
544 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY 1999

REFERENCES

[1] J. R. Treichler, I. Fijalkow, and C. R. Johnson, Jr., “Fractionally spaced
equalizer. How long should they really be?,”IEEE Signal Processing
Mag., vol. 13, pp. 65–81, May 1996.

[2] D. N. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,”IEEE Trans. Commun.,vol.
COMM-28, pp. 1867–1875, Nov. 1980.

[3] G. J. Foschini, “Equalization without altering or detecting data,”AT&T
Tech. J.,pp. 1885–1911, Oct. 1985.

[4] Z. Ding, R. A. Kennedy, B. D. O. Anderson, and C. R. Johnson, Jr., “Ill-
convergence of godard blind equalizers in data communication systems,”
IEEE Trans. Commun.,vol. 39, pp. 1313–1327, Sept. 1991.

[5] Z. Ding, C. R. Johnson, Jr., and R. A. Kennedy, “On the (non)existence
of undesirable equilibria of godard equalizers,”IEEE Trans. Signal
Processing,vol. 40, pp. 2425–2432, Oct. 1992.

[6] Y. Li and Z. Ding, “Convergence analysis of finite length blind adaptive
equalizers,”IEEE Trans. Signal Processing,vol. 43, pp. 2120–2129,
Sept. 1995.

[7] Y. Li, K. J. R. Liu, and Z. Ding, “Length- and cost-dependent local
minima of unconstrained blind channel equalizers,”IEEE Trans. Signal
Processing,vol. 44, pp. 2726–2735, Nov. 1996.

Robustness to Fractionally-Spaced Equalizer
Length Using the Constant Modulus Criterion

T. J. Endres, B. D. O. Anderson, C. R. Johnson, Jr., and M. Green

Abstract—This correspondence studies robustness properties of the
constant modulus (CM) criterion and the constant modulus algorithm
(CMA) to the suboptimal but practical situation where the number of
fractionally spaced equalizer coefficients is less than what is needed to
remove all intersymbol interference (ISI). Hence, there necessarily exists
an error in the equalized signal. Relationships between CM and mean
squared error cost functions are established.

Index Terms—Adaptive equalizers, adaptive filters, adaptive signal
processiing, equalizers.

I. INTRODUCTION

The constant modulus (CM) criterion and its stochastic gradient
descent [the constant modulus algorithm (CMA)] were originally
proposed by Godard for QAM signals in [6] and developed indepen-
dently by Treichler and Agee for FM signals in [11]. CMA resembles
the least mean squares (LMS) algorithm in numerous ways without
relying on a training signal; therefore, it has seen broad deployment
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as well as a rich body of (emerging) literature. For example, [4] and
[9] show that fractionally spaced CMA exhibits global asymptotic
convergence to a setting that is intersymbol interference (ISI) free
under a set of conditions. This correspondence studies the robustness
properties of fractionally spaced CMA and the CM criterion when
all but one of these conditions is satisfied—the so-called length
condition. We seek to establish robustness properties for the case
where the finite number of fractionally spaced equalizer (FSE)
coefficients is less than that needed to remove all the ISI. Hence, there
necessarily exists an error in the equalized signal. When this so-called
length condition is not satisfied, we describe the deformation of the
CM error surface and relate it to the deformation of the mean square
error (MSE) surface for multilevel, real, and complex signaling. The
analysis presented here can be used with template channel models
to guide FSE length selection. Earlier versions of this work can be
found in [2] and [3]. In addition, see [10] for baud-spaced results
when the length condition is not satisfied.

The sequel is organized as follows. Section II describes the frac-
tionally spaced communication model and CM theory. Section III
describes two analysis approaches that decompose the combined
channel-equalizer into ISI-free and ISI-rich parts. Section IV uses
these two approaches and establishes relationships between CM and
MSE cost functions, and Section V contains concluding remarks. The
notation follows the convention that vectors (matrices) are designated
by lower (upper) case bold letters.(�)� denotes conjugation,(�)T

denotes transposition, and(�)H denotes Hermitian transpose.

II. FRACTIONALLY SPACED CMA

A. Fractionally Spaced Communication System Model

The communication system considered is a baseband, linear model
that samples the received signal at a fraction (1=L) of the baud inter-
val T . We further assume that carrier and baud synchronization are
accomplished independently of equalization; the channel is therefore
modeled with a time-invariant finite impulse response (FIR) whose
coefficients are contained in a length-Q T=L-spaced vectorc =
[c0 c1 � � � cQ�1]

T . Similarly, the equalizer is described by a length-
N T=L-spaced vector of coefficientsf = [f0 f1 � � � fN�1]

T .
The T -spaced combined channel-equalizerh = Cf is a length-P

vector that maps the baud-spaced source sequences(k) to the baud-
spaced equalizer outputy(k) by defining theP �N matrix C as a
block Toeplitz channel convolution matrix. For example, withL = 2

h0
h1
...

hP�1

h

=

c1 c0
c3 c2 c1 c0
...

... c3 c2
. . . c1 c0

cQ�1 cQ�2

...
...

. . . c3 c0

cQ�1 cQ�2

. . .
...

...
cQ�1 cQ�2

C

f0
f1
...

fN�1

f

(1)
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assumes that the baud instances are coincident with channel coeffi-
cientsc1; c3; � � � ; cQ�1. The matrixC is referred to as the channel
convolution matrix associated with channel vectorc.

B. Constant Modulus Criterion

The constant modulus (CM) cost function for dispersion of order
p = 2 in [6] is expressed as

JCM = Ef(jy(k)j2 � 
)2g (2)

where y(k) are the FSE output samples that are coincident with
symbol instances, and
 is the CM dispersion constant (or Godard
radius) defined as
 = Efjs(k)j4g=Efjs(k)j2g.

The constant modulus algorithm (CMA) is the stochastic, gradient
search rule that descends this cost surface by updating the FSE
coefficients (at baud instances) according to

f(k + 1) = f(k) + �(
 � jy(k)j2)y(k)r�(k) (3)

where � is a small, positive, tunable step size, andr(k) =
[r(k) r(k � 1) r(k � 2) � � � r(k � N + 1)]T is a regressor
vector of received samples. It is shown in [4] and [9] that under a
set of conditions, adapting a FSE using CMA in (3) exhibits global
asymptotic convergence to an ISI-free setting; i.e., the asymptotic,
combined channel-equalizer response is on averageh = e�, where
e� represents a pure delay and, therefore, contains a single nonzero
coefficient of unit value in its(� + 1)st position. The equalizer
is said to achieve perfect equalization. The conditions to achieve
perfect equalization include a requirement that the equalizer length
be sufficiently long, i.e., essentially matching the time span of
the channel impulse response. In this perfect case, the global
minima settings of the CM cost function equal (within a phase
shift) the Wiener or zero-forcing solutionsfy = (CH

C)�1CH
e�

that minimize the MSE cost function for all possible choices of
� (including polarity). We will use this equivalence between the
CM minima and Wiener settings to study the deformation of the
CM error surface and its relationship to the MSE surface when the
number of FSE coefficients is less than that needed to achieve perfect
equalization. Our analysis approaches decompose the combined
channel-equalizer response (for a FSE that does not satisfy the length
constraint) into a part that achieves perfect equalization and one that
contributes ISI.

III. A LGEBRAIC ANALYSIS APPROACHES

A. Channel Perturbation

The first approach taken in addressing the robustness of a CM
receiver to under modeling is to consider those channel coefficients
that are outside the time span of the FSE as channel perturbations
in order to study the CM cost incurred from these perturbation
coefficients. Letc = [c0 c1 � � � cQ�1]

T be the length-Q fractionally
sampled channel impulse response vector. Define two length-Q
vectors cm and cp such thatc = cm + cp; vector cm contains
M (M � Q) consecutive taps ofc in the same positions as they
occurred inc with zeros in the remainingQ � M positions, and
vector cp contains theQ � M taps ofc that are not incm in the
same positions as they occurred inc, with zeros in the remaining
M positions as in

cm:= 0 0 � � � 0

�zeros

c� c�+1 � � � c�+M�1 0 0 � � � 0

Q�M��zeros

T

cp:= c0 c1 � � � c��1 0 0 � � � 0

Mzeros

c�+M c�+M+1 � � � cQ�1

T

:

(4)

Further, letCm, Cp, andC be the convolution matrices associated
with vectors cm, cp, and c, respectively (see Section II-A). The
combined channel equalizer can be written as

h = Cf = Cmf

h

+Cpf

h

: (5)

By choosingf as a Wiener setting for channelcm, which achieves
perfect equalization, vectorhm = Cmf contributes no error to the
equalized signal. Vectorhp = Cpf , however, is the effect of channel
perturbations outside the FSE time span and contributes error to the
equalized signal.

B. Equalizer Truncation

A related approach to that above is to consider the effect of
discarding equalizer coefficients from the ISI-free setting. With a
few new definitions, the combined channel-equalizer response can be
decomposed into a term that achieves perfect equalization and one
that contributes ISI due to violation of the length condition, as in (5).

Let fy = [f
y
0 f

y
1 � � � f

y
N�1]

T be an ISI-free setting for channelc,
which is of sufficient length to achieve perfect equalization. Define
two length-N vectors ft and ~f such thatft = f

y + ~f ; vector ft
containsM coefficients offy in the same positions as they occurred
in f

y with zeros in the remainingN �M positions, and vector�~f

contains theN�M taps offy that are not inft in the same positions
as they occurred infy with zeros in the remainingM positions. For
example, one such partitioning is

ft := f
y
0 f

y
1 � � � f

y
M�1 0 0 � � � 0

N�M zeros

T

~f := 0 0 � � � 0

M zeros

�f
y
M � f

y
M+1 � � � � f

y
N�1

T

: (6)

The combined channel-equalizer response for the truncated equal-
izer ft can be written as

h = Cft = Cf
y

h

+ C~f

h

: (7)

The vectorhm is redefined from the approach in Section III-A as
hm = Cf

y, and this vector is still ISI-free. Similarly, vectorhp is
redefined from the previous section ashp = C~f , and it contributes
ISI to the combined channel-equalizerh.

Our goal is to determine the effect ofhp in (5) and (7) on the
CM cost function by exploiting the fact thathm in (5) and (7) are
ISI-free. Recognize that neitherf nor ft are length-constrained CM
minima for channelc. Thus,f or ft can serve as an upper bound in a
performance sense for the optimal solution of any cost function. We
will compare the CM and MSE cost functions.

IV. UNDERMODELED CM AND MSE COST FUNCTIONS

Using the approaches from Section III, the combined channel-
equalizer response for an under modeled FSE is written ash =
hm+hp, wherehm is ISI-free, andhp is not ISI-free. Since the CM
global minima are equivalent to the Wiener settings within a phase
shift, the coefficients ofhm can be written as

mi =
ej�; i = �
0; i 6= �

(8)

where� is an arbitrary phase shift due to the CM criterion’s phase
insensitivity. [Observe thaty andyej� give the same CM cost in (2).]
Similarly, definepi as the coefficients of vectorhp or pi 2 hp. Note
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that p� = 0 by construction for the channel perturbation approach
described in Section III-A, as long asN is the minimum length
that achieves perfect equalization for the length-M channel cm.
In general, however,p� 6= 0 for the equalizer truncation approach
described in Section III-B. We next describe the effect of thepi on the
CM cost function by using (8) and the decompositionhi = mi+ pi,
where hi 2 h. The change in CM cost from a perfect setting
is calculated as�JCM = JCMjh=h +h � JCMjh=e , where
JCMjh=e = (�2s)

2(�2s � �s) is the CM cost at a global, ISI-
free setting that is nonzero for multilevel signaling. The normalized
source kurtosis is�s = Efjsj4g=(�2s)

2 and is a measure of source
“compactness,” and�2s is the source variance. This analysis is written
out for PAM signaling, and the result for QAM signaling is then
presented without derivation but follows in an analogous manner to
the PAM derivation.

A. Deformation of CM Cost Function

The CM cost function for a white, equiprobable PAM source
sequence can be expanded from the form in (2) and written in terms
of the combined channel-equalizer response as (see [7] or [8])

JCMjPAM

= (�2s)
2 �2s � 2�s

P�1

i=0

h2i + �s

P�1

i=0

h4i + 3

P�1

i=0

P�1

l=0; l 6=i

h2ih
2
l :

(9)

We will use the relationhi = mi+ pi and set� = 0 in (8) to reflect
a real signal source and real signal processing at the receiver. Hence,
mi = 1 for i = � andmi = 0 8i 6= �.1

Consider three terms of (9) separately. The second central moment
can be written as

P�1

i=0

h2i =

P�1

i=0

(mi + pi)
2 = 1 + 2p� +

P�1

i=0

p2i : (10)

Similarly, for the fourth central moment

P�1

i=0

h4i = 1 + 4p� + 6p2� + 4p3� +

P�1

i=0

p4i : (11)

In addiiton, for the double sum in (9)

P�1

i=0

P�1

l=0; l6=i

h2ih
2
l =2(1 + 2p�)

P�1

i=0; i6=�

p2i +

P�1

i=0

P�1

l=0; l6=i

p2i p
2
l :

(12)

Now, collecting terms (10)–(12) and substituting into (9) to form
JCMjPAMjh=h +h , the CM cost incurred from an under mod-
eled FSE is upper bounded due to optimality by�JCMjPAM =
JCMjPAMjh=h +h � JCMjPAMjh=e , or

�JCMjPAM = 4�s(�
2
s)
2p2� + (�2s)

2(6� 2�s)

P�1

i=0; i6=�

p2i

+ p� 4�s(�
2
s)
2p2� + 12(�2s)

2

P�1

i=0; i6=�

p2i

+ �s(�
2
s)
2

P�1

i=0

p4i + 3(�2s)
2

P�1

i=0

P�1

l=0; l6=i

p2i p
2
l :

(13)

1The case where� = � (or m� = �1) is shown to be equivalent in [1].

The analogous result for QAM signaling with a complex receiver is

�JCMjQAM

= �s(�
2
s)
2(p2�e

�2j� + (p��)
2e2j� + 4jp�j2)

+

P�1

i=0; i6=�

jpij
2 (�2s)

2(4� 2�s) + (p��e
j� + p�e

�j�)

� 2�s(�
2
s)
2jp�j

2 + 4(�2s)
2

P�1

i=0; i6=�

jpij
2

+ �s(�
2
s)
2

P�1

i=0

jpij
4 + 2(�2s)

2

P�1

i=0

P�1

l=0; l6=i

jpij
2jplj

2 : (14)

Observe that (13) and (14) are grouped according to powers of
the perturbation elementspi, and each contains quadratic, cubic, and
quartic contributions. We next perform a similar analysis on the MSE
cost function and relate (13) and (14) to the MSE cost incurred due
to under modeling.

B. Relation to MSE

In order to compare the deformations of the CM and MSE cost
functions due to an under-modeled FSE, the MSE cost function for
a white, zero-mean, equiprobable source sequence is expressed as

JMSE =Efjy(k)� s(k � �)j2g

=�2s

P�1

i=0

jhij
2 � h�� � h� + 1 : (15)

Now, lettinghi = mi + pi with � = 0 in (8) implies that the MSE
cost changes from zero to

�JMSE = �2s

P�1

i=0

jpij
2: (16)

Compare (16) with (13) and (14); when thepi are small (for
example, from small equalizer coefficients, which are neglected (see
Section III-A) or from small channel perturbations outside the FSE
time span (see Section III-B), the cubic and quartic contributions of
(13) and (14) are negligible, and the quadratic terms dominate. In this
case, the CM cost incurred is approximately a scaled version of the
MSE cost incurred. Defining�g as the kurtosis of a Gaussian source
distribution (which equals 3 for real signaling and 2 for complex
signaling), this relation between the deformations in the CM and
MSE cost functions is expressed as

�JCM � 2�2s(�g � �s) ��JMSE: (17)

In this case, the MSE of the under-modeled CM receiver may be
approximately upper bounded by(2�2s(�g � �s))

�1 ��JCM, where
�JCM is calculated according to (13) or (14). Fig. 1 uses theT=2-
spaced, microwave channel model designated as channel 3 of the
SPIB database at http://spib.rice.edu with 16-QAM signaling. The
top plot is the channel impulse response magnitudes. The middle
plot corresponds to the channel perturbation approach described in
Section III-A, whereas the lower plot corresponds to the equalizer
truncation approach described in Section III-B. The solid line in these
plots is(2�2s(�g��s))

�1 ��JCM, and the dotted line is the MSE in
(16) both versus FSE length. The line of constant MSE is a threshold
for which CMA is transferred to a decision directed (DD) algorithm,
which corresponds to a symbol error rate between 10-1 and 10-2

for 16-QAM. Observe that far fewer FSE coefficients are needed to
reach this threshold than are needed for perfect equalization. For both
analysis approaches, the dashed and dotted lines become inseparable
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Fig. 1. Top plot is the channel impulse response magnitudes, middle plot is MSE of CM (solid) and MSE (dotted) versus FSE length for the analysis
approach in Section III-A, and bottom plot is the same for the approach in Section III-B.

Fig. 2. Top plot is the channel impulse response magnitudes, middle plot is the MMSE versus system delay, and bottom plot evaluates�, which is a
measure of CM and Wiener minimum proximity for all possible system delays.

when they are less than this threshold. Results for other database

channels look similar. This behavior suggests a small deformation in

both error surfaces due to under modeling so that the CM minimum

stays in a tight neighborhood of the Wiener solution. In each of

these plots, the system delay chosen is the one that minimizes the

MSE.
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C. System Delay Dependence

It is well established that the system delay� in the combined
channel-equalizer can influence MSE performance with variations of
several orders of magnitude being typical. We now study the effects
of system delay on the CM cost function by describing the relative
depth between CM local minima associated with different system
delays and approximating these local minima settings for the specific
case of BPSK signaling.

1) Relative Depth of CM Local Minima:For the equalizer trunca-
tion approach in Section III-B, the coefficientp� is, in general,
nonzero. Notice that (13) and (14) are grouped according to the
power of thepi and that the cubic contributions are proportional to
p� . This proportionality can be interpreted as indicating the relative
depth between CM local minima. For example, when thepi are, in
general, small and the quadratic contributions are similar for different
system delays, it is the differences in the cubic contributions, which
are proportional top�, that determine the relative CM and MSE costs
for these different delays. This observation may influence equalizer
initialization strategies that attempt to start adaptation in the region
of convergence of a desirable local minima.

2) Proximity of CM and MSE Local Minima as a Function of
�: Since the CM cost function depends on the fourth-order moment
of the equalizer vector, in general, there does not exist a closed-form
expression for the CM local minima settings. By approximating the
CM cost function with a second-order Taylor series expanded about
the length-constrained Wiener settings, a closed-form estimate of the
CM local minima can be found. This estimate is of the form of
the original length-constrained Wiener setting plus a “perturbation”
vector. We use this result to infer performance of the CM local
minima for the various system delays.

For noiseless BPSK signaling, the gradient vector of the true CM
cost function is the length-M vector whoseith element is@JCM=@fi
and is calculated in [8] asrf (JCM) = CT�h, where� is theP�P
matrix with main diagonal elements�i = (12 P�1

l=0
h2l � 4� 8h2i )

and zeros elsewhere. The Hessian matrix is theM � M matrix
whosei; jth element is@2JCM=@fi@fj and is calculated in [8] as
Hf (JCM) = CT	C, where	 = (12 P�1

l=0
h2l � 4)IP+24hhT �

24diag(hhT ), with diag(�) extracting the main diagonal from its
matrix argument.

Let f�� be the length-M Wiener solution for channelc with system
delay �. Note thatCf�� is not ISI-free sinceM does not satisfy
the length condition. The second-order Taylor series expanded about
eachf�� has a unique minimum that serves as an estimate to the true
CM local minimum associated with system delay�. These estimates
have the form̂fCM = f�� + p, wherep is the “perturbation vector”
p = �[Hf (JCM)jf ]�1 � rf (JCM)jf . This perturbation vector can
be used to gauge the proximity of CM and Wiener local minima.
For example,� = pHp is evaluated for all possible system delays
on microwave channel 3 of the SPIB database in Fig. 2 for aT=2-
spaced equalizer withM = 128 coefficients. The top plot shows
the magnitude of the channel impulse response coefficients, the
middle plot shows the minimum MSE (MMSE)—that associated with
f�� —versus system delay, and the bottom plot shows� versus system
delay. Results for other database channels look similar. This figure
suggests that there exist CM local minima in closer proximity to the
better Wiener settings than the worse ones. It also suggests that these
better CM local minima exist within a small neighborhood of the
better Wiener settings.

V. CONCLUSION

This correspondence has examined the robustness properties of the
fractionally spaced CM criterion to the practical situation where the

equalizer length is shorter than that needed to remove all the ISI.
Relationships between CM and MSE receivers have been established
and evaluated using empirically derived channel models. Our results
suggest that there exist CM local minima in close proximity to
those MSE local minima that correspond to better-performing system
delays. The analysis presented here can be evaluated with template
channel models and used in establishing design guidelines for FSE
length selection. Our results can be combined with [5], which
approximates stochastic jitter of CMA to demonstrate that a longer
FSE does not necessarily outperform a shorter FSE (see [3]).
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