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Abstract 

We show that the most widely used blind equalization algorithm, the constant modulus algorithm, CMA, can be attracted 
during one convergence trajectory to the vicinity of more than one of the saddles in its error performance surface where 
it exhibits very slow convergence. We also establish bounds on the attraction and escape rates at a saddle and show that 
the saddles associated with lower energy levels have slower escape rates than the saddles with higher energy levels. These 
results highlight the need for intelligent initialization schemes for the CMA algorithm. We suggest a step normalisation 
technique to improve convergence speed in the vicinity of a saddle. @ 1997 Elsevier Science B.V. 
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1. Introduction 

Equalization of a communication channel in the ab- 
sence of a training sequence is termed blind equal- 

ization. A blind equalizer increases bandwidth effi- 

ciency and is important in a situation where a training 
sequence is impractical or costly, for example in the 
proposed HDTV system. Among all blind equaliza- 
tion algorithms, the CMA that was originally proposed 
in [ 21 and developed independently in [ 51, has been 
shown to be robust to channel under-modelling, chan- 
nel noise perturbation and loss of channel disparity. 
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2. Attraction of saddles 

For certain initializations, the Constant Modulus Al- 

gorithm (CMA) can be observed to have flat portions 
in the parameter error trajectory, apparently due to the 
attraction of saddles in the error performance surface. 
The question whether there will be only one such at- 
traction prior to convergence is curious, because if the 
answer is yes, one might tolerate this temporary at- 
traction, hoping that the next stationary point would 
be an acceptable minimum. In this section, we demon- 
strate through a selected example that CMA can be 
attracted to the vicinity of more than one saddle prior 
to convergence, even with a centre tap initialization, 
[ 21. Hence, a more judicious initialization strategy or 
adaptation scheme is required to avoid slow conver- 
gence. 
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A fractionally spaced (T/2) channel is chosen as 
0.4000 + 1.166502 --I - 0.44OOz-* + 0.6268~-~ + 
0.4OOOz -4 + 0.0751 z -5 whose zeros are z = 
0.86exp(f58), z = 0.27exp(&149) and z = 
-3.3579. The length of the fractionally spaced equal- 
izer (FSE) is 4, i.e. the length of each sub channel is 
2, and off baud sampling is assumed. The length of 
the combined channel + equalizer after decimation is, 
therefore, 4. The equalizer is initialized at [ 0 1 0 01, 
and adapted using an exact gradient descent method 
(i.e. explicitly calculating the CMA gradient at each 
iteration). The cost and the evolution of the com- 
bined channel + equalizer impulse response (h) are 
respectively depicted in Figs. 1 and 2. The equalizer 
is first attracted to a saddle that is formed by three 
non-zero coefficients h = [ 0.378 0.378 0.378 01, and 
then attracted to a second saddle that is formed by 
two non-zero coefficients h = [0 0.5 0.5 01, before 
converging to a minimum h = [ 0 0 1 01. 

This shows that the CMA algorithm can be attracted 
to more than one saddle, around which it exhibits very 
slow convergence. Such a possibility is indicated in 
the topological studies of [ 41. 

3. Attraction and escape rates 

In this section, we will show that the convergence 
behaviour of CMA is quite different for saddles with 
unequal energy levels, by looking at the attraction and 
escape rates. Consider a fractionally spaced (T/2) 
channel and an equalizer of order Q and Q - 1. Each 
sub channel is assumed to have no common zeros so 
that the associated channel convolution matrix d is 
full rank. The transmitted sequence is assumed to be 
BPSK (for example a binary sequence of + 1 and - 1) . 

The CMA cost, its gradient and Hessian are respec- 
tively written as E{(y*(k) - l)*}, V,(J) = 4dTN2 
andVi(J) =4dTIud. (see [3] and [I]).Wheren= 

diag[Aa& . . . /If] andI?j=3~~h~-1_2h~, 

3 5 h; - 1 6hoh, I . . - . 
i=o 

Y= : 

6h,h,, 0.. 6h,h,_, 3& h? - 1 
i&l I 

and A is a (2Q x 2Q) channel convolution matrix 

. . . . . . 

. . . . . . 

0 .:. ;, c; .:. ci 
-0 . . . 0 4 . . . c”a 

y(k) is the equalizer output, e is the equalizer pa- 
rameter vector, h = de is the combined channel + 
equalizer impulse response of length p = 2Q - 1, and 
{CT} and (9) are respectively the even and odd sub 
channel coefficients. The average behaviour of CMA 
adaptation can be written as 

ek+i = ek - ,!Lv,,( J) = ek - 4j.LATfiAek, (1) 

where p is the “small” step size. Using a Taylor se- 
ries expansion, the function dT&tek can be expanded 
around any arbitrary Z as follows: 

(2) 

At a stationary point 8, VJC( J) is zero. Hence in the 
vicinity of a stationary point, ( 1) can be approximated 
as 

&+I N (J -4/%V:(J))e”k = (J -4,zdTfyd)&, (3) 

where #?k = (ek - E). At a saddle point, it has been 
shown that the combined channel + equalizer impulse 
response will have u non-zero hi’s with equal magni- 
tude, l/J-, and the associated Hessian, V$( J) , 
will have both positive and negative eigenvalues [ 31. 
A positive eigenvalue means convergence towards a 
saddle and a negative eigenvalue means divergence 
away from a saddle. In order to analyse the attrac- 
tion/escape rate at a saddle, the following theorem of 
[4 3 is important. 

Theorem 1. There are three distinct eigemalues for 
Y at saddles. They are 

(9 Ao=2, 

(ii) Ai= 
2 

3~~ i=l,...,p-u+l, 

-4 
(iii) Ai= -, 

3v - 2 
i=p-v+2,...,p. 
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Fig. 1. The evolution of the cost associated with CMA. 

The following corollary establishes an upper and 
lower bound on the escape rate for an FSE-CMA in 
the vicinity of a saddle. 

Corollary 2. The time constant at which the equal- 
izer setting deviates from a saddle is bounded between 

See Appendix A for a proof. 
Similarly, by writing Eq. (3) as ZzZk x P:(Z - 

+iTYd) +?k and considering the negative eigenvalues 
of LI~!PLI, the rate at which the square of the Euclidean 
distance between the saddle and the equalizer param- 
eter vector grows can be bounded between 

3v - 2 
<r< 

3v -2 

32fi~-(d~d)) 32,u&i,( d’d) . 

For the 5th order channel given in the first exam- 
ple, the equalizer was initialised randomly close to the 
saddle, h = [ 0.378 0.378 0.3780 01, and adapted us- 
ing the exact CMA gradient method. The square of 
the Euclidean distance between the equalizer param- 
eter vector and the saddle point as a function of the 
adaptation number is depicted in Fig. 3. The theoreti- 

cal bounds on the escape rate are also shown as solid 
lines. 

Similar to Corollary 2, the time constant at which 
the equalizer setting approaches a saddle can be 
bounded between 

1 

~,uU/\~(LPLI)) ’ r’ 

3v - 2 

8pAmin(dTd). 

Though the theoretical bounds above are not very 
tight, these bounds merely indicate that the escape and 
approach rates at a saddle point do not depend on the 
channel convolution matrix alone, but also on the type 
of the saddle point. As LJ increases, the lower and the 
upper bounds are increased, and the equalizer output 
power, v/ (3~ - 2), is decreased. In other words, the 
rate at which the equalizer parameter deviates away 
from a saddle increases as the distance of the saddle 
from the origin increases. 

4. Improving the convergence speed 

A technique to improve the convergence speed at a 
saddle is to apply a normal&d step size CMA algo- 
rithm. 
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Fig. 2. The evolution of the total channel + equalizer impulse response coefficients: “+” position of saddle, “0” position of minimum and 
“*” initialization. 

ek+l =ek+4 E&k)) &Y(k)(l -y*(k)), (5) 

where & is the equalizer regressor vector. At a global 
minimum, E{ y* ( k) } is unity, hence there is no effect 
on the step size. At a saddle, however, E(y*( k)} = 

v/( 3u - 2), hence, the step size would be greater than 
p (by a factor of 2 to 3), and will have an improvement 
in the convergence speed. The value of E{y*( k)} can 

be estimated at each sample as ,!?{y*(k)} = ( 1 - 
Y)&{y*(k-l)}+yy*(k),whereyisapositivesmall 
step size (e.g. 0.02). In order to compare the proposal, 
a number of channels were randomly chosen and the 
equalizer was initialized at [ 0 10 01. The number of 
samples taken to reach 98% of the final output power 
(of the equalizer) was averaged over 25 Monte-Carlo 
experiments. The SNR was 30 dB. Table 1 summaries 
the performance. A modest improvement is noted with 
normalisation. 

5. Conclusion Appendix A. Proof of Corollary 2 

We showed that the CMA algorithm can be attracted 
to the vicinity of more than one of the saddles in its 
error performance surface, and exhibits slow conver- 

Table 1 
The number of samples taken for convergence 

CHANNEL CMA VS-CMA 

(0.67 0.06 0.09 - 0.59 0.43 0.07) 435 349 
{ -0.18 - 0.27 0.25 0.08 - 0.84 0.34) 359 321 
(0.35 0.39 - 0.45 0.05 0.70 - 0.17) 757 590 
{ 0.75 - 0.19 0.37 0.06 - 0.39 - 0.32) 561 442 
(-0.59 0.45 - 0.04 - 0.41 - 0.21 0.48) 733 641 

gence. One method to avoid this slow convergence is a 
better initialization scheme. Another is the pragmatic 
output power normalisation of the equalizer adaptation 
step size (for which simple tests have demonstrated 
modest improvements). Yet another could be recogni- 
tion of the diminished value of E{y*( k)} at a saddle 
and prescription of some clever equalizer parameter 
relocation. 

Write the Hessian at a saddle as 

H = 4A=?PA = 4(@=A)=D(eTA) = 4q=Dq, (6) 
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Fig. 3. The square Euclidean distance from the saddle point. Solid: the~tetical upper and lower bounds; dashed: simulated results. 
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where D is a diagonal matrix. The diagonal elements 
of D and the columns of 8 are respectively eigen- 
values and corresponding eigenvectors of P. Since 
(D - Akn (D)Z) is non-negative definite, 

H = 4qT(A,,,in(D)Z)q+4qT(D - A,,,jn(D)Z)q 

> 4q=(Amin(D)Z)q (7) 

Therefore Adn (H) 2 4Ahi, (D) A, ( LI’LI). It fol- 
lows from Theorem 1 that Ahi,(D) = -4/(3u - 2). 
We introduce the notation A”(N) to denote the nega- 
tive eigenvalue of H. Hence 

IA”(H) I- G 4IAtin(D)lAz,,&=~) 

= &Am(d&. (8) 

‘This gives a lower bound for the time constant. To find 
an upper bound, write H-’ as follows: 

~-1 = 4q-‘~-‘(q=)-’ 

=4q-‘(A&D--‘)Z)(q=)-’ 

+ 4q-‘(D-l - Atin(D-‘)Z)(q=)-’ 

24q-‘(A&D-‘)Z)(q=)-‘. (9) 

ThereforeA&,(H-‘) 2 4A&(D-‘)A-( (dTd)-‘). 
Notice that G,, (H-’ ) = l/&(H) for any square 
matrix N. Thus, 

= &A&=&. (10) 

Therefore., the time constant at which the equal- 
izer deviates from a saddle is bounded as indicated 
in (4). Cl 
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