
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, VOL. 12, 135–155 (1998)
Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)

CMA FRACTIONALLY SPACED EQUALIZERS: STATIONARY
POINTS AND STABILITY UNDER IID AND TEMPORALLY

CORRELATED SOURCES

JAMES P. LEBLANC1;∗, INBAR FIJALKOW2 AND C. RICHARD JOHNSON, JR. 3

1 Klipsch School of ECE, New Mexico State University, Las Cruces, NM, U.S.A.
2 ENSEA=ETIS, 6 av. du Ponceau, 95014 Cergy-Pontoise Cdx, France
3 Electrical Engineering Department, Cornell Univ. Ithaca, NY, U.S.A.

SUMMARY

A common assumption in blind equalization schemes using the Constant Modulus Algorithm (CMA) is that
the source sequence is an independent identically distributed (i.i.d.) sequence with equiprobable symbols.
Much of the analysis demonstrating the global convergence of CMA in a noiseless channel to an open-
eye setting uses this assumption. This work investigates the e�ect of source statistics (distributions and
correlations) on the location of CMA stationary points in the fractionally sampled equalizer case under the
conditions of equalizability. The work identi�es the stationary points as the solution set of a system of
multivariate polynomial equations with monomial coe�cients given by the source moments. ? 1998 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In a digital communication setting, the transmitted signal is often distorted through a dispersive
channel which introduces intersymbol interference (ISI). In a high-SNR situation, where ISI is
the limiting factor more so than channel noise or interference, a linear equalizer may be used to
remove ISI. Successful source estimation from the equalizer output is accomplished by decision
device (e.g. a quantizer) if enough of the ISI is removed. A condition on the combined channel–
equalizer resulting in source recovery is known as an ‘open-eye’ condition. Due to the fact that
the (unknown) channel impulse response may vary over time, an adaptive equalization scheme,
with its ability to track a time-varying system is considered.
A standard adaptive �ltering scheme (e.g. LMS) adjusts the tap weights based on an error

signal which is the di�erence between the �lter (equalizer) output and the desired output (e.g.
the transmitted sequence). To di�erentiate our problem from those that have the desired output
available at least intermittently (also known as a training sequence), the term blind is used to denote
the absence of a known transmitted sequence. The lack of need for such a training signal is an
advantage of blind equalization schemes since the use of training signals may become cumbersome
in broadcast mode and does not make e�cient use of available bandwidth.
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A variety of blind equalization algorithms may be used during the initial phase of adaptive
equalization. After any of these have converged to appropriately low ISI equalization settings (i.e.
open-eye), the equalization scheme may be switched to a speci�c blind algorithm known as the
‘decision-directed’ approach to eke out maximum performance of the equalizer.1 In such schemes,
it is crucial that the blind equalizers have convergent behaviour to low ISI channel–equalizer
settings. Hence, the study of the convergent behaviour of blind equalization algorithms has been
the focus of much research. An excellent tutorial on the subject of adaptive equalization in general
may be found in Reference 2.
We focus on one particular, commonly used, blind equalization method, considering an adaptive

linear feedforward equalizer with tap weights updated by the Constant Modulus Algorithm (CMA)3

or Godard4 which uses a speci�c memoryless polynomial error function for parameter update.
Although we focus speci�cally on CMA in this work, it is the polynomial nature of the error
function that allows application of the described methods. Thus, the formulation and methodology
presented here are not limited strictly to CMA, but may be applicable to any Bussgang-style
scheme using a memoryless, polynomial error function.
To date, in�nitely long baud rate equalizers adapted by CMA have been shown to be globally

convergent to a perfect equalization setting for an independent source sequence with equiprobable
symbols.5 However, to re
ect the situation in which many equalizers are actually used, more
recent work has regarded fractionally spaced equalizers (FSEs) in which the received waveform
is sampled at a rate higher than the baud rate. FSEs have been shown to be able to ‘perfectly
equalize’ moving average (MA) channels provided certain conditions on �nite length moving
average equalizer and channel are met.7 Moreover, lacking channel noise and assuming a source
drawn from an independent and identically distributed (i.i.d.) and non-Gaussian sequence then
fractionally spaced CMA is known to be globally convergent to a perfect equalizaion setting.8; 9

To our knowledge little published work10–15 has appeared addressing how critical the source
sequence assumption is for the proper behaviour of blind equalization schemes. There are some
source sequence estimation methods (hidden Markov models, direct source sequence estimation,
Viterbi-like methods) which are possibly analysable and applicable to source sequences which are
correlated. However, as they may be computationally formidable, they are considered to be in
a di�erent class of algorithms than the one studied herein. Also, some of these methods require
a priori knowledge of the source statistics which is not necessarily available. We choose to address
the e�ect of source statistics on the popular and computationally simple adaptive blind equalization
algorithm, CMA. Source statistics are considered with respect to the source distribution from which
source elements are drawn, as well as their temporal correlation. The investigation on distributional
aspects is relevent to constellation shaping (shaping gain), while temporally correlated sources may
appear in any system lacking data scramblers and=or source encoders. Several situations in which
CMA fails to converge are documented in Reference 14.

2. PROBLEM SETTING

Fractionally spaced equalization

Much of the analytic work on blind equalization algorithms considered the baud spaced equal-
ization problem. This was despite the fact that many equalizers built today use a technique known
as ‘fractional sampling’.16; 17

Consider the adaptive fractionally spaced equalizer in the system block diagram in Figure 1.
Here the path from discrete source sequence s(k) with baud spacing of T seconds to the received

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.
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CMA FRACTIONALLY SPACED EQUALIZERS 137

Figure 1. Fractionally-spaced adaptive equalization block diagram

Figure 2. Associated sub-channel model

(analog) signal r(t) is modelled as the cascade of a discrete-to-continuous device (D=A) and
a continuous-time channel impulse response c(t). The received waveform is then sampled at in-
tervals of T=L seconds (where L is a positive integer) or sampled at rate T using L sensors.
This sampled sequence is then �ltered through a discrete-time equalizer whose output is then
downsampled by L to produce the baud-space output sequence y(k).
The fractionally spaced system may be alternatively described by the sub-channel model in

Figure 2, in which all sub-blocks are considered as baud-spaced discrete-time systems. This formu-
lation eases introduction of the aforementioned ‘equalizability’ conditions allowing perfect equaliza-
tion. With the time-span of the equalizer exceeding the time-span of the channel, and sub-channels
(as polynomials in z) having no common roots, then there exists an equalizer parametrization ca-
pable of setting the combined channel–equalizer system to a pure delay with no intersymbol
interference.7 More speci�cally related to CMA equalizers are the additional conditions that the
i.i.d. source sequence be drawn from an equiprobable alphabet and lacking channel noise. Then the
fractional equalizer adapted under the CMA algorithm is globally convergent to perfect equalization
setting (no ISI).8; 9

CMA

CMA is considered to be the most widely used and tested blind equalization algorithm (Proakis
and Nikias in Reference 18). Due to CMA’s popularity, it is chosen as the algorithm for investiga-
tion. The blind adaptive equalization algorithm which is the focus of this work was independently
developed by Godard4 and Treichler3 and is known as the Godard Algorithm, or Constant Modulus
Algorithm (CMA).
The CMA cost function is de�ned as

J = 1
4E{(|y|2 − 
)2} (1)

where 
 is a positive real constant. Di�erentiating J with respect to y yields the error function as

	=y(|y|2 − 
) (2)

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)
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138 J. P. LEBLANC, I. FIJALKOW AND C. R. JOHNSON, JR.

Figure 3. Example A

The update law of the equalizer impulse response (D) then follows as

D(k + 1)=D(k) + �	(k)R(k) (3)

where R(k) is the vector containing samples of the received signal (i.e. the equalizer state given
by R(k)= [ rk rk−1 : : : rk−n ]).
In order to characterize the performance of a linear equalizer, a quantitative measure of ISI is

de�ned as

’=
∑

i |hi| −maxi |hi|
maxi |hi| (4)

also known as the peak distortion.19 This is a measure of the maximum intersymbol interference
present. For an m-PAM source, when ’¡1=(m− 1) then the channel–equalizer combination is
considered to be ‘open-eye’, and a decision device will successfully reconstruct the source in the
absence of noise.

Numerical Examples of CMA

Examples A, B, and C demonstrate source statistics e�ects on CMA, these examples share the
common parameters: over sampling factor L=2, adaptive stepsize �=8× 10−5, 5-tap (half-baud
spaced) channel, 5-tap (half baud spaced) equalizer, 8-PAM unit variance alphabet, (A= {±�;
±3�;±5�;±7�} with �=2=√84), channel taps, c= [−0·57 1·00 −0·28 −0·82 −0·50 ]T,
equalizer initialization D(0)= [ 0 0 1 0 0 ]T.

Example A (Proper CMA behaviour). The source sequence elements s(k) are independently
drawn from the alphabet with equal probability. Figure 3 plots the equalizer output y(k). Initially
the equalizer output is smeared over the range from −2 to 2. As tap adaptation takes place the
smearing is reduced, appearing �nally as very tight clusters about the true alphabet member values.
Here, the equalizer has reduced ISI to allow source sequence recovery by the use of a quantizer
(nearest-neighbour decision device). Note also from Figure 3, ’ approaches zero indicating that
only one combined channel–equalizer (H) tap is appreciably non-zero.

Example B (Source distribution). Here, all parameters are the same as in Example A, except that
the probabilities of occurrence of alphabet members are unequal; p(±�)=0·75, p(±3�)=0·05,

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.
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CMA FRACTIONALLY SPACED EQUALIZERS 139

Figure 4. Example B

Figure 5. Example C

p(±5�)=0·05, p(±7�)=0·15 (yielding a leptokurtic source—a term to be de�ned later).
Figure 4 displays the results below which demonstrate dismal performance in which CMA yields
ISI enhancement.
A detailed analysis of the situation is presented later with a discussion on more subtle e�ects

of the source distribution which, while yielding acceptable ISI reduction, reduce error surface
curvature resulting in slower equalizer convergence rates. The implication of this will be recognized
as a tradeo� between source constellation shaping gain and equalizer convergence rates.

Example C (Source correlation). Consider a temporally correlated source sequence generated
by a Markov model (see Appendix II) under similar parameters as in Examples A and B. The
deleterious e�ects are shown in Figure 5 wherein the equalizer output never coalesces into bands
about the alphabet members, demonstrating signi�cant ISI.
Although such simulations of adaptive systems often provide insight to the convergence proper-

ties of an algorithm, it is di�cult to draw conclusions about the asymptotic convergent parametriza-
tions from such limited iteration simulations. However, such poorly performing settings will be
shown to exemplify true CMA minima under correlated sources. A method which may be used
to �nd all stationary points of the CMA error surface given speci�c correlation statistics is in-
troduced. Stationary point computations are performed for two models of temporally correlated
sources (e.g. periodic and Markov sources).

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)
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140 J. P. LEBLANC, I. FIJALKOW AND C. R. JOHNSON, JR.

Multivariate polynomial formulation

We speci�cally address the use of fractionally spaced CMA under the equalizability conditions.
This allows analysis of CMA to take place in the combined channel–equalizer space (H -space)
rather than strictly in the equalizer tap space (D-space). Thus, our results are general to any
channel (meeting equalizability).
Although CMA is often used for two-dimensional signal constellations (i.e. complex alphabet),

we limit our discussion to situations using real alphabets (e.g. M -PAM—Pulse Amplitude Mod-
ulation with M discrete amplitude values). The motivation behind this limitation is to maintain
di�erentiability of the cost function and keep the notation simple. The CMA cost as a function of
equalizer output y with a real alphabet becomes

J = 1
4E{(y2(k)− 
)2} (5)

where 
=E{a4}=E{a2} for a∈{A} and A is a real alphabet. With the combined channel–
equalizer tap weights de�ned as H = [ h0 : : : hn ]

T and S(k)= [ s(k) : : : s(k − n) ]T as the
column vector containing source sequence elements, we have y(k)=HTS(k). The combined
channel–equalizer response, H (also assumed real), may be written as the product of the
L-multichannel convolution matrix C and the equalizer tap weight vector D as H =CTD
where

C=



c(0)0 : : : c(0)n
...

...
c(L−1)0 : : : c(L−1)n

. . .
. . .

c(0)0 : : : c(0)n
...

...
c(L−1)0 : : : c(L−1)n


(6)

and [ c(i)0 c(i)1 : : : c(i)n ] is the baud spaced impulse response of sub-channel i. The CMA cost
function in terms of the channel and equalizer parametrizations is

J = 1
4E{(((CTD)TS(k))2 − 
)2} (7)

Invoking the assumptions of equalizability, yields the matrix C to be full rank,20 meaning that all
of H -space is reachable by choice of equalizer D. The error surface stationary points are given
by @J =@D= 0 where

@J
@D

= CE{((HTS(k))3 − 
HTS(k))S(k)}: (8)

With C full column rank then @J =@D= 0 necessarily implies

E{((HTS(k))3 − 
HTS(k))S(k)} = 0: (9)

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.
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CMA FRACTIONALLY SPACED EQUALIZERS 141

There are a variety of reasons to investigate the error surface in terms of H space. First, it is
precisely the combined channel–equalizer parametrization which determines the equalizer output.
In turn, any meaningful performance metric must be considered in terms of the equalizer output
(e.g. bit error rate, ISI level). Also, in certain situations there may be a variety of di�erent equalizer
parametrizations that yield identical combined channel–equalizer responses. In Reference 20 it is
noted that in cases where the equalizer time support su�ciently exceeds the channel time support,
a dense subspace in D corresponds to a point in H space. As such, it is di�cult to discuss
stationary points in equalizer space. Expanding (9) for clarity we have

E

((s(k)h0 + · · ·+ s(k − n)hn)3 − 
(s(k)h0 + · · ·+ s(k − n)hn))
 s(k)

...
s(k − n)

= 0
Taking the expectation operator with respect to the source regressor elements si leads to n+1 mul-
tivariate polynomial equations in H space with monomials having coe�cients given by the fourth
and second moments of the source signal. Denote these moments of a symmetrically distributed
source as

R
i
j
k
‘

=E{s(m− i)s(m− j)s(m− k)s(m− ‘)}; R
i

j =E{s(m− i)s(m− j)}: (10)

We are assuming a symmetric distribution wherein E{s}=E{s3}=0 but not temporal indepen-
dance as in References 8, 9 and 21. Since we are considering correlations of stationary processes,
keeping all four (two) lag indices for the fourth (second) moments is unnecessary, but they are
kept since they aid in showing the structure. The resulting system of equations F may then be
written as

F(H)=


f0(H)
...

fn(H)

=

∑

iR
0
i
i
i
h3i +

∑
i 6= jR

0
i
i
j
h2i hj +

∑
i 6= j 6= k R

0
i
j
k

hihjhk − 

∑

iR
0
i hi

...∑
iR

n
i
i
i
h3i + 3

∑
i 6= jR

n
i
i
j
h2i hj +

∑
i 6=j 6=k R

n
i
j
k

hihjhk − 

∑

iR
n
i hi

 (11)

Values of H for which F(H)= 0 de�ne the CMA stationary points. For an n+1 tap system, this
yields a set of n+ 1 equations in the n+ 1 unknowns (hm, 06m6n).
Each of the stationary points (solutions of F(H)) may be categorized as a saddle, local mini-

mum, or local maximum of the error surface depending on the eigenvalues of the Hessian matrix
evaluated at the stationary point. Calculations similar to those in (9) verify that the sign of the
eigenvalues of the cost function Hessians with respect to D and H agree. Denote the error surface
Hessian by the matrix M, with M(i; j)= @fi=@hj. For a local minima (maxima), M is posi-
tive (negative) de�nite. M having both positive and negative eigenvalues denotes a saddle point.
In cases where M is singular, the stationary points are degenerate (i.e. a dense neighborhood
satis�es @J=@H = 0).

3. I.I.D. SOURCE CASE: DISTRIBUTIONAL ASPECTS

In this section, we assume that source symbols are drawn independently from some distribution
(i.i.d.). The system of equations de�ning the stationary points is solved and classi�cation of the
stationary points by the number of non-zero elements in the tap vector is presented. Categorization

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)

 10991115, 1998, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1099-1115(199803)12:2<
135::A

ID
-A

C
S484>

3.0.C
O

;2-Z
 by C

ornell U
niversity L

ibrary, W
iley O

nline L
ibrary on [02/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



142 J. P. LEBLANC, I. FIJALKOW AND C. R. JOHNSON, JR.

of stationary points into minima, saddles, and maxima is shown to be dependent on class mem-
bership and the source kurtosis (quantities to be introduced). Analytic results are meshed with
computer simulations describing the disappearance of error surface curvature (and related equalizer
convergence rate issues) as the source kurtosis approaches that of a Gaussian distribution (such
as occurs with constellation shaping).
A concept that appears repeatedly in the stability analysis of the CMA stationary points having

a profound e�ect on the error surface is the dimensionless quantity known as kurtosis.∗ Denote
the central moments by Mn=E{(x−�)n} where �=E{x}. Then kurtosis is de�ned to be the ratio,
�X =M4=M22. The minimum possible kurtosis value is �=1 which corresponds to a symmetric
equally probable distribution of only two values (i.e. BPSK source). The continuous uniform
distribution has �=1·8. The continuous Gaussian distribution has �=3 and is regarded as forming
the boundary between platykurtic (low kurtosis, �S¡3) distributions and leptokurtic (high kurtosis,
�S¿3) distributions.
The importance of kurtosis in the deconvolution problem has appeared in References 23 and

24, and its relation to the CMA cost function can be seen by rewriting the CMA cost function as
J = 1

4((�y−1)E{y2}2 +(E{y2}−
)2). For both platykurtic and leptokurtic sources the CMA error
surface minima coincide with minimum kurtosis of equalizer output. It will be shown that in the
platykurtic source case kurtosis reduction realizes ISI reduction, while for leptokurtic sources this
yields ISI enhancement.

Stationary points

Note that for the i.i.d. source all the correlation coe�cients of (11) are zero, except R
i
i
i
i
=M4,

R
i
i
j
j
=M22 for i 6= j and R i

i =M2. Then each of the n+1 equations of F can be rewritten as fm, for

06m6n,

fm = M
2
2hm

(
�Sh2m + 3

∑
i 6=m
h2i − �S

)
(12)

The CMA stationary points are those values of H solving each fm=0. Any hm=0 trivially solves
fm=0. So, only fm for which hm 6=0 need be further considered. For any hm 6=0 we have the
condition

�Sh2m + 3
∑
i 6=m
h2i − �S = 0 (13)

When �S = 3, all the fm equations are the same, our system is degenerate and we need only satisfy∑
i h
2
i =1. In this case, the stationary points in H are not discrete but a dense set corresponding

to the unit sphere. Thus, for �S = 3 CMA adaptation will converge to and then wander about this
sphere.
Alternatively, when �S 6=3 each non-zero hm in a solution set must solve each equation fm,

we then have that the value of h2m for all non-zero hm in this solution must be the same

∗ The reader is cautioned that some texts de�ne kurtosis a bit di�erently as �= (M4=M22) − 3. We shall however follow
the de�nition above as found in Reference 22.

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.
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CMA FRACTIONALLY SPACED EQUALIZERS 143

(i.e. all hm have the same magnitude). This is a generalization of a similar result in Reference 25
pertaining to a BPSK source with equal probabilities.
For the i.i.d. source case, the value of each non-zero hm will depend on the total number of

non-zero elements of H for any F(H)= 0. A useful construct is to divide the set of solutions of
(11) into classes. De�ne the class,

CN = {H : F(H)= 0 where H has exactly N non-zero elements}: (14)

Denote the size of the class (i.e. the number of its members) by |CN |.
Of the total n+ 1 elements of H , since each of its N non-zero elements may have one of two

values and there are
(n+1
N

)
ways to group N elements we have, |CN |=2N

(n+1
N

)
. The total number

of CMA stationary points under i.i.d. source is 3n+1.
Class membership de�nes the magnitude of the non-zero taps, for H ∈CN (13) becomes

�Sh2m + 3(N − 1)h2i − �S = 0 ⇒ hm=

{
0;

±
√

�S
�S−3+3N ;

06m6n (15)

Categorization of solutions by Hessian

The Hessian evaluated at stationary point categorizes each as a local minimum (M is posi-
tive de�nite), local maximum (M is negative de�nite), or a saddle point (M is non-de�nite).
The diagonal elements of the Hessian are

M(m;m)=
@fm
@hm

= M
2
2

(
3�Sh2m + 3

∑
i 6=m
h2i − �S

)
(16)

while the o�-diagonal elements (m 6= n) can be written as,

M(m; n)=
@fm
@hn

= 6M22hnhm: (17)

Evaluating these expressions at a stationary point for the case H ∈CN we need to consider the
three cases M(m;m) with hm 6=0, M(m;m) with hm=0, and M(n; m) with m 6= n.
All the elements of M at a stationary point in CN for N¿1 contain a common factor of

M22(�S=(�S − 3 + 3N )) which may be factored out to simplify notation. Introduce M̂ as

M = M
2
2

(
�S

�S − 3 + 3N
)
M̂ (18)

Since the common factor is strictly positive for N¿1, the signs of the eigenvalues of M and M̂
agree for H ∈CN with N¿1. The diagonal elements M̂ may be described by

M̂(m;m) =
{
3− �S; hm=0
2�S; hm 6=0 (19)

and o�-diagonal terms are

M̂(m; n) =


6; hm= hn 6=0
−6; hm=−hn 6=0
0; else

(20)

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)
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144 J. P. LEBLANC, I. FIJALKOW AND C. R. JOHNSON, JR.

Table I. Summary of stationary point analysis

Class |Ci| �s¡3 �s¿3 Comment

No. pos. No. neg. Type No. pos. No. neg. Type
eigvals eigvals eigvals eigvals

H ∈C0 1 0 n+ 1 max 0 n+ 1 max Origin
H ∈C1 2(n+ 1) n+ 1 0 min 1 n saddle Perfect eq.
H ∈CN 2N

(
n+1
N

)
n− N N + 1 saddle N + 1 n− N saddle For 26N6n

H ∈Cn+1 2n+1 1 n saddle n+ 1 0 min Max ISI

Since the eigenvalues of M̂ are merely scaled versions of the eigenvalues of M we investigate
the eigenvalues of M̂ to ascertain categorization of a stationary point. Such categorization is based
upon class membership.
H ∈C0: For H ∈C0 (i.e. the origin), we have M=−�SI, where I is the identity matrix. Since

�S is strictly positive, M is negative de�nite and H = 0 is a local maximum.
H ∈C1: In the case of a single non-zero tap element, M̂ is a diagonal matrix with elements

given by (19). The diagonal entry corresponding to the single non-zero hm is 2�S (which is
strictly positive). The remaining diagonal entries have value 3−�S. The sign of these entries (and
hence, the corresponding eigenvalues) are determined by the kurtosis of the source signal, �S. The
cases are:

�S¡3: For platykurtic source distributions, all diagonal entries of M̂ are positive and
these channel–equalizer parametrizations are stable (i.e. local minima).
�S¿3: For leptokurtic source distributions, there is the one positive diagonal entry
of 2�S and all remaining diagonal entries of M̂ are 3 − �S which are negative and
these parametrizations are saddle points (i.e. 1 positive eigenvalue, rest negative).

H ∈CN ; 26N6n: Stationary points in this class are found to be saddle points, regardless of
the distribution of the i.i.d. source. To demonstrate this, we will �rst de�ne a few terms and
note some properties of M̂. De�ne the ordered index lists, I= {i : hi 6=0} and O= {i : hi=0}
Concatenating these ordered lists, we form IO. That is, IO lists the ascending indices of the
non-zero hm followed by the ascending indices of the zero valued hm. To evaluate the eigenvalues
of M̂ we make use of matrix transformations, see Appendix I. The �rst term 2�S + 6(N − 1) is
always positive and can be shown to correspond to the radial direction eigenvector. The signs of
the remaining eigenvalues will depend on the value of �S. For

�S¡3: Here, 2�S−6¡0. So, this block has one positive eigenvalue, and the remaining
N − 1 eigenvalues being negative.
�S¿3: Here, the sub-block has all N eigenvalues being positive.

In any case, whenever �S 6=3, M̂ has mixed eigenvalues with the diagonal sub-matrix and circulant
sub-matrix always containing eigenvalues of opposing signs.
H ∈Cn+1: In the case of all non-zero elements of H we have the entire matrix M̂ being circulant,

with eigenvalues of 2�S + 6(N − 1) and 2�S − 6. For �S¡3, this corresponds to H being a saddle
point. However, for �S¿3, we have that all H in this class are minima (with maximal ISI).
A summary of the stationary point stability analysis is given in Table I for H ∈Rn+1: For

i.i.d. platykurtic sources (�S¡3) the only stable stationary points are solutions H ∈C1. As any

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.
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CMA FRACTIONALLY SPACED EQUALIZERS 145

Figure 6. Eye-opening time vs. kurtosis

H ∈C1 is a perfect equalization setting we have that CMA is globally convergent to a perfect
equalization setting in this case, duplicating the results of References 8 and 9. However, with
leptokurtic sources (�S¿3), CMA is globally convergent to settings in which all taps have equal,
non-zero values. Such parametrizations correspond to maximal ISI settings, providing disastrous
equalization performance.
A third alternative is the case �S = 3. A Gaussian source is known to be a source which causes

ill-behaviour of CMA and other blind equalization schemes6 and we note that a Gaussian source
distribution has �S = 3. It is shown that in the case of �S = 3, CMA will adapt to any parametrization
on the sphere which, in general, does not provide adequate equalization. The class of sources for
which this behaviour occurs is much broader than the oft-cited Gaussian class. (Strictly, in a digital
communication setting where the source is drawn from a �nite alphabet it is obvious that a truly
Gaussianly distributed source is not possible.) There are many other distributions which may attain
�S = 3 (e.g. let si=±1 with probability p(±1)= 79−√

97
90 , si=±4 with probability p(±4)= 11+

√
97

90 )
which have this extreme e�ect on CMA. We propose a name ‘meso-kurtic’ to denote them.

Error surface curvature and convergence

Global convergence to perfect equalization settings for platykurtic sources is shown through
the above stability analysis. However, a potentially disturbing quality appears. A vast number of
saddle points (of the order of 3n+1) might lead to slow convergence. This concern is heightened
in cases where the source kurtosis increases towards 3. From (26) and (27) it is seen that as �S
approaches 3, all but one (the one in the radial direction) of the eigenvalues of all stationary points
approaches zero. The neighbourhood of all saddle points becomes ‘
atter’, warning of prolonged
convergence times. This should be especially noted in cases where CMA equalizers are used in
conjunction with constellation shaping which increases the ‘Gaussianity’ of the source (e.g. the v.34
modem standard). In Reference 26 it is shown that optimal shaping for a large two-dimensional
constellation is close to a Gaussian distribution. So, improved source shaping may hinder blind
equalization ability and the tradeo� should be considered in the design of a communication system
(see Reference 27).
In order to view the e�ect of kurtosis on convergence time another example is introduced.

The equalizer is initialized so that the combined channel–equalizer setting has maximal ISI
(i.e. H = [1 1 1 1 1]T) and we note the number of iterations necessary to achieve an open-eye
setting. Using the same channel and stepsize � as in earlier numerical examples Figure 6 re
ects
the dependence of convergence time on source kurtosis and highlights the necessity of avoiding
a source kurtosis too close to �S = 3. Thus, we have an apparent tradeo� between source shaping
gains (driving �S → 3) and blind equalizer convergence (preferring �S away from value 3).

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)
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146 J. P. LEBLANC, I. FIJALKOW AND C. R. JOHNSON, JR.

4. TOPOLOGICAL VIEWPOINT

In this section we look at the characteristics of the CMA error surface which are invariant to source
statistics. We recognize topology as the study of deformational invariants, and view correlation
as inducing a deformation of the i.i.d. error surface. This section serves as a bridge between the
distributional aspects of i.i.d. source considered in the previous section and temporally correlated
sources to be discussed in following section.


 Non-e�ect

In the case of an unknown constellation or source distribution a priori knowledge of the true
value of 
 is not possible, raising concern about proper selection of 
’s value. However, the
choice of 
’s value is somewhat unimportant, in the sense that it only introduces a scaling e�ect
on the achieved system parametrization (and hence equalizer output y). The ability to reduce ISI
is una�ected. Consider the e�ect of di�ering values of 
 on the cost function. Here, the original
CMA cost function, J (H) from (5) is compared with a cost function using a version of 
 which
has been scaled by a positive scalar �, J�(H)= 1

4E{((HTS)2−�
)2}. Notice that, J�(H)= �2J ( H√� ):
Thus, the value of 
 a�ects the error surface only by a scaling of the range and a dilation in the
domain. No qualities of the error surface (e.g. number of minima, maxima, etc.) are changed. The
‘shape’ remains the same. Hence, the equalizer output y is merely scaled, ISI levels are una�ected.


 matching manifold is n-sphere

There exists a closed, bounded manifold of the error surface to which CMA converges regardless
of initialization. In a general sense, the algorithm’s convergent behaviour can be described by
characterization of this manifold which will be denoted as M
. To develop this concept, note that
along any ray extending from the origin in H space, there is one and only one minimum. This has
been demonstrated for i.i.d. sources with equal probabilities25; 28 but is extended here to include
any distribution and temporal source correlation.
Consider the ray given by � �H for some �H ∈Rn+1 with �¿0. Let �y be the output resulting

from �H (i.e. �y= �H TS), and consider the output y resulting from any parametrization along the ray
(i.e. y= � �y= � �HS, �¿0). The CMA error surface in terms of � may be written, J (�)=
1=4E{((� �y)2 − 
)2}: Di�erentiating to �nd the extrema along this ray yields, @J (�)=@�= �3E{ �y4}
− 
�E{ �y2}: There are only two solutions, �= {0;+√
E{ �y2}=E{ �y4}} with corresponding second
derivative values of which are positive and negative, respectively. Hence, the origin is a local
maximum, and the other stationary point is the only minimum along that ray, in agreement with
References 25 and 28. Furthermore, it can be shown the output at any radial minimum has the
property that its ratio of fourth to second moments matches 
. The union of all such radial minima
is the manifold of interest and denoted as the ‘
 manifold’, or M
. This manifold is topologi-
cally equivalent to the sphere Sn. The concept is that all stationary points necessarily lie on this
manifold, since M
 is composed of all points having zero gradient in the radial direction, and
stationary points must have zero gradient in all directions.
Benveniste6 uses the notion of a manifold in his analysis of the Sato (and extensions thereof )

under i.i.d. source. The manifold under consideration is the unit sphere. Stationary points of the
vector �eld restricted to this unit sphere are identi�ed. In such a formulation however, these are
not stationary points of the algorithm itself, as there may exist a radial component orthogonal to
the manifold. In contrast, herein we use the 
 manifold which, while being topologically equivalent

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.
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CMA FRACTIONALLY SPACED EQUALIZERS 147

to the sphere has the property that stationary points on this manifold are indeed stationary points
of the CMA algorithm.
An important point is that the radial gradient is seen to be positive whenever E{y4}=E{y2}¡
,

and negative whenever E{y4}=E{y2}¿
. Then, on average settings residing within the topological
sphere have trajectories which increase in norm to approach M
, and vice versa for settings outside
this manifold. The convergence to the 
-matching manifold may be quite quick due to the quartic
nature of the error surface in the radial direction. After reaching the neighborhood of the manifold
it remains there and convergence is governed by the vector �eld existing on the manifold. It is
this vector �eld that may be greatly in
uenced by source distributions and temporal correlation.
In Reference 25 a presentation of the expanding=contracting radius is found for binary, zero-mean
i.i.d. source. The results here hold for arbitrary distributions and correlations.

Symmetries

Since every monomial in F(H) has an odd total degree, we have F(H)= 0 ⇔ F(−H)= 0.
This is due to the sign ambiguity caused by the y2 term in the cost function. However, the point
is meant to be extended here beyond just a property at the stationary points. The property that
F(H)=−F(H) is true everywhere in H space. One manifestation of this is that the error surface
will always have an even number of minima, an even number of maxima, and an even number
of saddle points (discounting the origin).

Connection to CMA e�ort: 
 manifold

It has been pointed out that all CMA stationary points lie on the 
 manifold. The vector �eld on
the manifold will govern the asymptotic behaviour. In this manner, we consider only this manifold
and view the CMA error surface as a vector �eld on this manifold.
Note that on M
, the CMA gradient has no radial component (by de�nition of M
), and hence

the CMA gradient is tangent to M
 at all points H ∈M
. Then, the CMA gradient suits the
de�nition of a vector �eld on a manifold topologically equivalent to a sphere.
In a vector �eld, there are large regions which may be deemed ‘uninteresting’. That is, un-

interesting in the sense that they have little to do with the asymptotic behaviour of the gradient
algorithm. For points not near a critical point, the vector �eld around x is nearly constant. Contrar-
ily, the interesting parts of the vector �eld are those in the neighbourhood of a critical point. For
this reason we focus on describing the vector �eld in the neighbourhood of critical points. Near
critical points, a variety of behaviours are possible. CMA, being a gradient system (i.e. curl-free),
precludes some of these, leaving the only critical points to be saddles, minima (sinks), or maxima
(sources).
The manifold places certain restrictions on the relative number of minima, maxima, and saddles.

A form of this type of restriction is often �rst seen in introductory graph theory, taking the form
of ‘Euler’s formula’ which relates the number of vertices, edges and faces of a polytope in three
space. Morse theory29 extends this concepts and identi�es the constraints between critical points
of vector �elds on manifolds.

Generalized results for IID sources

By applying similar stationary point Hessian analysis, for any i.i.d. source where �S 6= 3, we have
that the radial direction is always attractive, and it is always the strongest attractive direction.

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)
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148 J. P. LEBLANC, I. FIJALKOW AND C. R. JOHNSON, JR.

For any platykurtic i.i.d. sources, (i) the number of repulsive directions on the manifold equals
N − 1 for stationary points H ∈CN and (ii) the number of attractive directions on the manifold
equals n + 1 − N for stationary points H ∈CN . Since, all of the non-radial Hessian eigenvalues
for �S¡3 have opposite signs when �S¿3 we see that the vector �eld at critical points (on
the manifold) is negative (reversed) for a leptokurtic source. Thus, the minima and maxima are
exchanged, as are the number of repulsive and attractive directions for all stationary points.

5. TEMPORALLY CORRELATED SOURCES

In Reference 18, Bellini points out the lack of understanding of blind equalization schemes when
the source is non-white. The global convergence to perfect equalization settings demonstrates
a rather attractive property of CMA-FSEs meeting the length, diversity, and platykurtic i.i.d. source
conditions. Next we relax the condition of the source ‘whiteness’ and investigate CMA stationary
points under (a class of) temporally correlated sources.

No perfect equalization

Let R̃ denote the vector containing all such correlation coe�cients appearing in (11) and con-
sider the system F(H; R̃). Of interest is what happens to the result of global convergence to
perfect equalization when a temporally correlated source is introduced. We �rst turn this result
for i.i.d. sources around and ask, ‘for which source correlations do there exist perfect equalization
parametrizations which are stationary points?’. Denote such perfect equalizing parametrizations by
Hk? (i.e. the global system parametrization which has all zero entries, except for a 1 (or −1) in
the kth position). Note that Hk? ∈C1. Evaluating F(Hk?; R̃) yields the conditions,

R
0
i
i
i
− 
R0

i =0 for 0¡i¡n− 1 (21)

Recall that for an i.i.d. source all correlation coe�cients are zero except R0
i and R

0
i
i
i
when i=0,

which trivially meets the stated conditions for perfect equalization. However, rewriting (21) for
clarity, we recognize how stringent these conditions may be for non-white sources.

hk =±
√√√√
R0

0

R
0
0
0
0

=±
√√√√
R0

1

R
0
1
1
1

= · · · =±
√√√√
R0

n

R
0
n
n
n

(22)

This is a very tight constraint and appears to admit only ‘pathological’ source sequences (e.g.
s(k) constant for all k, or s(k) alternating between some constant and its negative). In general,
it may be said that non-white source correlations do not admit a perfect equalization setting to
be a stationary point of CMA. Of course, the real question is ‘how far from perfect equalization
settings are the resulting stable stationary points?’

Metrics of performance and correlation

A metric of equalization performance and source correlation must be de�ned to properly describe
the results regarding equalization under temporally correlated sources. In addition to the previously
introduced performance metric of ISI (’) in (4), an appropriate metric of equalization performance

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.
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CMA FRACTIONALLY SPACED EQUALIZERS 149

is the mean squared error (MSE) between source and equalizer output at a stable stationary
channel–equalizer parametrization de�ned as

MSE= min
�
{E{(s(k − �) + y(k))2};E{(s(k − �)− y(k))2}} (23)

wherein the presence of both the sum and di�erence terms denotes a toleration of the sign ambiguity
(i.e. assuming the source is di�erentially encoded). As we are motivated to show the e�ect of
source correlation on achieved MSE, we de�ne a metric on non-whiteness as

�COR(R̃)= ‖R̃− R̃w‖1 (24)

where R̃w is the vector R̃ evaluated for an i.i.d. source with equally probable symbol values, and
‖ · ‖1 is the ‘1 vector norm. The choice of the ‘1 vector norm as opposed to the perhaps more
prevalent ‘2 norm was somewhat arbitrary. (None of the qualitative results of the experiments to
be presented are changed by use of the ‘2 norm.)

Numerical solution method

Direct algebraic solution for the roots of F(H; R̃) is di�cult in the general case, as F(H; R̃) is
a set of multivariate polynomial equations with many monomials. However, the numerical approach
of continuation methods30; 31 (or homotopy methods) may be applied to solve for roots of F(H; R̃)
given a speci�c R̃. In this method, one introduces the homotopy

�(�)= �F(H; R̃) + c(1− �)G (25)

consisting of the system of interest (here, F(H; R̃)), a system G with known roots, a random
complex constant c, and a scalar 06�61. As �(�) is a system with one degree of freedom, the
solutions breakup into paths almost everywhere. The desired roots of F(H; R̃) may be found by
‘tracing’, in a predictor–corrector fashion, the roots of � from the known roots of G to the roots
of F(H; R̃) by varying � from 0 to 1.
Mathematically, there are three issues of concern. First, in order to perform such root tracing,

we must be guaranteed that there are the same number of roots of systems F(H; R̃) and G. We
may construct G such that this is true and follows from Bernstein’s theorem32 or by recognizing
that our system F(H; R̃) satis�es the Bezout upper bound. Furthermore, nastiness such as bifur-
cations (i.e. path crossings during roots tracings) must be ruled out. This is accomplished herein
by the use of the random constant c which puts the systems F(H; R̃) and G in relatively gen-
eral position (see Reference 31). Speci�cally, we choose G to be the CMA-FSE system under
independent source with equally probable symbol value, with the known 3n+1 solutions derived
earlier.
For all homotopy methods calculations we have used PELICAN.∗ Also, to di�erentiate e�ects

of correlated sources investigated in this section from the e�ects of source distributions consid-
ered earlier, all source sequences used here (periodic and Markov) have an equiprobable symbol
occurrence.

∗ PELICAN is a software package for polynomial continuation methods under development by Birk Huber at the Dept. of
Mathematics, Cornell University. Documentation and release information available at http://math.cornell.edu/~birk.

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)
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150 J. P. LEBLANC, I. FIJALKOW AND C. R. JOHNSON, JR.

Figure 7. Periodic source: MSE vs. period and MSE vs. correlation

Figure 8. Number of minima under source of period P

Experiment I—Periodic Sources

Using continuation methods, the stationary points for CMA under periodic sources may be
computed. To gain some insight into how the MSE at stable stationary points may be e�ected as
the period increases, a Monte Carlo computation was performed. For each period (P) of length
32; 64; : : : ; 8192; twenty source sequences with equal symbol occurrence were randomly drawn from
a 4-PAM source. For each sequence, all real stationary combined channel–equalizer parametriza-
tions corresponding to a 4 tap (half-baud spaced) channel and 4 tap (half-baud spaced) equalizer
when L=2 were computed.
The resulting �COR and MSE for the subset of stable, strictly real, stationary parametriza-

tions resulting from these computations was also computed. Results relating MSE and �COR are
plotted in Figure 7 which exhibits a general trend of MSE with increasing correlation. Also
plotted is MSE versus the sequence period (P) where as the period increases, MSE tends to
decrease.
A wide range of equalization performance (about 20 dB MSE) was observed for a given period

(seen from Figure 7). Some sequences of a given period deform the error surface stationary points
away from perfect equalization parametrizations more than others. However, there is another more
signi�cant point that may be culled from the continuation-method computations. For each of the
220 source sequences considered, the number of (possibly complex) stable stationary solutions to
F(H; R̃) due to a particular sequence of period P was computed. Restricting our attention to the
strictly real (i.e. achievable) parametrizations results in Figure 8. For sequences of short period,
the number of minima may be double of that of sequences of long periods (as well as white).
In the white source case the number of minima is 2n+1. For n + 1=3 we expect eight minima.

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.
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CMA FRACTIONALLY SPACED EQUALIZERS 151

Figure 9. Period of 128, 8 minima with Low ISI

However, under source correlation we see that as many as 16 minima may exist. Such an increase
in the number of minima may be alarming. The error surface has not merely deformed in such
a way that results in only slight perturbations in the locations of minima. To the contrary, new
minima have been created. The results herein for the 4 tap case shows only increases of number
of minima under source correlation, it is also possible for the number of minima to decrease
as well.33

Consider Figure 9A which shows all eight stable parametrizations depicted for a source sequence
period of 128 (four parametrizations are drawn explicitly, the other four are the negatives of those
shown). All parametrizations have one signi�cant tap and three taps weights of small magnitude
correspond to relatively low ISI settings.
Contrast this to Figure 9B in which a sequence of period 32 yields ten stable stationary points.

Eight are fairly close to a good equalization setting (may be considered a displacement from
perfect equalization by correlation induced deformation), the other two (the one shown and its
negative) have high ISI settings (may be considered to be ‘new’ minima created by error surface
deformation).

Experiment II—Markov Sources

Next, a Markov model which allows the modelling of a white source as well as temporally
correlated sources is investigated. Since convex combinations of Markov transition matrices are
themselves valid transition matrices, we can produce a source model which allows smoothly varying
R̃. These R̃ may be calculated directly from the transition matrix �.
Consider a Markov state transition matrix which generates a white source, �w, (in which each

state represents an alphabet member) which generates a source with equally probable symbol values
(i.e. each matrix element equals 1=M for an M -ary source). Next, we choose a transition matrix,
�c which corresponds to a source correlation of interest and rede�ne � to be �(�)=F(H; ��c +
(1 − �)�w) which yields a system wherein performing continuation methods yields a data point
of interest at each evaluation of �.
An example for the case �c as described in Appendix II demonstrates the stationary point

movement from H = [ 0 0 1 0 0 ]T for a combined channel–equalizer having a 5 baud span
under increasing source correlation. Figure 10 plots the stationary point trajectory as � in (10) is

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)
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Figure 10. Markov source stationary point and ISI trajectories

varied from 0 to 1 and the associated Hessian of the cost function was checked at each iteration
to verify whether the stationary point remained a stable one.

6. CONCLUSION

This work has investigated the CMA under the equalizability condition which allows examination
in the combined channel–equalizer space using an equalizer of �nite order. Behaviour of FSE-
CMA is understood through characterization of the CMA error surface. A main point of interest
concerning the error surface is the location of stationary points, as the stable stationary points
in
uence the asymptotic behaviour, while the saddles in
uence the transient behaviour.
While global convergence for an i.i.d. source with samples drawn with equal probability from

a �nite alphabet is not a new (nor surprising) result, the phrasing of the problem as a system
of multivariate polynomial equations leads to powerful extensions. We are able to quantitatively
address the e�ects of various source distributions on the error surface. The kurtosis of the source
(and its relation to constellation shaping) is identi�ed as the important quantity which in
uences
convergent points (shown analytically) and convergence speed (demonstrated through analysis and
numerical examples). Identi�cation of all the stationary point locations, as well as their catego-
rization is stretched to include enumeration of the number of positive and negative eigenvalues of
their Hessian as well as the associated directions (eigenvectors) describing the relative directional

ow of the vector �eld near the stationary point.
The results of the i.i.d. source case are combined with some simple properties of the error

function to identify the concept of the 
 manifold. Further geometric structure is introduced relating
the vector �eld stationary points on the 
 manifold to Morse theory. The work on i.i.d. sources
represents a mixture of re�ning known results and moderate extensions thereof. The true strength
perhaps lies in the uni�ed presentation allowed by the problem formulation.
The more novel contributions are found in the later sections. Herein, the solution to the polyno-

mial system identifying the stationary points is considered for the temporally correlated source. The
avenue pursued incorporates a numerical approach. Homotopy methods are introduced as a method
of solving for stationary points for given source statistics. Monte Carlo computations are run for
a class of correlated sources. The results are presented and discussed in terms of convergent ISI
and MSE. An idea of the sensitivity to source correlation is gleaned.
It has been demonstrated that correlated sources have the ability to do more than merely perturb

error surface minima. They allow the creation of new (poorly performing) minima. This places
added emphasis on the source independence assumption.

Int. J. Adapt. Control Signal Process., 12, 135–155 (1998) ? 1998 John Wiley & Sons, Ltd.

 10991115, 1998, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1099-1115(199803)12:2<
135::A

ID
-A

C
S484>

3.0.C
O

;2-Z
 by C

ornell U
niversity L

ibrary, W
iley O

nline L
ibrary on [02/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CMA FRACTIONALLY SPACED EQUALIZERS 153

APPENDIX I

To determine the eigenvalues of M̂ note that similarity transformations do not change the eigen-
values of a matrix. Scaling these by the common factor in (18) yields the eigenvalues of M. Form
the transformation matrix P as P(m;IOm)= sign(hIOm) and note that P is unitary (PPT = I).
A quick example for the case HT =

√
�S
�S+6

[ 0 1 1 0 −1 0 ] follows. The index list is

IO= {1; 2; 4; 0; 3; 5}. We then write, B=P−1M̂P as
2�s 6 6
6 2�s 6
6 6 2�s

3−�s 0 0
0 3−�s 0
0 0 3−�s

=P−1


3−�s 0 0 0 0 0
0 2�s 6 0 −6 0
0 6 2�s 0 −6 0
0 0 0 3−�s 0 0
0 −6 −6 0 2�s 0
0 0 0 0 0 3−�s

P

where

P =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 (26)

For H ∈CN the similarity transformation of M̂ into B yields a block-form matrix, wherein one
block is (3− �s)I of dimension equal to the number of hm which are zero. The other block is an
N×N circulant matrix with strictly positive elements. Such a structure allows easy identi�cation
of the eigenvalues. Interestingly, the signs of the eigenvalues of both sub-matrices are determined
by the source kurtosis �s.
Diagonal sub-matrix: The diagonal sub-matrix eigenvalues are 3− �s. For �s¡3, this sub-matrix

is positive de�nite. However, for �s¿3 we have a negative de�nite sub-matrix. For the case �s = 3,
this sub-matrix becomes singular with all elements zero.
Circulant sub-matrix: The circulant block’s eigenvalues are identi�ed by the discrete Fourier

transform (DFT) of a column (a well-known property of circulant matrices, see Reference 34).
Thus,

Upper block eigenvalues = DFT([ 2�s 6 : : : 6 ])

= DFT([ 2�s − 6 0 : : : 0 ]) +DFT([ 6 6 : : : 6 ])

= [ 2�s − 6 2�s − 6 : : : 2�s − 6 ] + [ 6N 0 : : : 0 ]

= [ 2�s + 6(N − 1) 2�s − 6 : : : 2�s − 6 ] (27)

where DFT(·) represents the discrete Fourier operator.

APPENDIX II

The states (S) of the Markov process are identi�ed with a particular alphabet member, and the
transition from present state to next state is associated with the Markov transition matrix �.

? 1998 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process., 12, 135–155 (1998)
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154 J. P. LEBLANC, I. FIJALKOW AND C. R. JOHNSON, JR.

Markov source for Example C

For the sample Markov source model used in Example C, we have the state vector

S = [−7� −5� −3� −1� +1� +3� +5� +7� ]T

and � is the circulant matrix having the �rst column as [0 0·025 0·025 0 0·025 0·3 0·25 0·6]T,
with 0·6 becoming the �rst element of the second column, etc. The �(i; j) elements give the
probabilities of transitioning from state i to state j. Notice by the symmetry of �, we have
equiprobability of symbol occurrence. This can be shown formally by recognizing that the vector
[ 18

1
8

1
8

1
8

1
8

1
8

1
8

1
8 ]
T is an eigenvector of � whose elements are strictly positive and sum to one.

Hence, it is the valid steady-state probability vector.

Markov source for continuation methods

In correlated source experiment 2, a Markov source was used with state transition matrix �c
given by

�c =


0 0·6 0·2 0·2
0 0 0·2 0·8
0·8 0·2 0 0
0·2 0·2 0·6 0


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