and

(62)

Since

(63)

the CM cost function (15) is

(64)

Define , , .
Hence, the set of minimum points of ) is
equivalent to .

On the other hand, if is a minimum point of ,
then

(65)

This implies that , or . If ,
from (15)

(66)

If , one can find , such that
satisfies . Obviously, . Thus

is minimized when . Hence if
is a minimum point of (64), must satisfy both conditions:

and . On the other hand, the gradient
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of in the direction of this minimum point is given by

(67)

This implies that there is no minimum point in . In
other words, all CM local minimum points are in the signal
subspace. At the same time, it also shows that the energy of
minimum point is greater that . To show the energy is less
than , let us define a function for any such that .

(68)

The minimum of achieves at

(69)

Since

. This implies that the energy of the CMA equalizer
cannot be greater than.

APPENDIX B
PROOF OF LEMMA 2

Since the noise variance , we have , and

(70)

Using c) of Lemma 1 and the above inequality, we have

(71)

Substituting (38) into , we obtain (45).

APPENDIX C
PROOF OF THEOREM 2

The outline of the proof is as follows. Consider the lower
bound in (44). We first examine the sign of . From
the signs of and , one can determine the sign
of polynomial (44). Second, we prove that all points on the
peripheral surface (see Fig. 19) have costs greater than the
reference point. The points on the upper surfaceand the
lower surface will be checked next.

Finally, we verify that the reference point is in the sliced
cone.

Fig. 19. Three surfaces of the sliced cone.

1) We prove that . Since that ,
we have

(72)

(73)

(74)

(75)

For (75), we have used the property b) in Lemma 1.

(76)

When or the last two terms of
(75) are positive.

2) Now we evaluate the cost on the peripheral surface
defined by . From

(77)

one can easily see that and . If
, then there exists such that

. Since , the polynomial

for all . Thus , .
3) Now we check the points on the upper surfacedefined

by . For all points on this surface,
. Since

(78)
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then the polynomial . Hence,
. In other words, we prove that

all points except the point on the line have costs greater
than . Similarly, we can prove the same result for the
lower surface.

4) Finally, we verify that the reference point is in the
region , i.e., . Since is
the minimum point on the line , consequently, the costs
at , , and are greater than . It is
easy to show that

(79)

is increasing at . From (50), we have

(80)

(81)

Similarly, from (49), we have

(82)

In the end, we examine the case as the noise variance .
From (45)–(47), we have

(83)

(84)

(85)

Hence, . Therefore, , and
.

APPENDIX D
PROOF OF THEOREM 3

a) In order to prove this theorem, we show that there does
not exist a CM local minimum in the cone
with power greater than that of the Wiener receiver.

Any point in can be represented by ,
where , and . Define

(86)

Since , the derivative

(87)

is monotonically increasing with . Therefore, if
, then there is no CM receiver of the form for

any .
Now we prove that ,

. Since

(88)

we have

(89)

If

(90)

then .
Now we check whether the condition (90) is satisfied for

all points in

According to c) of Lemma 1, ,
hence

(91)

Using b) of Lemma 1, we have

(92)

Using d) of Lemma 1, we thus have

(93)

After straightforward manipulations, one can show that, when

(94)

(95)

This completes the proof that the output power of the CM
receiver is less than . From d) of Lemma 1, we have

, i.e., the bias of the CM receiver is greater that of
Wiener receiver.

b) Prove by contradiction. Suppose that .
Let

(96)

Obviously, , and .
According to (29)

(97)

Therefore,

(98)

which contradicts that is the CM minimum in
.
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APPENDIX E
PROOF OF THEOREM 4

From (20) and c) of Lemma 1

(99)

Thus we obtain the bounds in the theorem. This relationship
is also evident in Fig. 15 where

To show (55), we approximate the CM receiverby the
reference . Hence, using c) of Lemma 1 or
Fig. 15

(100)

According to (37)

(101)

Since

(102)

thus

(103)

Therefore,

(104)
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