
417 Bigioi et al.: Digital Camera Connectivity Solutions Using the Picture Transfer Protocol (PTP)

DIGITAL CAMERA CONNECTIVITY SOLUTIONS
USING THE PICTURE TRANSFER PROTOCOL (PTP)

Petronel Bigioi', George Susanu2, Peter Corcoran3 and lrina Mocanu4
'Dept. of IT, National University of Ireland, Galway

'Accapella Ltd., Ireland
3Dept. of Electronic Engineering, National University of Ireland, Galway, Ireland

4Dept. of Computer Science and Engineering, University Politehnica of Bucharest, Romania

Abstract
Interconnectivity of digital camera with other devices is
one of the main concerns of consumers and digital camera
manufacturers. Interconnectivity features in digital
cameras allow more consumer-friendly usage of digital
cameras. Moreover, with a suitable application layer
software, digital photographs can be sent directly from the
camera to a desired target: disk storage, printer, web site,
as an e-mail message or web print, using a single,
purpose-designed, communication protocol: the Picture
Transfer Protocol, PTP.

1 Introduction
Digital photography continues to gain market share from
conventional photography. This is due to a number of
factors: no development costs; no film costs; easy picture
preview before printing or saving the image; easy sharing;
portability of images; easy presentation in a variety of
electronic & print formats, etc. Despite these benefits
conventional photography is still more practical in the eyes
of many consumers. Thus, although consumers are
converting to digital the rate of growth has slowed very
significantly in the last couple of years. This situation
exists because the workflow for digital photography,
starting from the acquisition process through to the final
store, print or share process, remains complex and
continues to form a usage barrier for the majority of
consumers. In brief, digital photography remains targeted
towards skilled PC users.

A couple of years ago each digital camera manufacturer
had its own specific communication protocol to access and
control a digital still camera. This method had a number of
disadvantages: the camera manufacturer had to provide
device drivers for all the operating systems and hardware
platforms that they wanted to support and this added costs
to the digital camera selling price. Further the end-users
were expected to have a certain level of technical ability in
order to understand the whole process of digital
photography.

Even if the above method still exists, nowadays, the most
popular approach is to make the digital camera look like a
storage device whenever it is attached to a PC or an
embedded system. Even if this method has become the
present norm and more and more camera manufacturers
adopt it, a number of downsides and limitations have
already started to emerge. Firstly the digital camera is

only able to deliver pictures when attached to a mass
storage reader device. Secondly, the camera becomes a
peripheral, or slave device to the PC: an upload process
from the digital camera to the PC or receiving device can
not, be initiated using the mass storage approach. Thus an
automation of the digital photography workflow is not
practical. Thirdly there is no way to control the digital
camera using the mass storage solution because it appears
to the PC only as a passive storage device.

Device Manufacturer Specific
Protocol

D W n

Fig 1: DSC Communication Protocols - Past

This paper will describe a recent standards effort (PIMA
15740) from the Photographic & Imaging Manufacturer's
Association for connectivity of digital still photography
devices. This standard is known as the Picture Transfer
Protocol (PTP) for short. The intention of the PTP
standard is to replace and unify the communication
protocols between still imaging devices and other
receiving devices. Most imaging devices include hardware
interfaces that can be used to connect to a host computer or
other imaging devices, such as a printer. A number of new,
high-speed interface transports have recently been
developed, including IrDA, USB, and IEEE1394. This
standard is designed to cover the requirements for
communicating with still imaging devices over a variety of
transports. This includes communications with any type of

Manuscript received June 24, 2002 0098 3063/00 $10.00 2002 IEEE

~

418 IEEE Transactions on Consumer Electronics, Vol. 48, No. 3, AUGUST 2002

devices, including host computers, direct printers and other
still imaging devices over suitable transports. The
requirements include standard image referencing behavior,
operations, responses, events, device properties, datasets,
and data formats to ensure interoperability.

Mass Storage Device for File
Transfer & Custom Solutions for

Control Functions

File T insfer '4'' File Tiansfer

Host PC (No need for
manufacturer specific

device driver, for
picture tranfer)

PDAs and evolved
embedded systems

able to run a file
system (file transfer
only without specifc

firmware)

Fig 2: DSC Communication Protocols - Present

Standardizing the operations and data requirements for still
imaging devices through a standard such as PTP will assist
transport . implementers, platform aggregators, service
providers and device manufacturers by providing a
common ground for interface support. It will also assist
developers of host software and image receiving devices
by ensuring that their products can interface with many
different imaging devices from different manufacturers,
and assist users by ensuring that the imaging devices they
purchase will inter-operate with those of different
manufacturers.

One of most interesting facts about the PTP standard is
that provides optional operations, formats and defined
extension mechanisms, which will allow digital camera
manufacturers to use the communication standard even if
they want to implement custom behavior for their imaging
devices. This standard has been designed to appropriately
support popular image formats used in digital still cameras,
including the EXIF and TIFF/EP formats defined in IS0
12234-1 and IS0 12234-2, as well as the Design Rule for
Camera File System (DCF) and the Digital Print Order
Format (DPOF).

This paper will provide detailed explanation of the
following main issues:
0 Description of the PTP as a common protocol for any

device to exchange images with still imaging device,

either by retrieving images from it or by sending
images to it.
Usage models (push and pop models) and usage
scenarios (a number of typical usage scenarios for the

,two typical usage models).
PTP transport requirements and practical examples
using the USB transport. Operating systems support
for PTP USB devices.
Proposal for PTP implementations over wireless
transports. Transport specific issues and solutions.
Imaging cdevices as Internet connected devices using
PTP mapped on TCPmP protocol. Firewalls,
authentication and security issues and solutions.

0

0

Picture Transfer Procol

Fig 3: DSC Communication Protocols - Future

2 PTP Description
This section describes the PTP and the main guidelines
followed by this protocol.

2.1 PTP Device Roles
Rather than having a host master to a slave device protocol
description or a peer to peer description, the PTP refers to
the components engaged in a picture transfer as Initiator
and Responder. The PTP defines the Initiator as being the
device that initiates the connection - issues the
OpenSession PTP command - while the Responder is
defined as the device that responds to operation requests
such as the OpenSession request.

Devices, in the PTP model, can be Initiators, Responders
or both. For instance, a PC can be configured only as an
Initiator device while a USB camera can be only a
Responder. , Similarly, a Bluetooth camera, that opens a
connection to a BluetoothPTP printer and pushes pictures
for print, can be only an Initiator while the corresponding

Bigioi et al.: Digital Camera Connectivity Solutions Using the Picture Transfer Protocol (PTP) 419

printer can be only a Responder. However, a digital
camera that can connect to other digital cameras and is
able to both initiate and receive a PTP session will have to
be capable of behaving both as Initiator and Responder.

Usually, the Initiator will have a form of graphical user
interface, that the user can seebrowse thumbnails, select
and chose an appropriate control action, and so on.
Moreover, the Initiator device has to implement the device
enumeration and transport mapping (in the case that
multiple, PTP-compliant transports are supported), all in a
transport specific manner. Typically, a Responder will not
have a graphical user interface or multiple transport
support.

2.2 PTP Sessions
In order for two PTP devices to exchange information
about pictures or metadata, a PTP session has to be
established. A session is a logical connection between the
PTP devices, over which the object identifiers, or
ObjectHandles, and storage media identifiers, or
StoragelDs, are persistent. A session is considered opened
after the Responder returns a valid response to the
OpenSession operation requested by the Initiator. A
session is closed after the CloseSession operation is
completed or the transport closes the communication
channel, whichever occurs first.

The only operation or data traffic allowed outside the
session is the GetDeviceInfo operation and the Devicelnfo
dataset. A device can issuelaccept a GetDeviceInfo
operation outside a session. A session is needed in order to
transfer descriptors (Storagelnfo, Objectlnfo, etc), images
or any other objects between devices. Any data
communicated between devices is considered valid unless
a specific event occurs specifying otherwise.

Each session is represented by a unique 32 bit identifier
(UINT32) that is assigned by the Initiator using the
OpenSession operation request and it has to be non-zero.

2.3 Protocol Model (Transactions)
The PTP is specified using the transaction model. A
transaction is composed of a request operation, followed
by an optional data transfer and a response. Each
transaction has an identifier (TransactionlD) that is session
unique and comprise of a 32 bit unsigned number
(UINT32). The transaction IDS are a sequence of numbers
starting with 0x00000000 (for the Sessionopen
transaction) and increasing with every following operation.
With a few exceptions, all the transactions are synchronous
and atomic operations, having bloclung execution within
the session. Devices that support multiple sessions must be
able to keep the sessions opaque and asynchronous to each
other.

The asynchronous transactions (Le. InitiateCapture) are
treated as synchronous in the initial phase (when

specifying the operation), when a response indicating that
the operation request has been successful'or not is enough.
Asynchronous events are used to handle the
communication initiated by such operations (i.e. the
availability of new objects becoming available on the
device's storage as result of an Intiatecapture operation).
The completion of an asynchronous transaction is signaled
by a specific event (i.e. Capturecomplete event should be
issued). If the, Initiator issues another asynchronous
operation while a previous one is still in progress, the
device should issue a Device-Bussy response.

,

Fig 4: PTP Transaction Phases

In the PTP the transactions consist of three phases. The
data phase is an optional phase and up to the operation it
can be present or not. If the data phase is present, the data
can be sent either from the Initiator to the Responder or
from the Receiver to the Initiator, but it may not consist of
data transferred in both directions. Only one transaction at
a time can take place within a session.

I I I I I I SessionlD I 4 IUINT32 I I SessMnlD I 4 I UINT32 I I TransactionlD I j iUlN$l
Parameter 1
Parameter 2
Parameter 3
Parameter4
Parameter 5 ANY

I TransactionlD I I U g 1
Parameter 1
Parameter 2
Parameter 3
Parameter4
Parameter 5 ANY

Operation Dataset Response Dataset

Table 1: Request and Response Datasets

2.3.1 Operation Request Phase
In this phase the operation request dataset is transferred
from the Initiator to the Responder. This dataset is given in
Table 1 .
2.3.2 Data Phase
The data phase is optional and is used to transmit a data set
that is larger than may be accommodated by the operation
or response phases. This phase is used to transfer
information that is not specified by small data types (i.e.
typically the transfer of a binary image is achieved during

420 IEEE Transactions on Consumer Electronics, Vol. 48, No. 3, AUGUST 2002

3 Getob$:tHandl OxFFFFFFFF OxFFFFFFFF OxOOOOOOOO

4 Getobjecthfo ObjHandle 1 OxOOOOOOOO OxOOOOOOOO rll,lqp, ,nr nhiClanrl,a , Returns Objectlnfo

this phase). During the data phase, the information is
transferred either from Initiator to Responder or from
Responder to the Initiator, but never in both directions.
2.3.3 Response Phase
In this phase the response dataset is transferred from the
Responder to the Initiator. The response dataset is very
similar to the operation request dataset and it is presented
in Table 1 .

2.4 Vendor Extensions
Imaging devices manufacturers can extend the PTP
command set by defining their own commands, events and
properties. Of course, only vendor specific software will
take advantage of this vendor specific functionality. The
VendorExtensionID and the VendorExtensionVersion are
fields in DeviceInfo structures that uniquely identify the
vendor extensions. A device has to check those fields
before using a vendor extended operation, event or
property. The VendorExtensionID is assigned by PIMA
while VendorExtensionVersion is maintained internally by
each manufacturer.

.......".,.
2 Opensession SessionlD OxOOOOOOOO o~ooooooo Opens a PTP session

3 oI Specific Specific Specific Responder operations on specific the

propetiy sefiinQ incoming pictures
Returns StoragelD.

4 Sendobjecthfo OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO Parent ObiHandle,

Optional Configures the
Vendor

3 Usage Models
The purpose of this section is to describe how PTP devices
can interact and what exactly the flow of operations is in
each usage model.

The PTP can be associated with a dynamic masterklave
protocol, where the master role is undertaken by the
Initiator device while the slave role is assigned to the
Responder. The Initiator determines the flow of
operations while the Responder can issue responses to the
operations as well as events. The events can be associated
with an operation, but they can appear completely
asynchronously as well, so the Initiator should be prepared
to deal with events that occur outside of the boundaries of
a transaction.

3.1 Pull Scenarios
In the pull mode, the Initiator retrieves the objects from
the Responder and it is usually the way that the PTP
communication is implemented in a device that has a rich

6 foreach

7 CloseSession OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO Closes the session

ObjectHandle

m e r interface

Repeat Step 6
7 tor each ObiHandle rn OxOOOOOOOO OxOOOOOOOO

I I I I I VU."--. bl OpenSession I SessrbnlD I OxOOOOOOOO) o ~ o o o o o o o ~ Opens a PTP session I

Returns the obiect rn data

Returns Object Handles in
31Getobj:ftHandl OxFFFFFFFF I OxFFFFFFFF ~OxOOOOOOOO~ a ObjectHandlesArray

8 CloseSession OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO Closes the session

This usually involves three steps that the user has to go
through in order to complete the operation: select a PTP
device to communicate with (if there are multiple devices
in the proximity), download and select thumbnails (from
the remote device) and download the selected pictures. A
typical scenario for this usage model would be where the
Initiator requests all images objects from the Responder,
ignoring other objects (non-images) and associations. This
is described in Table 2 .

Another scenario would be where the Initiator requests all
thumbnails from the Responder, ignoring associations and
non-images objects. This is described in Table 3 .

bl Opensession I SessionlD I OxOOOOOOOO I oxOooooooo I Opens a PTP session 1

I I Repeat Step 4 bl for each 1 ObjHandle n OxOOOOOOOO OxOOOOOOOO l d a ~ ~ ~ t r ~ ~ ~ ~ e I
nhiartU*nrib

kd GetThumb I ObiHandle 1 I OxOOOOOOOO I OxOOOOOOOO I Retumslheobiect I

CloseSession OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO Closes the session

Table 3: Get all Thumbnails from a PTP Device

3.2 Push Scenarios
Push mode consists of an Initiator sending one or more
objects to the Responder. Usually, the Initiator has a rich
user interface (Le. PC or digital camera). The Responder
receives the pictures and other data from the Initiator. This
mode is appropriate for transfers from a device with a rich
UI to devices that don't have image display capabilities.
For instance, this is useful for direct print operations (over
either USB, 1394 or Bluetooth).

I I I I I ObjHandle
I Sendobject 1 OxOOOOOOOO~ OxOOOOOOOO I OxOOOOOOOO~ Wnles data 10 Store
IRepeat Step 3.41 I I I

I 1 I I I I

Table 4: Push Scenario

A typical push scenario is the one illustrated in Table 4,
where the Initiator transfers a number of images to a
default location on the Responder. Prior to data transfer,
the Initiator can execute a vendor specific command that
can configure the Responder for a specific action that has

Bigioi et al.: Digital Camera Connectivity Solutions Using the Picture Transfer Protocol (PTP)

0x06

Ox08

42 1

Event Dataset

Response Code or Event Code
2 Code The value of PTP Operation Code,

4 TransactionlD The value of associated PTP

to take upon the incoming pictures. For example, if the
Responder is a printer, than this operation can set the print
format. Alternatively, vendor specific properties can be
used for the same purpose.

4 USB Transport
In this section we describe an example implementation of
PTP over the USB transport. This is a typical
implementation for a USB digital camera.

4.1 Overview of endpoints
PTP over USB uses a number of endpoints (source or sink
of data on USB devices) to provide the required
functionality.
4.1.1 Default endpoint
The default endpoint has the address: Ox00 and it is a
control (default) type endpoint.

The default endpoint is usually used for standard USB
requests and for class specific requests. Class specific
requests are:

OxOC

Device Reset Request (out) - used by the host to reset
the device.
Get Device Status Request (in) - used’by the host to
determinate the device status after the host cancels a
transaction or an endpoint becomes stalled.
Cancel Request (out) - used by the host to cancel the
current transaction.
Get Extended Event Data (in) - used by host to retrieve
the event data from device that is too big for a standard
(PTP) event from the interrupt endpoint. All PTP events
must be received from the interrupt endpoint. transaction

depends on ContainerType field
? Payload The content of the payload

4.1.2 Data-In endpoint
The Data-In endpoint can have any address in range 0x81-
Ox8F, but Interrupt endpoint address, It is a Bulk In type
endpoint. It is used for responses and the data-in phases of
the transaction, from the device to the host.
4.1.3 Data-Out endpoint
The Data-Out endpoint can have any address within the
range Ox01 - OxOF. It is a Bulk Out type endpoint. It is
used for data-out and operation phases of the transaction,
from the host to the device.
4.1.4 Interrupt endpoint.
The Interrupt endpoint can have any address in range Ox8 1
- Ox8F but Data-In endpoint address. It is an Interrupt type
endpoint and it is used to transfer for event data from
device to host.

4.2
USB transport standard for still digital cameras supports
only single session mode. Even if device is capable of
supporting multiple sessions the USB transport protocol is
not able to handle more than one session (the Initiator
can’t open concurrent session to the Responder). This does
not affect the service quality because multiple sessions do
not provide many benefits to a PC user and, on the other

Mapping PTP to USB transport

hand, single session support is much simpler for a device
implementation.

The PTP communication protocol implies five different
kinds of communication “primitives”: Operation Request
Phase of a transaction, Data-In Phase of a transaction,
Data-Out Phase of a transaction, Response Phase of a
transaction and Events. All this primitives are encapsulated
and transported through USB in “containers”. The
containers that are part of a transaction (transaction
phases) are transferred synchronously relative to each
other through bulk endpoints. The Event ,Container is
transferred asynchronously relative to transaction
containers through an interrupt endpoint.

I Container bhe whole size of the container
Length lfrom offset Ox00 including payload

ContainerTypelOne of the following values:
I 0 (undefined) - must not be
used;

I 1 (CommandBlock) - maps a
PTP Operation Request Dataset;

D 2 (DataSlock) - maps the Data-
In and Data-Out phases of a
transaction;

D 3 (ResponseBlock) - maps PTP
Response Dataset;

D 4 (EventBlock) - maps PTP

Table 5: Generic USB Container Structure

This approach limits the host to act as an Initiator and
device as a Responder: Also events can be sent from the
device to host only (this is suitable for most events). There
is a special case of a Cancel Transaction Event, which is
sent from the host to the device. This event is transferred
through the default endpoint as a class specific request.
Note that even though the Cancel Transaction Event is
handled separately by the USB transport, the support for
these events is required and the corresponding code
(0x4001) must be present in Device Info Dataset.

On the other hand, the device may cancel the transaction
by stalling the corresponding endpoint rather than sending
the Cancel Transaction Event. This is a very good
example of transport specific implementation of the
canceling mechanism specified by the PTP layer. USB
Transport defines also other class-specific requests issued
to the default endpoint.

422 IEEE Transactions on Consumer Electronics, Vol. 48, No. 3 , AUGUST 2002

4.3 Containers
A Container is a USB Transport structure used to
encapsulate and transport PTP communication primitives.
The PTP “primitives” that are carried over using this USB
structure, are defined in Table 5.

4.4 Common Implementation Mistakes
During investigations of different implementation of PTP
transport for USB several issues have been found at both
Initiator and Responder sides. Most of these arise because
of inconsistencies in the specification of the USB
transport. Others are just violations of this specification.
Because PTP is the. first standard protocol for imaging
devices and is not mature enough, we have to deal with the
consequences. The cases listed below are not necessarily a
sign of a bad design in PTP itself. In some cases the
specification needs to be refined to clarify specific cases
that are presently implemented differently by different
device vendors.
4.4.1 Cancellation problems
Some camera manufacturers do not implement transaction
cancellation properly. The guide here is that USB has a
transport specific implementation of cancel by means of
the class specific Cancel Request which is not taken into
consideration by most PTP implementations. As a result,
PTP clients, such as the Windows Imaging Architecture
(WIA) mini-driver, wait until a transaction is completed
and discard the results. This can lead to significant delays
after the user cancels the operation. On the other hand
cancellation from Responder side is achieved by stalling
the USB pipe and setting a Transaction-Cancelled
response code as a device status. The majority of Initiator
implementations treat this as a Responder error. In general
this is the correct approach because the transaction did not
succeed, but in some cases the Initiator may refine the
reason for failure as a cancellation to differentiate it from
cases when the transaction failed because of transport
error.
4.4.2 Incorrect error reporting techniques
Many of camera implementations have a “habit” of
reporting PTP errors by using a USB level approach. In
such cases they usually stall the pipe and set the
appropriate response code in device status; cancel a
transaction (also by stalling the pipe and reporting a
Transaction-Cancelled code); stall the pipe without
identifying a reason (in this case the camera often needs a
reset); or even reset the USB connection. The correct
approach is to use the Response Phase to report the
appropriate PTP error code.
4.4.3
USB transport says that undefined parameters of operation,
response and event datasets need not be included in a
container which incorporates a “number of parameters”
field. However the undefined parameters may also be
transferred in containers with zero values as documented

Undefined Parameters - Transport Issues

in the PTP specification. The receiver of the container
should plan to handle both cases.
4.4.4
Even if the USB containers specify their length in the
header, the end of the container is still indicated by a short
or a NULL packet. When the container is not a multiple of
the USB packet length, then a short packet is received. In
this case there is no need for a NULL packet transmission.
The NULL packet must be explicitly issued and handled if
the container length is an exact multiple of the USB packet
length. Some implementations do not handle the NULL
packets properly.
4.4.5 Reset problems
Some camera implementations do not reset the PTP
session after a Reset Request or do not handle this request
at all. That usually leads to a Session-Already-Opened
error which is not expected by the Initiator after a reset. .
4.4.6 Timeout issues
Neither PTP nor the USB transport specification provides
any timing requirements between transaction phases or
inter-phase transfers. It is clear that a camera
implementatiomof PTP must know how to deal with cases
when the Initiator is not responding for a long time during
a transaction and take appropriate action (e.g. put a
message on OSD and reset the USB connection), but this
should be done after a reasonably long timeout (probably
not less than a minute). With too short a timeout the
Initiator could be suspended by the operating system for a
couple of seconds and the PTP transaction will be broken
before the Initiator has a chance to regain control.

5 Bluetooth Transport
This section describes a proposal to map the PTP over a
Bluetooth transport.

5.1 BPTP
As mentioned before, in the PTP there are five main
primitives that can be identified. These are: operation
requests, operation responses, data in, data out and events.

USB NULL packet not handled

While the first four primitives are part of the transaction
model described in one of the earlier sections, the fifth
one, events, is a completely asynchronous one during the
PTP session. Therefore, the transport should provide a
minimum of two logical channels to the PTP, for an easy
mapping. Bluetooth transport has the ability to provide this
at the L2CAP (Logical Link Control and Adaptation
Protocol) level. So, the natural level to interact with the
bluetooth protocol stack is the L2CAP layer.

All the PTP communication should go over two L2CAP
logical data channels, one dedicated for the event
communication and the other for command requests,
responses and data traffic. The L2CAP layer is providing
high level protocol multiplexing and packet segmentation
and reassembly (up to a maximum packet size). It will not
be enough just to send PTP data over L2CAP since the size

Bigioi et al.: Digital Camera Connectivity Solutions Using the Picture Transfer Protocol (PTP) 423

of the data may exceed the maximum L2CAP packet size.
Usually, the L2CAP maximum transmission unit (MTU)
will be exported using an implementation specific service
interface, while the minimum MTU size is 48 bytes and it
should be accommodated by any L2CAP implementations.

E
z

4

c
0

%
k

12cap II

Fig 5: Bluetooth Stack

It is the responsibility of the higher layer protocol to limit
the size of the packets sent to the L2CAP layer bellow the
MTU limit. Therefore, in order to map the PTP over
bluetooth at this level, we need to define a simple protocol
specification (BPTP - Bluetooth PTP) that will deal with
this kind of issues (see Fig 5 for its place in the bluetooth
protocol stacks architecture).

BPTP expects from L2CAP a reliable transport layer, error
free communication channels. It is a packet based transport
protocol. All the communications between the two
bluetooth imaging devices will go over two L2CAP logical
data channels. The events (PTP event datasets) are
transported separately from the Operation
requestshesponses and data, because of their asynchronous
nature. Using a separate L2CAP logical channel for event
mechanism (therefore using an out of band communication
channel), the implementation of the protocol will be very
much simplified.

The BPTP should perform segmentation and reassembly of
the application data (PTP data structures) whenever this
data exceeds the MTU negotiated by the L2CAP layers.

5.1.1 Command/Data Transport Channel
The BPTP Command/Data transport channel is based on a
L2CAP logical data channel. This channel is dedicated to
the data transfer during a PTP transaction: operation
request phase, data phase (either data in or data out phase)
and response phase.

Since the size of data transferred in the data phase could
exceed the minimum MTU size of L2CAP (48 bytes) it is
the only type of data that may require ,segmentation and
reassembly. Moreover, in order to ensure an error-free
operation, this data is subject to flow control mechanism as

well. This channel is- opened and configured by the
Initiator PTP device and is identified by the local L2CAP
logical channel identifier (LCID).

5.1.2 Event Transport Channel
The BPTP Event transport channel is based on a L2CAP
logical data channel. This channel is dedicated to PTP
Event transport. No segmentation or reassembly is needed
for this channel, since all the events have a fixed size not
exceeding 22 bytes (less than the minimum L2CAP MTU
which is 48 bytes). No flow control mechanism is required
for this channel. This channel is opened and configured by
the Initiator PTP device. This channel is identified by the
L2CAP local logical channel identifier (LCID).

5.2 Transport Channel Management
The PTP layer (in the top of BPTP) should be abstracted
from the transport mechanism used (Le. the existence of
the transport specific CommandlData and Event channels).
Therefore, the BPTP layer will rely on the existence of two
established L2CAP layer channels between the devices,
prior to transporting any PTP structures.

5.2.1 Transport Channels Establishment
In the communication between Initiator and Responder it
is the responsibility of the' Initiator to begin the device
connection and establish a BPTP transport channel to the
Responder.

YI HCI

Fig 6: Suggested Behavior for Bluetooth PTP Initiator

Our approach to this is presented in Fig 6, where we
introduce a new software component - the BluetoothPTP
manager, which can be an extension of the standard
Bluetooth stack manager. This component performs the
following tasks:

1. Device inquiry, network search for any local Bluetooth

2. Device service discovery on each physical device
devices.

discovered by the inquiry operation.

424 IEEE Transactions on Consumer Electronics, Vol. 48, No. 3, AUGUST 2002

SessionlD

3.Once a remote device is identified as a PTP imaging
device, the BluetootWTP manager tries to create the
L2CAP transport channels with the remote device.

4. If the bluetooth PTP manager successfully creates the
ControUData channel and the Event channel, then it will
pass the associated LCIDs to the BPTP object dealing
with the PTP, which will create a new imaging device in
the local system

5. An optional notification to a registered PTP aware
imaging application can also be performed.

* 0x05 to OxFF - Reserved

2 OpenSession and GetDevicelnfo
4 UlNT3 D 0x00000000 -valid only for

Because the LCID numbers are allocated dynamically by
L2CAP layer, the logical channels have to be open in
sequence to distinguish between the CommandlData and
Event transport channels. The Event transport channel
shall be established before the CommandlData channel
establishment is requested. It is important that the
established sequence of channels to be used for the BPTP
transport is known by both the Initiator and Responder.
Thus if an attempt to initiate the CommandlData transport
channels fails then the established Event transport channel
should be closed. The Initiator device may re-try to
establish the BPTP transport channels later (under some
time constraints rules).
5.2.2 Configuration of Transport Channels
The L2CAP logical data channels used by BPTP should
have their parameters configured as follows:

Flush Timeout parameter should be set to O x F F F F
(intinite) value, unless the BPTP implementation
supports transaction packet re-transmission so that
channel reliability can be achieved.
MTU parameter is implementation and device specific
and can be set for each BPTP transport channel to
different values. However, the minimum value should be
at least 48 bytes.

0 QoS parameter is implementation specific and the
Quality of Service support in BPTP is optional.

5.2.3 Shutdown of Transport channels
It is the Initiator’s responsibility (BPTP layer) to close all
the allocated communication channels whenever the
remote device is not in the bluetooth range. The L2CAP
channels will coexist during the presence of the Responder
in the bluetooth neighbourhood. A communication failure
with a Responder, resulting in a session communication
failure, will generate the shutdown of the communication
channels.

Length

Paylod

5.3 BPTP Packet Format
Beside the typical ETP data structures, a new type of
packet is being defined: flow control packet. It is used as
mechanism to synchronise the data transfer between the
BPTP layers, in order to avoid the blocking of L2CAP
layer with BPTP packets in the case that one of the layers
is not receivingkansmitting properly.

OxFFFFFFFF - reserved
UINTI The size of the payload contained in 2

? ? Dependent on the Packet Type
6 the packet

Ox00 - Invalid Value;
Ox01 - Operation Request Packet
0x02 - Operation Response Packet
0x03 - Data Packet)
0x04 - Flow Control Packet

transactions I I l l Session IDS
0x00000000 to OxFFFFFFFE -valid

Table 6: BPTP Packet Format

6 TCPDP Transport
This section describes existing issues of implementing PTP
over TCP/IP and possible solutions. The ideal layer for
mapping the PTP over TCP/IP protocols stack would be
TCP. That is because the stream sockets provide a reliable
way of communication between two networking devices
(i.e. the Initiator and Responder). Moreover, the possibility
to open multiple concurrent sockets to the same device
would provide the perfect support for
Command/Data/Response and Event PTP communication
primitives.

responses

Events Imm R to I mpped over HTTP in a p l i n g

Fig 7: PTP over HTTP

However, in a real world situation, most of the TCP/IP
ports are closed by different forms of security measures.
e.g. firewalls, or different constrains caused by availability
of reduced number of routable IP’s (proxies). Therefore
pure TCP/IP mapping for the PTP will work only in
network setups where both the Initiator and Responder
will have routable IP’s and will not be separated by any
firewall.

Usually, a firewall allows only traffic for known
communication protocols (i.e. known ports are left open),
the most common being FTP, HTTP and SSH. Fig 7
presents briefly the idea of mapping the PTP over the

Bigioi et al.: Digital Camera Connectivity Solutions Using the Picture Transfer Protocol (PTP) 425

HTTP protocol. Using HTTP protocol is very attractive
from two points of view: the traffic will go through any
firewall out there and the Initiator won't have to have a
routable IP address. The only requirement is that the
Responder should have a routable IP address and
implement mini-HTTP server functionality (support for the
basic POST and GET functions from the HTTP 1.1
protocol specifications).

POST (Request)

NO

GET (Data-in) H l T P OK

GET (Response) '5 Operation

Fig 8: PTP Transaction over HTTP

The PTP operation request dataset structure will be
transported from the Initiator to the Responder using a
standard POST HTTP method. The HTTP OK response
(200) will trigger on the Initiator to perform the remaining
phases to complete the transaction. Fig 8 describes the
proposed PTP transaction mapping over HTTP. The
events from the Initiator to the Responder will be carried
out by a HTTP POST method, while the Events from the
Responder to the Initiator will be carried over by the
HTTP GET method, which will be called by the Initiator
in a pooling fashion (i.e. from an Event thread). The
Responder will need to export transactions URI that will
be used by the Initiator to make the differentiation
between the synchronous transactions and asynchronous
events). A future paper will describe in detail the TCPPTP
transport protocol (see Fig 9) and the way this protocol
will encapsulate the specific PTP structures and data flow.

Despite the fact that the TCP/IP transport for PTP opens a
number of nice possibilities and new usage scenarios for
an imaging device, the PnP features of such an approach
are lost. The need for a TCP/IP Imaging Manager emerges,
a few of its roles being: remote device URI specification
(or IP), device discovery, authentication, the creation of
TCPPTP layer and remote device presentation in the local
system as an imaging device. Optionally, the TCP/IP

Imaging manager can notify an imaging application about
the presence of an imaging device in the local system.

Imaging Application
(PTP compliant)

Imaging Application
(PTP compliant)

A

Fig 9: PTP Layer Protocol in the TCP/IP Protocol Stack

7 Conclusions
The PTP seems to become the imaging transfer protocol of
choice for many digital camera manufacturers. As we tried
to convey in this paper, PTP is an extremely flexible
imaging protocol, designed to interconnect imaging
devices. Despite being a powerful and complete protocol,
it still lacks certain features for new emerging devices
(such as digital camera with streaming of video and audio
capabilities). This section aims to identify potential
problems that the PTP might have and proposes quick
fixes to those problems.

7.1 High Capacity Storage Problems
Today the storage capacity of digital media is increasing at
vertiginous rates. Digital media of 1GB capacity is a
reality; that is the storage that can easily accommodate
thousands of pictures. One of the few limitations of the
PTP, as it is specified today, is that is not allowing partial
browsing for the object handles from the same category
(Le. objects handle for JPG file types). This can result in
long initialization times or even long update times after
storage changes in poorly implemented Initiators.

A quick fix to this problem could be window based
browsing of object handles from the same category (i.e.
request of the first say 10 object handles and then the next
10 and so on).

426 IEEE Transactions on Consumer Electronics, Vol. 48, No. 3, AUGUST 2002

7.2 Multiple Session Problems
As it is, the PTP standard says that it is possible for
Responder to support multiple sessions at the same time
though it is not required to support more than one. On the
other hand one of PTP goals is that it is very simple to
implement even in an embedded environment with limited
resources. The multi-session approach can require more
processing power and resources, such as a multitasking
environment. So the problem is that even the Responder
supports multi-session (and in some cases it can be useful)
the generic PTP Initiator cannot assume this in the case
when multiple applications will access the camera
resources at the same time. This problem is solved very
well by serializing transactions by a PTP manager at the
Initiator.

In order for the serialization not to generate long response
time delays, the PTP manager should use the
GetPartialObject method to download the picture from the
Responder. As a suggestion to a standard extension we
would recommend the implementation of
SendPartialObject as a standard operation as well.

As it is now, in a multi-session implementation of the PTP,
the Initiator tries to open a session with the Responder by
specifying the SessionID in the operation request. The
responder will answer OK if the specified SessionID is
free. Otherwise, the Responder will answer
Session-Already-Open or Device-Bussy if no session is
available. The Initiator has to make a number of
Opensession requests until will find a free session. This
could be time consuming when the remote device is not
directly attached to the Initiator and a different transport
than USB is used.

The alternative to this problem would be for the Responder
to return in the response, as one of the response’s
parameter, an alternative SessionID (the first available), or
Device-Bussy if no session is available.

7.3
This is more of an implementation problem rather than a
problem of the protocol itself. Many implementers of the
PTP incorrectly interpret the meanings of different error
codes returned by the imaging devices. E.g. Getobject,
(Association Object) operation returns
Invalid-ObjectHandle instead of Invalid-Parameter (since
the association object doesn’t have other associated data
then the object info).

A solution to these types of problems would be a revision
of the protocol specifications, where such cases should be
described in more details.

7.4
A good example of that kind of problems is where an
Initiator opens a session with a given Responder, does
some data exchange and exits without closing the session.

Incorrect Utilization of Error Codes

Normal Responder Operation: Invalid States

In this case, a CloseSession after a Session-Already-Open
error will result in a failure since the Responder will
expect the TransactionID in sequence, but the new
Initiator will not have the expected TransactionID. A
quick fix for this situation would be to specify that the
Responder will accept CloseSession with a
TransactionID=0x00000000.

7.5
A very common case in existing implementations is where
the Responder reports that it implements a certain
parameter, but it doesn’t handle the special cases for that
particular parameter properly.

A very good example is the GetObjectHandle operation
that is accepting as second optional parameter the object
format code (that specifies the type of object the operation
should return handles for). The Responder should either
return Specfication-By-Format-Unsuported error code or
implement the full functionality. This parameter has a
specified special value of OXFFFFFFFF that, if issued, the
Responder should return object handles for all image
objects. In reality, most of the Responders will return all
the object handles ignoring the parameter value.

A fix for this problem would be to make impossible the
partial implementation of given parameters specification.
In this case, the object format code parameter would be
either fully supported or unsupported.

Handling of Special Value Parameters

7.6 Future Work
As future work, the authors intend to implement the
Picture Transfer Protocol over Bluetooth transport and
verify that the protocol is fully suited for wireless types of
transports.

8 References
PIMA 15740, Photographic and Imaging Manufacturers
Association Inc., 2000.

USB Still Image Capture Device Definition, USB Device
Working Group, 2000.

Bluetooth Specification Version 1.1, Bluetooth SIG,
February 2001

Bigioi et al.: Digital Camera Connectivity Solutions Using the Picture Transfer Protocol (PTP) 421

9 Author Biographies

Petronel Bigioi received his B.S.
degree in Electronic Engineering
from “Transilvania” University
from Brasov, Romania, in 1997.
At the same university he
received in 1998 M.S. degree in
Electronic Design Automation.
He received a M.S. degree in
electronic engineering at
National University of Ireland,

Galway in 2000. Currently he is lecturing embedded
systems at National University of Ireland, Galway. His
research interests include VLSI design, communication
network protocols and embedded systems.

Peter Corcoran received the BAI
(Electronic Engineering) and BA
(Math’s) degrees from Trinity
College Dublin in 1984. He
continued his studies at TCD
and was awarded a Ph.D. in
Electronic Engineering for
research work in the field of
Dielectric Liquids. In 1986 he
was appointed to a lectureship in

Electronic Engineering at UCG. His research interests
include microprocessor applications, environmental
monitoring technologies. He is a member of I.E.E.E.

George Susanu received his BS
degree in microelectronics from
“Kishinev Politechnical
Institute”, Kishinev, Republic of
Moldova. With an experience of
eight years in RTOS and
embedded systems, having a
wide experience in C/C++
programming he currently is
working as R&D senior
engineer with Accapella Ireland
Ltd. His research areas include

real time operating systems and device connectivity.

Irina Mocanu received her B.S.
degree in Computer Science
from University Politehnica of
Bucharest, Romania, in 1996. At
the same university she received
in 1997 M.S. degree in Real
Time Operating Systems for
embedded systems. Currently

Bucharest, Romania. She is currently teaching data
structures and algorithms, computer graphics and formal
languages
databases

-
,. Her .research interests
and computer graphics.

include multimedia,

she is teaching assistant at
University Politehnica of

