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Relationships Between the Constant
Modulus and Wiener Receivers

Hanks H. ZengStudent Member, IEEELang Tong,Member, IEEE and C. Richard Johnson, JFellow, IEEE

Abstract—The Godard or the constant modulus algorithm where f is the receiver parameter vector. As an alternative,
(CMA) is an effective technique for blind receiver design in  Godard [8] and Treichleet al. [24] proposed the constant
communications. However, due to the complexity of the Con- aqyjus (CM) criterion which minimizes the dispersion of

stant Modulus (CM) cost function, the performance of CM th . tout d the di . tBnt —
receivers has primarily been evaluated using simulations. The- € receiver oUtput “aroun € dispersion consiapt =

oretical analysis is typically based on either the noiseless caseE{|3|4}/E{|3|2}
or approximations of the cost function. The following question,
while resolvable numerically for a specific example, remains J(f) 2 E{(|ftm|2 —RP)Q}. (2)
unanswered in a generic mannerin the presence of channel noise,
where are the CM local minima and what are their mean-squaredyhg |ocations in receiver parameter space of the local minima
errors (MSE)?In this paper, a geometrical approach is presented .
that relates CM to Wiener (or minimum MSE) receivers. Given of Jc(f) are referred to as Consltam modu.Ius' (CM) recglvers.
the MSE and the intersymbol/user interference of a Wiener ~ Clearly MSE and CM are different criteria. The Wiener
receiver, a sufficient condition is given for the existence of a CM receiver requires thgoint second-order moment af and
local minimum in the neighborhood of the Wiener receiver. MSE s and has a closed-form solution. When the joint moment
bounds on CM receiver performance are derived and shown 10 s ot known in practical applications, training data may be
be tight in simulations. The analysis shows that, while in some . . . .
cases the CM receiver performs almost as well as the (nonblind) need_Ed' In C(_)ntraSt’ the CM receiver is bl"_qd because it only
Wiener receiver, it is also possible that, due to its blind nature, requiresmarginal moments of the observatian and source
CM receiver may perform considerably worse than a (nonblind) s. However, the CM cost functiod, may have local minima,
Wiener receiver. and CM receivers do not have closed-form solutions.

Index Terms—Adaptive filters, blind deconvolution, constant The main objective of this paper is to reveal connections be-

modulus algorithm (CMA), equalization, intersymbol interfer- tween CM and Wiener receivers. We aim to answer (partially)
ence, local convergence, Wiener receiver. the following questions:

Q1: Does CM have local minima? If so, where are they?
Q2: What is the mean-squared error (MSE) performance
|. INTRODUCTION of CM receivers?
Q3: What is the relationship between (blind) CM and
A. The Problem (nonblind) Wiener receivers?

Linear estimation of a random variabiefrom observation B. An Example
random vectorz is a classical problem. The well-known

Wi . f ferred h - To obtain some insights into the above questions, let us
lener receiver, often referred to as the minimum meaps \qijer gn example of’/2-spaced equalization used in

sr?uared error (MgASE) re'aesi\éer, is obtained by minimiZin920]. The model for the fractionally spaced equalization is
the mean-squared error ( ) equivalent to a multirate system [19], [26] shown in Fig. 1.
A t 2 A . The up-sampler is an interpolator which inserts a zero between
In(f) = E{(fz—-5)°}, [,= ag min Jn(£) (D) gyccessive symbols(k), while the down-sampler selects a
baud-rate sequence frofa(n)}. In this model, the transmitted

_ , , signal {s(k)} at symbol ratel/7" is a random sequence
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Fig. 1. A T/2-spaced equalizer is equivalent to a multirate system.
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Fig. 2. The CM cost function at SNR= 10 dB.
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wheren(k) is noise at the down-sampler output, afiek) is C. A Geometrical Approach and Main Results

the overall response of the combined channel and receiver. B
the definition in [18, p. 603], whea = [¢(0),
andg = [0, 1]*, the corresponding’s are zero-forcing (ZF)
equalizers fors(k) and s(k — 1), respectively.

For BPSK signal, the dispersion consta®, =

Yur approach to analyzing CM receiver with a finite number

t t
¢ =1, 0] of parameters is geometrical, which is in contrast to commonly

used methods of analyzing equilibria points of the CM cost
function and their local curvatures. The basic idea is based on

E{|s|*}/E{|s]?} = 1. According to (2), the CMA rece|ver the Weierstrass maximum theorem [17, p. 40]. As illustrated

is obtained by minimizing

T = B{(Ju(b)? - 1)%} £ .

n Fig. 4, our approach is to find a compact regiBnwith
boundaryaB in the parameter space, and an interior reference
G f. such that the CM costd.(f) on the boundang’ are
greater than that of the referendg(f,.). Consequently, there

which is shown in Fig. 2. Fig. 3 gives the contours.bfg) Must be at least a local minimum of CM 8.

and the locations of the Wiener and CM receivers. BecauseCritical in this approach is the selection of the shape of
J(g) is symmetrical, only the two receivers estimatisg:) B, the location of3, and the referencg,.. In defining such
indicated byx and s(k — 1) indicated by are considered. a region, our first goal is to have it as small as possible,

These figures suggest the following.

which leads to a more accurate description of the local

« For Q1 and Q3, we observe that there exists a CMinimum and its MSE performance. The second goal is to
local minimum, and the CM local minimax(and® in relate such a region to the location of Wiener receivers. In
Fig. 3) are close to the Wiener receivers @nd @ in addition to the description of & in the parameter space, we

Fig. 3).

aim to give a corresponding description in the Hilbert space

» For Q2, the MSE’s of the CM receivers<(and @ in of the observations in order to provide insightful physical
Fig. 3) are 0.4393 and 0.1225, respectively. Without interpretations.
proper initialization, the CM equalizer may converge to While there are important differences between CMA in an

(x) and have large MSE.

equalization problem for a single user and in beamforming for

Although the above observations are based on this artificiabltiuser (see [9]), the problem of fractionally spaced equal-
example, they turn out to be true in general, which will beation of intersymbol interference channels and the problem

established analytically in this paper.

of beamforming, i.e., separating the signal of interests from
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Fig. 3. The contours of the CM cost functiox., +, ando are the CM, Wiener, and ZF (zero forcing) receivers $§0k) respectively;®, ¢, and ®
are the CM, MMSE, and ZF receivers fa(k — 1), respectively.

J(f) approach, one of the minima must be the global optimum (in
the sense of MSE) CM receiver. The other reason is the strong
relationship between the Wiener receiver and the CM receiver,
which, to our knowledge, has not been fully exploited except
in the well-known noiseless case.

Our results are established based on several assumptions.
First, we will restrict our investigation to the real case with
the white BPSK source. Extensions to the multilevel signals
and the complex case involving QAM type of signals are
reported separately [16], [29], [30]. Second, Results R2 to R4
£ are based on the invertibility of the channel, i.e., the signal
can be perfectly recovered. In the application to fractionally
spaced equalization, the invertibility condition implies that i)
subchannels do not share common zeros and ii) the equalizer
o8B is sufficiently long [22]. Although the extension to the case
involving noninvertible channels is nontrivial, similar results
still hold true [10], [29].

Fig. 4. lllustration of the idea.

interferences, share a common signal model. The approach

presented in this paper applies to both cases. D. Related Work
The main results of this paper include Existing analysis has been focused on three aspects of CM
R1: a signal space and matched filter interpretation of CMceiver: i) the existence of local minima; ii) the error surface
receivers; of CM cost; and iii) the MSE performance of CM receivers.
R2: an analytical expression to determine the existence\@e highlight next some connections among existing results
CM local minima; and those presented in this paper. Context-setting surveys can

R3: an analytical description of regions that contain CMe found in [11], [25], and [31].
local minima in neighborhoods of Wiener receivers;  Existence of Local Minima in the Absence of Noise:
R4: upper and lower bounds of the MSE of these ClMoschini was the first to show the global convergence of
receivers. a doubly infinite baud-rate equalizer in the absence of
It is important to note that our results apply only to thosehannel noise [7]. For finite or one-sided infinite baud-
CM local minima near the Wiener solutions. There are severate equalizers, the existence of undesirable local minimum
reasons to study these CM local minima. Due to the quadralias been demonstrated by Ding and his co-workers [2]-[5].
nature of the mean-squared error cost function, any receiveterestingly, for fractionally spaced finite-impulse response
far away from the Wiener receiver has a large MSE. Therefol&|R) equalizers in the absence of noise, the convergence
if there exist CM local minima in the regions defined in ouof CMA is global [14] under satisfaction of the associated
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identifiability condition [21], [22]. Specifically, in the noise- w
free case, zero-forcing equalizers are the only local minima.
When noise is present, however, the existence of local

minima and their locations have not been formally establishee®™—— H X ft v .
Presented in this paper is a result that can be applied directly

to fractionally spaced equalizers the presence of nois&Ve = qt |

give a sufficient condition for the existence of local minima

and specify the region of their locations. Fig. 5. The model.

Error Surface of the CM Cost FunctionCharacteristics of
the CM error surface are discussed in [12] for the baud-raggrxm the set of alln x m real matrices;
equalizer in the absence of qoise: It is shown that the outpmt, range ofAA’ [13, p. 430];
power of the FIR CM equalizer is betweey3 and 1 for T AAT-
BPSK signals, which defines loosely a region for all CM 4 range ot — T
local minima. In this paper, the same bound is obtained for, the boundary of seb;

. : . . the complement of seti.

fractionally spaced CM equalizers in the presence of noise.

MSE of CM: In his original paper [8] published in 1980,
Godard observed in simulations that the CM equalizer almost IIl. PROBLEM FORMULATION
achieves the MMSE. Recently, MSE performance of CM Both the FIR equalization of a single user I1SI channel and
has attracted some research interest [15], [20], [23]. All eamforming in array signal processing share the same vector
the approaches taken in [15], [20], and [23] are based amodel illustrated in Fig. 5.
second-ordeapproximationof the CM cost function. While
such approximations are valid asymptotically as the signal-to- z=Hs+w (6)
noise ratio (SNR) approaches to infinity, it is not clear that, y=fz=qs+ fw (7)
for a fixed finite SNR, the analysis is accurate. Furthermore,
the analysis typically presumes the existence of the C
local minimum which has not been formally establishe R7e%ma is the (deterministic) channel matrize R™ is
In contrast, the analysis presented in this paper does . . s L
involve approximations. When the sufficient condition of th € recelyed S|gnal' vectof. € R™ 'ith? receiver parameter
existence of CM local minimum is satisfied, the MSE boundéector.y is the receiver output, ang=H" f € R" the overall
of a CM receiver are derived. In simulations, our MSEESPonse of combined channel and receiver. The explicit form
bounds are tighter than those obtained from the second-orf@fhe above model for equalization and beamforming can be
approximation approaches. found in [22]. . _

The following assumptions are made throughout this paper.
Al: H € R™*™ has full column rank.

E. Organization and Notation A2: Entries ofs are independent and identically distributed

This paper is organized as follows. The system model is  (i.i.d.) random variables with equal probability from
presented and the problem is formulated in Section II. In the set{£1}.
Section Ill, the CM receiver is shown to have a signal spaceA3: Entries ofw are i.i.d. Gaussian random variables with
property, which leads to a canonical decomposition of the zero mean and variance’.
receiver. In Section 1V, locations of the CM local minimarhe first assumption satisfies an identifiability condition on the
are given and MSE bounds of CM receivers are derived. Thbannel [22] and ensures the global convergence of CMA in
strong relationship between the CM and Wiener receiverstie absence of the noise [14].
revealed in both the parameter space and the Hilbert spacén estimatings,, the vth element of vectos, we consider
of the observations. Finally, in Section V, we return to ththe minimization of the following objective functions:
example in the Introduction to illustrate key ideas of this paper.

eres = [sy, -, an]t € R™ is a vector of the random
ource signalw € R™ is the vector of additive noise,

L= A
The notation used in this paper is standard. Upper and lower CM:  J.(f) = B{(lyl* - D%} (8)
case bold letters denote matrices and vectors, respectively. Key MSE: 7. (f) 2 E{(y—5,)*} (9)
symbols are described in the following list. — ;
ZF TXHE YD al (10)
() transpose; i#v, gy =1

()f Moore—Penrose inverse [13, p. 434];

. ) The CM cost measures the dispersion around the unit circle,
E{-} expectation operator,

the MSE cost measures the dispersion over the signal constel-

l2ll,  p-norm defined byz/>" 27 lation, and the zero-forcing (ZF) criterion [18] measures the

ll#[la  2-norm defined by/z*Az; worse case interference.

I, n x n identity matrix; There are two important differences between the CM and

e, a unit column vector with at thewvth entry and MSE/ZF criteria. First, the Wiener and zero-forcing receivers
zero elsewhere; are nonblind (trained) and can be obtained in closed form. In

R n-dimensional real vector space; contrast, there is no closed-form solution for CM receivers.

Authorized licensed use limited to: Cornell University Library. Downloaded on September 02,2024 at 23:20:48 UTC from IEEE Xplore. Restrictions apply.



ZENG et al: RELATIONSHIPS BETWEEN THE CONSTANT MODULUS AND WIENER RECEIVERS 1527

Our approach is to describe the location of the CM minimumhe cost function of CM can be expressed as (see also [12]
in the neighborhood of the Wiener receiver for a particuldor the noiseless case)
v. Second, the CM cost function is not a function of
This of course comes from the nature of a blind receiver. J(f) 2 E{(y*-1)*}
When applied to the equalization problemcorresponds to 3k = 2lf)% - 2||Htf||jkL +1. (15)
the overall response delay. As shown in the example in the
Introduction, CMA may converge to a local minimum neaNote that||f||3, is the variance or the power of the receiver
a Wiener receiver with quite a large MSE for a particular output .
However, in nonblind receiver design, an optimalcan be Unlike the Wiener and ZF receivers, there is no closed-form
selected to achieve the least MSE. expression for the CM receivef, which is a local minimum

In Sections Il and IV, we will derive the signal spaceof J.(f). The signal space property of CM receivers must be
structure and MSE of CM receivers for= 1. For brevity, we proved indirectly.
shall drop the superscript ifi,, (f) andJ. (f). Generalization
to v # 1 only involves different parameter partition [27], [29].

Theorem 1: All local minima of the CM cost function (15)
are in the signal subspa@&y. Furthermore, the output power

of any CM receiverf, satisfies
Ill. THE SIGNAL SPACE STRUCTURES

. . . 1
Our first result shows that both Wiener/ZF and CM receivers 3 < 1.l < 1. (16)

are in the “signal subspace” of the observation, which leads to
a matched filter interpretation. The so-called signal subspace Proof: See Appendix A.

is defined byR g, the column space of the channel matrix nThe signal space results are perhaps not surprising. In [6],

H, whereas the noise subspace is its orthogonal Compleml%mson argued that for any “reasonable” criterion of goodness
R .. The signal space property provides the basis of relati . ) X . !
" 9 P Rroperty p thie optimal receiver includes a matched filter, and therefore,

the CM receiver to the Wiener receiver in Section IV. BN )

the solution is in the signal subspace. In our case, however,
the CM cost function is not “reasonable” in the sense of
Ericson when the power of the receiver output is bel/8.

The signal space result, while intuitively appealing and not
For the sake of comparison with the CM receivers, wenexpected, does not follow directly from Ericson’s argument.
briefly give the forms of the Wiener and ZF receivers an@lhe important consequence of the signal space result is that
present their signal space properties. the CM receiver is made of a linear combination of filters

ZF Receiver: A zero-forcing receiver minimizing/.(f), matched to the columns of the channel matHx
in fact making.J.(f) = 0 with minimum noise enhancement, A tighter upper bound on the powélf||r will be given
is given by in Section IV. In the absence of channel noise, the power
i condition (16) of all CM local minima was given in [12].
f.=(H)'e. (11) Geometrically, this condition implies thatll CM receivers

must be located in an elliptical “shell,” illustrated in Fig. 6 for

. AN 4 —1 H
Since (HSF)I N H(;I H)™* which shares the same COIumrlhe two-dimensional case. For the ZF receiyer according
space adl, f. € Ru. to (11) and (13)

The Wiener ReceiverFrom (9), we have

In(f)=E{(ffz—s)*}=fRf —2H'f+1 (12

where

A. The Wiener and Zero-Forcing Receivers
and Their Signal Space Properties

If.|[ = L H (HH' +0°L, )(H")Ter = 1+ 07| f_|I5.
For the Wiener receivef,,, according to (12) and (14)

- t t
R é E{wwt} = HH’ + O'QInf. (13) J"l(frn,) =1- frn,Rfrn, > 0? == frn,Rfrn <L

Therefore, the output power of Wiener receivers is always less
than 1, whereas the output power of ZF receivers is greater
than 1. As SNR decreases, the output power of a Wiener
o2 receiver approaches to zero whereas the output power of a
1 " et CM receiver is always abovk/3. This condition, particularly
=H E(I"f —(H'H +0°L,,)" H'H)e,| € R the lower bound, is useful i{1 determining if there is a CM
(14) local minima near the Wiener receiver.

Minimizing J,..(f), we have

1

fm =R 'He, = —(I,, —HH'H +5°I, )" H")He,

In (14) we have used the matrix inversion lemma. C. A Canonical Receiver Structure

From the signal space structure of the receiver, we derive a
useful canonical decomposition and give the equivalent MSE
The CM receiver minimizes the error between the magrind CM costs as functions of the overall impulse respanse

tude of the receiver output and a constant. Using A2 and A&efined in (6) and (7).

B. The Signal Space Property of the CM Receivers
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IIf11% =1 Ht

<

S z
- @t

Fig. 8. The canonical decomposition.

linear combinerg, the overall response of combined channel
and receiver. The CM, Wiener, and ZF receivers are different
in their choices of the combinegr. In the sequel, we shall use

the equivalent MSE and CM costs as functions of the linear

combiner
MSE:  J.(q) 2 Tn(H) q)=q'®q—2q¢'e; +1 (19)
A —
vl ft ' CM:  J(g) = J((H" 9)=3llglls—2llall5 — 2llglli+1
(20)

—{ 1 o m pa

Fig. 7. The decomposition of the ZF receivéfs and the linear combiney.

where® is defined in (18). Note that the output power of CM
receivers can be obtained from the norm of receiver veftor

andg, i.e., E{ly|*} = Ifli% = |lall3-

The Zero-Forcing Front-End:Consider the  combined IV. WIENER AND CM RECEIVERS
channelg = H'f. If the receiverf is in the signal space,

h Most of our results rest on the connection between the
en

Wiener and CM receivers. Of particular importance is a
f=(HYq (17) Partition of the parameter based on the concept of a (con-
ditional) unbiased estimatorThe region containing the CM
i.e., f is made of the zero-forcing receiver bank at the fronteceiver is then determined only by the bias and interference
end followed by a “linear combinerg which turns out to of the Wiener receivers. The interference can be either the
be the overall impulse response. This leads to the structimgersymbol interference in a single-user equalizer or the
of the receiver in Fig. 7. Define as the noise output of interuser interference in a multiuser beamformer.
the ZF receivers, i.ey = H'w, which is colored noise
with covariance oi?(H'H)~*. The model in Fig. 7 is now A The Conditionally Unbiased Estimator
equivalent to that in Fig. 8. . . .
While it may not be practical for implementation because Consider the O_VE“"?" |r_npulse respongef the_ combmeq
of the noise enhancement problem of the ZF front-end, tlqgannel and receiver in Fig. 5. From (7), the estimate of signal

canonical structure given in Fig. 8 offers an important decorfit is given by

position at the conceptual level. The design of the receiver ng

can be considered, without loss of generality, as a two-step y=q's+ flw=qs + Z qsi + flw (22)
process that i) eliminates the interference and ii) compensates i=2

the colored noise by processing the outpitof the ZF front-

, : i where ¢, represents the gain of the signal of interest The
end through the linear combingr It is the latter step where

other component$gs, - - -, ¢, } are gains of the interference.

all receivers with the signal s_pace_property differ. _ Br%/ parameterizing as
In the case of Wiener receiver, it turns out that the desig
of linear combinerg depends only on the covariance matrix q A 9<1 ) 22)
of z, the output of the ZF front-end, given by qr
® 2 Elzz') = BE{ss'} + E{w'} llgi|| measures the intersymbol/user interference (ISI/IUI) of
=1, L o(HH) ! = HTR(Ht)T. (18) the receiver [18, p. 541]. This parameterization results in the

realization ofg in Fig. 9. The receiver outpuj is a scaled
Cost Functions in the Space of Linear Combinefidie version of the unbiased estimateof s; (conditioned ons;),
canonical structure of receivers in the signal space enabies, ¥ = 6u. The significance of using. for detection has
us to carry out the analysis in the parameter space of tleeently been emphasized by Cioé al. [1].
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. Fig. 10. Wiener receiver in the Hilbert space of the observations.

Fig. 9. Decomposition into unbiased estimator and gain.

then
Let z and® be partitioned according to (22), i.e., 8 = E{lu—unl’} = lla; — Gtllc  (28)
2 (2). e (B Bl (s b BGP) =llalls =6 (5 +): (29)
21 )’ E{z1x1} E{z2t} b C _ _ "
(23) d) for any receiverg with output power less than that of
the Wiener receiver, i.el|q||3 < ||g,./|%, the bias ofq
with appropriate definitions af, b, andC. As shown in Fig. 9, is greater than that of the Wiener receiver, iesg 6,,.
g; is the part of the combiner that reduces the noisesingz. Proof: Although the proof can be obtained algebraically,
It also introduces the interference dueso: = 2, ---, n,. we present a “Pythagorean” proof consistent with the geomet-
|1 — 6| is the magnitude of the receiver bias conditional ofical approach in this paper. Relationships of various random
s1, e, |1 — E{uls1}| = |1 — 6]. The parameterization in variables in their Hilbert space are depicted in Figs. 10 and 11.
(22) that decomposeginto the unbiased estimator and a gain a) Note thatC = E{z2!} is the covariance of the in-
factoré holds the key to connecting CM receivers with Wieneferferencezr = [z2, - -, z,,]*, b is the crosscorrelation bet-

receivers. This will be further discussed after Lemma 1. ween the interference; and vy, i.e., b = E{zv;}. The
MMSE noise cancellation of; using z; is then given by

B. The Wiener Receiver —C~'bwhich leads to the unbiased Wiener receiMeranIl]t.
The Wiener receivey,, for s,, obtained by minimizing The variance of th_e unbiased Wiener _receivedz is_th'__ b;_
Jo(q) in (20), is given by therefore, the scaling factor of the Wiener receiver is given
by 1/(a — b'C™'b).
a4, = el (24) b) From the principle of orthogonality,,, is orthogonal to

the errore,,, as shown in Fig. 10. The projection gf, on

Under the decomposition in the preceding section, we haHf’e s, is 8,,5,. From Fig. 10, due to the triangle similarity
the following properties of the Wiener receiver. The proof

of Lemma 1 is important in establishing the geometrical Eflym|*} _ E{|0ms1*} (30)
description in the Hilbert space of the observations. E{lsi1?t  E{lyml*}

Lemma 1:Let q,., @1 Om, Um, Ym, and e, be the where€{|ym|2} = ||_q||<21> and E{|s;|?} = 1. We then have
corresponding terms in Fig. 9 for the Wiener receiver. WE{|¥m|"} = 6. Similarly, we can prove that

then have Jn(@,,) = E{lem|?y =1 — 6.
a) g,,; andé,, are given by

c) Consider the relationship between the outpudf any
1 1 1 receiverg and y,, shown in Fig. 11. By scaling/ and y,,,,
@ = Om <qu> T b <_C—1b>; (25)  \we have the corresponding unbiased estimatorand v,
ﬁf—’ respectively. Since the orthogonal projections.andw,,, on
" s, are boths;, we havev — u,, L u,,. Hence
b) the MMSE, bias and output power of the Wiener receiver 62 = EfJu— s1[2} — E{Jum — 512}

are related by _ 0y
= E{lu — um|"} = llar — gulle- (31)

Ope=1— T, = 2 <1 26 _
(@) = l1gnlle < (26) Furthermore, from Fig. 11, we have
c) for any receiverg = 9((111), let 62 be the extra mean- E{yP} =0 E{|ul} = 62 (E{jum|’} + E{|u — um|’})
squared error of the conditionally unbiased estimate 8 " 32
over the conditionally unbiased MMSE estimatg, i.e., B 5 1 (32)
:92< {|ym| } +62> — 92 <9_ +62> (33)

97'277/ m

8 2 B{lu— [} - B{jun — 517} @7)
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_______________________

E{y*}

E{y’} < E{3%.}

span{z;}

Fig. 11. The Hilbert space of the observations.

d) From Fig. 11, this is immediate. Mathematically, frontost function with respect té:
(29), whenE{[y|*} < E{lym|*}

1
J( 6 A L DO +1. (36
2 E{|y| } 97271 2 < <qn11>> 92 9 ( ||anI||4) ( )
6 T < 5 < 0 (34)
0. Setting3J/860 = 0 leads to
D 2 9771,

Remarks: From (29), the power of a receiver output can 0, = 3— 2602, — 2602 ||q,. 113 (37)
be represented by and &, where |1 — 4| and §* are the 1 g2
magnitude of the bias and the extra mean-squared error of J(g,)=1-— 1 =1--"~. (38)

3 =267, — 267 ||g,ll3 O

the conditionally unbiased estimator. The CM cost function

(20) is then given by Note thatf, < 6, when#,, > 2/3. This can be verified

numerically by using

1\? 1
.](q):3<62+9—) 64—2<62+9—>62 ,
m m | |9nlqrnI| |
_ 294(1 + ||qI||i) 4 1. (35) ||anI||4 = ||anI||2 - 9727;
(@) — (1= 0m)* 11— 8,
In the next section||g||+ in (35) can be bounded in terms < Iz =— - 9

of 6. Thus the cost function is reduced to a function of

two important variables¢ and ¢, both of which are direct Tpe Regior3 in the Parameter Spacetn the parameter
consequence of the parameterization given in (22). space ofg, the definition of the region3 is illustrated in
Fig. 12. Consider the con€,(q,,, 5) with g,, as its axis

C. The Location of CMA Local Minima

A 1
The basic idea, as discussed in the Introduction, is to find Kp(@m.6) = {q = 9(‘11); llar — @nille < 5}- (40)
a regionB in the linear combiner space such that all points
on its boundary have costs greater than the cost of (at le “radius” 5, defined in Lemma 1, is also the radius of

one point in this region in Fig. 4. Consequently, there ism K,(q,,.6) sliced at§ = 1 corresponding to the zero-

mcal rrlnnltmum fOf CMd(;;)St fEnCt'c:jn wBthIn otur at\pproafc?r,] forcing solution. The regior3 considered here is a subset
€ selection olg, an IS based on the structure o K,(aq,,, &) by slicing £,(q,,, &) até;, andéy. Specifically

Wiener receiver. We shall also give the corresponding region
in the Hilbert space of the observations.

The Referencg,: In relating the CM with the Wiener B,(q,,, 6, 0L, 6u) = {q 2 9( . ); 0r <0 <0y,
receiver, we choose, in the direction of the Wiener solution 2
g,,,, the reference poirg, 2 4, (4. ,) with the minimum CM gy — ,llc < 5}_ (41)
cost. From (35)#.. is obtained by minimizing the following
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Fig. 12. The region in the parameter spac®"«q.

span{z;}

Fig. 13. The regions3 in the Hilbert space of the observations.

The RegiorB in the Hilbert Space of the Observation$he have costs greater than the cosgatEvaluating all points on
corresponding description d4,(q,,,, 6,6, 6y ) in the Hilbert the boundarys is difficult. The following lemma allows us

space of the observgtions is shown in Fig._ 13. _The CORS bound the CM cost of on 9K,(g,,,, §) using the bias and
Kp(g, 6) and the region5,(q,,,, 6, 1, fr) defined in (40) y,q intersymbol/user interference.
and (41) become
. . 9 Lemma 2: Given the Wiener receivey,,, = 0, (qll). Let
{y: E{ <§y - e—ym> } < 62} g, = 9,,(q11) be the reference defined in (37), (38). Then, for
m any q = 9(;1) & ale(qm,é)

113

’Co (ymv 6)

(42)
BO(ymv 6, 0r, eU) 2 {y € ’CO(ymv 6): fr < PSl(y) < QU} J(q) B J(q,,) = 02(6)94 * 01(6)92 + o

(43) (equality holds iff 6 = 0) (44)
whereP;, (y) is the orthogonal projection of in the direction Where
of s;. The radiusé is the extra MSE between the unbiased co = 1 (45)
Wiener receiver and the unbiased receiVergt]’. The re- 3—262, — 2602 ||g,.1ll3
lationships among the bias, MSE and the output power are , 1
shown in Fig. 13. Comparing with Fig. 12, the sliced cone a(d) = — 2<5 + 9m> (46)
B(6y, 61, 617) corresponds to the shaded trapezoid in Fig. 13. 1 2

One of our objectives is to quantif§;; and é;. Our goal c2(8) :3(52 + 9_> — 21+ (6 + ||qu||4)4). (47)

now is to find as small & and as small &; — 6, as possible m
such that all the points on the surface Bf(q,,,, ¢, 61, 6v) Proof: See Appendix B.
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; 6. 6, 6m Oy 1 8

Fig. 14. The CM receiver outpgt in the parameter spac&"«<.

From this lemma, we can see that, O,(q,,, 6), the D. The Bias, ISI/IUl, and Output Power of CM Receivers
J(Q)2 J(q,) is lower-bounded by a second-order polynomial g ther characterization of CM local minima is possible
of 6 with coefficientscz(6), c1(6), andco, all of which are e the regior3,(q,,, 8%, 0%, 6%) containing a CMA local
functions ofé but not of 6. The regionB,(g,.., 6, bz, 6r:) IS minimum is obtained. Of particular interest are the bias, the
obtained by choosind; , 6, andé such that/(¢)—J(g,) > 0 intersymboliuser interference, and the output power of the CM
for all ¢ € 9B. If suchfy, 6y, andé exist, we have located rocejver, The next result can be used to further tighten the
at least one CM local minimum. region B,(q,,, 5%, 0%, 65)

P \Im> ]9 ) A
Theorem 2: Consider a slice of a conB,(q,,, ¢, fr, 6v/)

, - : Theorem 3:Let q,, = 6O ( ! ) be the Wiener receiver.
defined in (41), and define T

a) Suppose
D(8) 2 ¢1(6)% — 4ea(8)eo (48) q. = 0.1, 44" € Bo(a,.. 55. 6} 67)

wherecy(6), c1(8), andcg are given in (45)—(47). Under theis a CM minimum. If6,, > 0.6, or equivalently by (26),
condition thatJ,,(q,,) < 1/3, if D(||g,.1]|2) < 0, then there J..(g,,) < 0.4, the output power of CM receiver is less than
exists a local minimum imB,(g,,,, 5%, 6% , 67 ) wheres}, is the that of the Wiener receiver, i.el/3 < |lg.|3 < llg,.|[3 < 1,
smallest positive root of)(6) and the bias of the CM receiver is greater than that of the
Wiener receiver, i.e.f. < 6,,. b) Supposeg. is the CM

2 minimum in B,,(q,,,, 67;, 07, 67,), then||gr|la = [/gprlls-
r.=, <Igli<r3§ﬁ\/ ald \/26012 (‘?) — 4@ 4 Proof: See Appendix D.
- Summary of the Relationship&Ve now summarize the re-
0" — max \/—61 + Ve (6)% — deof )Co' (50) lationship among the CM, Wiener, and ZF receivers developed
0<6<67, 2¢2(6) so far. Fig. 14 shows the regidh,(q,.,, 6, 3., 8;;) and the

receivers in the parameter space. We note ¢hat 4,,, and
Furthermore, in general, the CM receiver is closer to the Wiener receiver
than the ZF receiver. Fig. 15 shows the relationship between
lim B,(q,,. 55, 0%, 65) = lim{q.} = lim{q,,} = {¢.}. the outputs of the CM and the Wiener receivers and their
0 a—0 corresponding unbiased estimators. Again, the output power of
(51) the CM receivers output must be less than that of the Wiener
receiver (in the shaded region). Hence, we can further obtain

Proof: See Appendix C. a tighter 7, via

Remarks:

* Given g,, = 6,[1,¢,,]', this theorem can be used g7 2 min {6,,, max \/—c1(6)+ 1 (8)2=4c3(8)co
i) to detect the existence of a CM local minimum by 0887, 262(6)
checking the sufficient conditio®(]|g,,.;||2) < 0 and ii) (52)
to determine the regiof®,(q,,, 6;;, 65, 6;).
* The condition in the theorem wsufficientand can be re- .
laxed. In [29], it is shown that it(8) >0 for 0<6<s;,, = MSE of CM Receivers
then there exists a local minimum By,(gq,,,. &;;. 65 ,65;). One of the most important properties of a CM receiver is
« Equation (51) shows that the regid®,(q,,, 55, 6%, 6;) its MSE performance. The result of Theorem 2 enables us to
shrinks to the Wiener/ZF receiver as noise vanishes. give performance bounds on MSE.
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span{z;}

Fig. 15. The CM receiver outpug. in the Hilbert space of the observations.

Theorem 4: Suppose/,,.(g,,,) < 1/3. Let A€ be the extra  The channel impulse response {4, 1, 3, 0.5} and the
MSE of a CM minimumg, € B,(q,,, &;;, 6}, 8;;) versus the equalizer has two taps. The corresponding channel matrix is a

MSE of the Wiener receiver, i.eAE 2 In(@) — Tm(g,,). 2%2 matrix given by (see [28] for the definition df)
Then H— <1 3 ) (56)

07 — 60,,)2 0r —6,,)% 1 05

8 =60)” < pe <OL=00) | iy (53) _ )
O, O, The receiverf and the overall impulse response vecjaare
AL Aty two-dimensional vectors, i.en; = 2, n, = 2. The signal-to-

— A noise ratio (SNR) is defined by
Let A€ be the extra MSE of the reference, iAS = J,,,(g,.)—

; H|?
Jim(g,,). Then SNR 2 10 log, <”2 |2|)F) (57)
a
2
AF_ (6, — 6,,)? _ 1 N where|| - || denotes the Frobenius norm defined by the trace
Om V3 =262, (1+ [|g,l]h) " of HH'. In the simulation, thes;} are BPSK signals.
(54)
9 A. The Location of the CM Local Minimum
= _’]7271 (an) + O(]En(qrn)) (55) . . .
4 ) In the first experiment, SNR: 10 dB. From (24), the Wiener
Proof: See Appendix E. receivers are the columns & *

Both A& and A€ can be seen directly from the Hilbert g1 _ <0-5719 0-1527> L _ <0-5719>
space in Fig. 15.A; is related to the longest distance 0.1527 0.8882 " 0.1527
between they,, and any point in the shaded regioA€£ is 0.15

. (2) _ . 027
the distance between. and y,,. a0, = <0.8882)' (58)

. The boun(_:ls involve the computation @f, 95.” 6. I the The CMA receivers are obtained from the gradient search for
size of thel5 is small, the MSE of the CM receiver can be ap; o R ! .
imated by the MSE at the ref d the CM . the local minima of (20) initialized at the Wiener receivers.
proximated by the at the reference, and the FECEIVeIrhe Contours of the Cost Functiorkig. 16 shows the con-

is approximated by the reference point which is the Scal‘:r‘cfillurs of the CM cost function as well as the Wiener and CM
version of the Wiener receiver. Interestingly, the MSE bas‘?gceivers. At the origin, there is a local maximum £fg).

on the quadratic approximations in [15] and [20] has the sanjge shape ofJ(q) looks like a sombrero. The “hatband”
second-order terr}.J, (q,,,) asA£. Itis, however, important (here the brim meets the crown) is the region containing
to note thatA¢ in (54) is different from the approximationthe CM local minima. According to Theorem 1, the energy
and is shown to be more accurate in simulations. of a CM local minimum is betweeri/3 and 1 which are
shown by two dashed lines in Fig. 16. This ring only roughly
describes the location of CM minima and is not very tight. The
In this section, we return to the example given in thgignal subspace is the whole spdgg in this example. From
Introduction to illustrate the key ideas in this paper. Whilgig. 16, it can be seen that the CM local minima are closer to
this example is artificial, a more elaborate study of practicéile Wiener receivers than the zero-forcing receivers, and are
multipath channels can be found in [28] and [29]. approximately in the directions of the Wiener receivers.

V. AN EXAMPLE
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0.4 T

0.35F T
025F

0.15F

0.05F -

Fig. 17. The cone.

The NeighborhoodsFirst we determine the reference poinbf a segment of Fig. 16. The coiig, in the two-dimensional
g, Which has the minimum CM cost in the direction gf,. space is a sector. The upper/lower bound8.aurn out to be
To obtaing,, one needs only the MSE and the ISI of théight, while the upper bound aof; is loose.
Wiener receivey,,,. In this example, for = 1, 6,,, = 0.5719, In Table I, we compare the CM and the Wiener receivers in
4, = 0.1527/0.5719 = 0.2669, and ||g.(||« = 0.2669. their I\/.ISE,'output power, gnd ISI. Note Fhat the MSE of CMA
for estimatings(k) (i = 1) is about four times larger than that
for estimatings(k — 1) (v = 2). A similar ratio exists for the
o — \/ Om, 04941 (59) Wiener solutions with the two possible delays. Due to its blind
" 3—202 — 202 ||g,.lI5 . initialization, CMA may perform considerably worse than a
The &%, 6%, and 8}, are obtained according to Theorem Zponblind Wiener design with an optimal preselected delay.
Specifically, 6, is the smallest positive root ab(5). Note B. The MSE Bound
thatJ” (¢%,) > 1/3 for v = 1. But c2(6) > 0 for 0 < 6 < 6. In this experiment, we investigate the accuracy of the MSE
Theorem 2 is still applied to this case. Fig. 17 is a close-wpper bound(A&y) and the estimated MSERE. We also

According to (37), we have
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TABLE |
CoMPARISONS OF THECM AND THE WIENER RECEIVERS
v=1 v=2
MSE Power 1SI MSE Power ISI
a9, 0.4281 | 0.5719 | 0.2669 | 0.1118 | 0.8882 | 0.1719
qv 0.4393 | 0.4271 | 0.3113 | 0,1225 | 0.7039 | 0.1752

08}

10 105 11 115

Fig. 18. Mean-squared errors.

s
12 125

13 135
SNR
Solid line (g, );

Jm(q.) + A&y, dash-dot: Jin(q,,);

line: Jm(g.) + AE. v = 1.

compare the estimated MSEE to the valueAE obtained

14

dashed
cross: Jm(q.) + AE. Dotted

145

from the second-order approximation [15], [20], i.e.,

The SNR varies from 10 to 15 dB.
Fig. 18 shows the comparlson result. The upper bound is a _
very tight. The estimated MSERAE, which lies between the Define 4 2 {f: Ifullk > sV e AT > Tfu)

(60)

To examine the accuracy, we compare them with the actual
MSE of CM receivers and the MMSE at different noise levels.

line:

C2: The MSE of those “good” CM local minima is bounded
in Theorem 4 using the magnitudes of the bid)
and intersymbol/user interferengd) of the Wiener
receiver. The upper bound (53) derived in this paper
is tight in both the artificial and the practical examples
(see [28]).

C3: We observe that the CM receiver is approximately the
scaled version of the Wiener receiver. This also implies
that the extra MSE of the CM receiver is simply given

by

1
<\/3 —2(1 - B)2(1+1%

Our analysis shows that the CM receivers can perform almost
as well as the nonblind/trained receiver design if undesirable
local minima can be avoided. How to achieve this by proper

initialization remains one of the most important issue in the

application of the CMA.

2
—Vi— B) . (61)

APPENDIX A
PROOF OF THEOREM 1

Given anyf € R™, f can be decomposed by the projec-
tions in Ry and Ry

f=Ffu+Ffu-. (62)
Since
f'Rf = fuRfy + fy Rfg- (63)
the CM cost function (15) is

Jo(f) =T (fu) + 31 fulIm
+6llfullRlf IR — 21 f e lIR
=Je(fu) +3f n-llk
+6lf g R R — 3)- (64)

upper boundA¢&y and the actual MSE(g..), proves to be Hence, the set of minimum points of.(f)(Vf € A) is
a good estimate and only requires two parameters for @guivalent toJ.(f)(Vf € Ra().A).

computation (see (37) and (55)). However, the approximatedOn the other hand, if € .A¢ is a minimum point of/..(f),
MSE based on the second-order approximation [15], [20] hdeen

large error at low SNR.

VI.

In this paper, we presented a geometrical analysis of the
well-known CM receivers, which reveals connections between
the (blind) CM and the (nonblind) Wiener receivers. In answer-
ing three questions posted in the Introduction, we obtain this implies that||f||% = <, or [|fg|| = 0. If [|f]|% = 1

following results:

C1l: CM has local minima when noise is present. Interest-
ingly, when the MMSE is less thaty3, the existence

CONCLUSION

9Tf) _ 0T.f) Ollfu-
ofus ~ Ofully Ofue
= (20| f e B+ 1200 e — $)fir-R
= (21| f e+ 120 f e — 3))0” Figs =0,
©

37 3

from (15)
Je(f) =5 —2||H' flI}- (66)

of a CM receiver in the neighborhood of the Wienelf ||fg+[| # 0, one can finda > 1, such thatf = afy
receiver can be established analytically by Theorem gatlsfles||f||R = 1/3. Obviously, 7.(f) > J.(f). Thus
CM local minima in other regions are not addressed.(f) is minimized when||f.|| = 0. Hence if f ¢ A°
in this paper. In other words, we have located “good$ a m|n|mum point of (64)f must satisfy both conditions:

CM local minima with low MSE.

| fllR = and [|lfz2|] = 0. On the other hand, the gradient
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of J.(f) in the direction of this minimum point is given by

dJ.(kf) .
‘”f|m—12||f||R 4|fll% - 8||H' fI[t < 0. (67)

This implies that there is no minimum point ipc. In

other words, all CM local minimum points are in the signal
subspace. At the same time, it also shows that the energy o
minimum point is greater that/3. To show the energy is less

than1, let us define a function for an§ such that|f||r = 1.

$(k, f) 2 T(VEf) = 32| H fIIDF — 2k + 1. (68)
The minimum of¢(k, f) achieves at
1
Kmin = P ———— 69
3—2||H" flI; ©9

Since

I fII3 < [[H' fI; < [|f][R =1

kmin < 1. This implies that the energy of the CMA equalizer

cannot be greater than O

APPENDIX B
PROOF OF LEMMA 2

Since the noise variance > 0, we haveC > I, 1, and

— 401 + anI||4 S ||QI - anI||4 + ||anI||4
- qrn,THC + ||qnﬂ||4 =06 + ||qnﬂ||4' (70)

llgrlle =1lar
<|lar

Using c) of Lemma 1 and the above inequality, we have

J(g) — =3(q'®q)> — 2(¢'®q) — 2||g||3 + 1 —

2
>3 62+i gt — 2 62+i 62
9771 9771

= 2041+ (6 + | gull)®) + 1 - J(g,)

= <3<62 + %) —2(1+ (6 + ||qu||4)4)> 4

~

J(q,) J(a,)

-~

C2 ((5)

—2<52 + —) 0> +1—J(q,).
———

. (71)

co
Cl(é)
Substituting (38) intal — ./(g,.), we obtain (45). O

APPENDIX C
PROOF OF THEOREM 2

The outline of the proof is as follows. Consider the lower

bound in (44). We first examine the sign e$(é). From

the signs ofc»(6) and D(6), one can determine the signfor all §2. ThusVq € OK (@, 63), (@) —
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0q;

o 6,

Fig. 19. Three surfaces of the sliced cone.

1) We prove thatz(6) > 0. Since thatd < § < ||g,,1l]2.
we have

1 2
a®) =3(8+ 5 ) =20+ G+ gl (72
1 2
2 —
>3<6 + 9m>
6
>at (= 12lg,l3 )
3 4
+ 9_72n —-2- 18||anI||2 (74)
6 1-6,,
S 12— )82
so <9m O )
3 1—0m\°
— —2—-18 . 75
i <92 < O ) ) 7o
For (75), we have used the property b) in Lemma 1.
||q || _ ||97nanI|| nl(an) (1 - 9771)2 — 1- 9771
mIll2 97271 QQl enl .
(76)

When J,,(g,,) < 1/3 or 8,, € (3,1) the last two terms of
(75) are positive.

2) Now we evaluate the cost on the peripheral suridge
defined byoK,(q,,, 67;). From

D(6) :4(52 + %)2

2
1
3<52+ : ) — 21+ (8 + |l [5)")
_ 4 m
3 — 297271 - 2972n||anI||jLL

one can easily see thd?(0) = 0 and dD(0)/dé > 0. If
D(]|@,,1]]2) < 0, then there exists}; € (0,]|g,,||2) such that
D(65) < 0. Sincecy(6;;) > 0, the polynomial

62(65)94 + 61((5;)92 +cp =20
J(g,) >0

(77)

of polynomial (44). Second, we prove that all points on the 3) Now we check the points on the upper surfagedefined

peripheral surfacé,, (see Fig. 19) have costs greater than thgy ¢

= 05,0 £ 6 £ 6. For all points on this surface,

reference point. The points on the upper surfégeand the c2(8) > 0. Since

lower surfaceSy, will be checked next.

Finally, we verify that the reference point is in the sliced 92

cone.

)+ v/e1(6)2 — 4ea(6)co
202(6)

_cl

=(07)° = (78)

Authorized licensed use limited to: Cornell University Library. Downloaded on September 02,2024 at 23:20:48 UTC from IEEE Xplore. Restrictions apply.



ZENG et al: RELATIONSHIPS BETWEEN THE CONSTANT MODULUS AND WIENER RECEIVERS

then the polynomialey(§)6* + c1(6)6? + co > 0. Hence,
J(@)—

lower surface.
4) Finally, we verify that the reference poigi. is in the
region B,(q,,, 6,67, 0;,), i.e., 8; < 6, < 6. Sinceg,. is

the minimum point on the liné = 0, consequently, the costs

até =0, 8 = 6}, andé = 9} are greater thaw/(g,). It is
easy to show that

—cl —|— \/Cl 462 6) Co (79)
262((5)
is increasing at = 0. From (50) we have
— —|— \/Cl 462 )CO
o2 > —0 80
( b) > 262(0) ( )
—61(0) ern 2
> = = .
% 20(0) ~ 3203, — 282 gl Y
Similarly, from (49) we have
. — — 4c2(0)eg —c1(0)
oy <~ = ValOZ —dae =62,
(01)" < 2c2(0) 2¢5(0) ~ 7
(82)

In the end, we examine the case as the noise varianeg).
From (45)—(47), we have

hlrb co=1 (83)

hlrb ci(8) = —2(62+1) (84)

lim ¢3(8) =3(62 +1)2 - 2(1 + 6%). (85)

Hence,D(6) = —166 < 0. Therefore,§;; = 0, and ¢} =

05 =1=0,,. O
APPENDIX D

PROOF OF THEOREM 3

a) In order to prove this theorem, we show that there does

not exist a CM local minimum in the con€,(g,..,||¢,.1l|2)

with power greater than that of the Wiener receiver.
Any point in K,(q,,, ||g.1]]2) can be represented bykg,

wherel|ql3 = ||¢,.]|3 = 6, and0 < k < co. Define

(86)
Sinceb,, = ||ql|% > lg||3 > |lgl|3, the derivative
A d
¢(kq) 2 7ok = (36, —2lgl[Dk — 6, (87)

is monotonically increasing witl¥'(0,¢) < 0. Therefore, if

¢'(1,q) > 0, then there is no CM receiver of the forkg for
any k > 1.
Now we prove thaV/ g € Ky (g, ||@mll2) N{Ilall3 = O},
¢'(1,q) > 0. Since
llgll: =6* +116qi]|3 < 6* + [16gy]]2
<6* 4 (g'®g— 67)* = 6* 4 (0,, — 6°)? (88)

J(g,) > 0,Y0 < § < &;. In other words, we prove that
all points except the point on the ling, have costs greater
than ./(q,.). Similarly, we can prove the same result for the > (30,
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we have
¢/(17Q) =30, — 1)0,, — 2||Q||i
—1)6,, — 26* — 2(6,,, — 6*)?
= —46* 446,60 + 62, — 0,,. (89)
11 1 ) 11 [ 1
9m<§_§ 2—9—m><9 <9m<§+§ 2—9—m>
(90)
then ¢'(1,q) > 0.

Now we check whether the condition (90) is satisfied for
all points in

K@ 1@ll2) (V{l1ll3 = 61}

According to ¢) of Lemma 1g*®q = 6%(6% +(1/6,,)) = Opm,

hence
62 + —
9771,
Using b) of Lemma 1, we have
||QWEanI||2 nl(an) (1 B 9771)2 1- 9771
||anI||2 - 92 < 02 = ern -
(92)
Using d) of Lemma 1, we thus have
2
g e (99
m ||qrnI||§ +

Om

After straightforward manipulations, one can show that, when
6., > 0.6

1 1 1 62,
”45‘52‘aﬁ<2_%

) 11 1

oz, <9m<2 + 5 2 Hm)' (95)
This completes the proof that the output power of the CM
receiver is less thaflg,,||3. From d) of Lemma 1, we have
8. < 6,,, i.e., the bias of the CM receiver is greater that of
Wiener receiver.

b) Prove by contradiction. Suppose thfk.r|l4+ < |g,,ll4-

Let
A A 1
=4. .
2 <anI )

ObViOUSIy, éc € BP(Qnméz’vQ?’ez’)7 and ||ch||4 > ||qc||4
According to (29)

92
S 12 2
Il = 5= < a2+

m

(94)

(96)

1
)%snm@

m

(97)

Therefore,

J(4.) < J(q.)

which contradicts thatg, is the CM minimum in
BP(Qnméz’vezaez’)' U

(98)
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APPENDIX E
PROOF OF THEOREM 4

(4]

From (20) and c) of Lemma 1 [5]

AE =J, <9c <q1d )) = Jin(gm)

(6]

1
:1—296+9§<6f+9—>—(1—9m) (7]
ec - ern 2 [8]
= (97) + 93(53 (99)

. : . . 9
Thus we obtain the bounds in the theorem. This relat|onsh|£)]
is also evident in Fig. 15 where

[10]
AE = E{(yc - ym)2} = E{(yc - x)Q} + E{(ym - -77)2}
To show (55), we approximate the CM receivgrby the
1 ; [11]
referenceq, = 9,,(q I). Hence, using c) of Lemma 1 or
Fig. 15 "
[12]
— 0, — 6,) 0, 2
A =EF r rnQ :(1 B = - ern .
(=) = S0 (- va)
(100) [14]
According to (37)
9 [15]
= = (14200 = 1+ gl .
=1- (1 - 97271(1 + ||anI||i))
+O(L = 67, (1+ gl l2)- (101) [
. [18]
Since [19]
1- 97271(1 + ||anI||i) = (1 + 9771)(1 - 9771) - 972n||anI||i [20]
= 2']"l(qrn) + O(']"l(qrn)) (102)
[21]
thus
0,
L — Vb =1 = 2J0(g0)] — [1— 3T [22]
N [ (@) = [1 = 3Jm(g,n)]
+ O (@) (103) 23
Therefore,
— [24]
o [25]
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