

PHOTOGRAPHIC AND IMAGING
MANUFACTURERS ASSOCIATION, INC.
PIMA 15740:2000
Approved 2000-07-05
FIRST EDITION

Photography – Electronic still picture imaging -
Picture Transfer Protocol (PTP)
for Digital Still Photography Devices

Published by:
Photographic and Imaging
 Manufacturers Association, Inc.
550 Mamaroneck Avenue, Suite 307
Harrison, NY 10528-1612 USA
Phone: (914) 698-7603
FAX: (914) 698-7609
E-mail: natlstds@pima.net (Standards Office)

The Association for Manufacturers of Image Technology Products

mail to:natlstds@pima.net?subject=PIMA 15740: 2000

PIMA 15740: 2000

ii
© 2000 PIMA, Inc. – All Rights Reserved

Copyright notice

This document is a PIMA Standard and is copyright-protected by the Photographic and Imaging
Manufacturers Association, Inc. Except as permitted under the applicable laws of the user’s
country, neither this PIMA Standard nor any extract from it may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, photocopying, recording or
otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to PIMA at the address below:

Director of Standards
PIMA, Inc
550 Mamaroneck Avenue, Suite 550
Harrison, NY 10528-1612 USA
Telephone: + 1 914 698-7603
Fax + 1 914 698-7609
E-mail pima@pima.net

Reproduction may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.

mailto:pima@pima.net?subject=PIMA 15740 Reprint Permission

PIMA 15740: 2000

iii
© 2000 PIMA, Inc. – All Rights Reserved

Foreword
The technical content of this PIMA standard is closely related to ISO 15740, which is currently
in the working draft stage while work on multiple transports is being completed. The main
difference is that PIMA 15740 includes an informative annex describing a USB implementation
of ISO 15740. This information is not included in ISO 15740, which instead references the USB
still device class document developed by the Device Working Group of the USB Implementers
Forum. The USB annex in PIMA 15740 provides the same technical approach as the USB still
device class specification. The reason for developing PIMA 15740 is to immediately provide a
complete, fully documented, stable, publicly available specification for USB implementations of
the Picture Transfer Protocol defined in ISO 15740. This will enable hardware and software
manufacturers to immediately produce product implementations, without waiting for the ISO
and USB documents to complete the approval process. This PIMA 15740 standard may be
withdrawn once the ISO 15740 and USB still device class documents have been approved and
are publicly available.

PIMA 15740: 2000

iv
© 2000 PIMA, Inc. – All Rights Reserved

Introduction
For the purposes of this standard, digital still photography devices (DSPDs) are defined as
devices with persistent storage that capture a digital two-dimensional image at a discrete point
in time. Most DSPDs include interfaces that can be used to connect to a host computer or other
imaging devices, such as a printer. A number of new, high speed interface transports have
recently been developed, including IrDA, USB, and IEEE1394 (Firewire). This standard is
designed to provide requirements for communicating with DSPDs. This includes
communications with any type of device, including host computers, direct printers and other
DSPDs over a suitable transport. The requirements include standard image referencing
behavior, operations, responses, events, device properties, datasets, and data formats to ensure
interoperability. This standard also provides optional operations and formats, as well as
extension mechanisms.

This standard has been designed to appropriately support popular image formats used in digital
still cameras, including the EXIF and TIFF/EP formats defined in ISO 12234-1 and ISO 12234-
2, as well as the Design Rule for Camera File System (DCF) and the Digital Print Order Format
(DPOF).

Purpose
Numerous DSPDs have been developed in order to allow direct capture of digital images for
both consumer and professional photography applications. Most of these devices can interface
to digital computers or other imaging devices, such as printers, using various standardized
electrical digital interfaces. However, there is currently no standard operation set to enable data
transfer or control of DSPDs over these different interfaces. As a result, proprietary software is
typically developed to control image capture devices from specific manufacturers, and different
DSPD drivers are needed to support each interface. Standardizing the operations and data
requirements for DSPDs will assist transport implementers, platform aggregation of conforming
devices across all transports, and device manufacturers by providing a common ground for
interface support. It will also assist developers of host software and image receiving devices by
ensuring that their products can interface to many different DSPDs from different
manufacturers, and assist users by ensuring that the DSPDs they purchase will inter-operate with
those of different manufacturers.

The primary purpose of this standard is to provide a common protocol for any device, including
DSPDs, to exchange images with a DSPD, either by retrieving images from a DSPD or by
sending images to or from a DSPD. Secondary purposes include a mechanism for devices to
control DSPDs (e.g. a PC can request that a DSPD change its shutter duration setting and
capture a new picture) and the ability to transfer auxiliary information such as non-image data
files and associated information, such as a digital print order file (DPOF).

PIMA 15740: 2000

v
© 2000 PIMA, Inc. – All Rights Reserved

Contributors
The following experts have contributed to this technical specification:

Steinberg, Eran FotoNation, Inc. (Project Leader)
Looney, Timothy Eastman Kodak Company (Editor)
Whitcher, Timothy Eastman Kodak Company (USB Annex D Editor)

Anderson, Blair Ajilon Information Technology Services
Armstrong, Frank Eastman Kodak Company
Bitz, Mike Apple Computer, Inc.
Coppola, Steven Eastman Kodak Company
Edwards, Eric Sony Corporation
Fontani, Paolo Hewlett Packard Company
Foshee, Scott Adobe Systems, Inc.
Fujisaki, Hirohisa Eastman Kodak, Japan
Hong, Fang Seiko Epson Corporation
Hsieh, William Microsoft Corporation
Kazunori, Suenaga Seiko Epson Corporation
Kuo, David Flashpoint Technology, Inc.
Lawrence, David Smart Technology Enablers, Inc.
Lyon, Lonne Eastman Kodak Company
Melville, John Eastman Kodak Company
Myers, Paul Questra Corporation
Parsons, Dave Microsoft Corporation
Parulski, Ken Eastman Kodak Company
Reus, Edward Microsoft Corporation
Sadovsky, Vladimir Microsoft Corporation
Shidate, Ichiro Nikon Corporation

PIMA 15740: 2000

vi
© 2000 PIMA, Inc. – All Rights Reserved

Table of Contents
1 SCOPE ...1

2 NORMATIVE REFERENCES..2

3 TERMS & DEFINITIONS...3

4 DIGITAL STILL PHOTOGRAPHY DEVICE MODEL..7
4.1 OVERVIEW ...7
4.2 BASELINE REQUIREMENTS ...8

4.2.1 Implementation of a suitable transport ...8
4.2.2 Thumbnail Support ..8
4.2.3 Standard Image and Data Reference Behavior...8
4.2.4 Asynchronous Event Support...8

5 DATA FORMAT SPECIFICATION ..9
5.1 GENERAL FORMAT...9

5.1.1 Multibyte Data...9
5.1.2 Bit Format ...9
5.1.3 Hexadecimal Notation ...9

5.2 DATATYPE SUMMARY..10
5.2.1 Datacodes..10

5.3 SIMPLE TYPES..12
5.3.1 Integers..12
5.3.2 Handles..12
5.3.3 Decimal Types ...13
5.3.4 Strings..13

5.3.4.1 DateTime String ..14
5.4 ARRAYS ...14
5.5 DATASETS..15

5.5.1 DeviceInfo Dataset ..15
5.5.2 ObjectInfo Dataset ..18
5.5.3 StorageInfo Dataset...21

6 IMAGE AND DATA OBJECT FORMATS...24
6.1 THUMBNAIL FORMATS ...24

6.1.1 Compressed JPEG thumbnail image files ...24
6.1.2 Uncompressed TIFF thumbnail image files ..25

6.2 OBJECTFORMATCODES..25
6.3 OBJECT FORMAT VERSION IDENTIFICATION...27
6.4 DATA OBJECT ASSOCIATION ..27

6.4.1 Association Types ..27
6.4.1.1 Unordered Associations ..29
6.4.1.2 Ordered Associations ..29

6.4.2 Associations as Filesystem Folders ...30
7 TRANSPORT REQUIREMENTS ..31

7.1 DISCONNECTION EVENTS ...31
7.2 RELIABLE, ERROR FREE CHANNEL ..31
7.3 ASYNCHRONOUS EVENT SUPPORT ...31
7.4 DEVICE DISCOVERY AND ENUMERATION...31

PIMA 15740: 2000

vii
© 2000 PIMA, Inc. – All Rights Reserved

7.5 SPECIFIC TRANSPORTS ...31
7.5.1 USB..31
7.5.2 IrDA...32
7.5.3 IEEE1394 ..32
7.5.4 RS232C (Serial)...32

8 PERSISTENT STORAGE..33
8.1 STORAGEID ...33
8.2 DATA OBJECT REFERENCING ...34

8.2.1 Referencing via ObjectHandles ...34
8.2.1.1 ObjectHandle Assignment...34

8.2.2 AccessCapability ...35
8.3 RECEIVER OBJECT PLACEMENT ...35

9 COMMUNICATION PROTOCOL ..37
9.1 DEVICE ROLES ...37
9.2 SESSIONS..37

9.2.1 SessionID...38
9.3 TRANSACTIONS ..38

9.3.1 TransactionID ...38
9.3.2 Operation Request Phase ..39
9.3.3 Data Phase ..40
9.3.4 Response Phase ...40

9.4 OPERATION FLOW ..42
9.4.1 Pull Scenarios..42

9.4.1.1 Scenario 1..42
9.4.1.2 Scenario 2..43
9.4.1.3 Scenario 3..43
9.4.1.4 Scenario 4..44

9.4.2 Push Scenarios ..45
9.4.2.1 Scenario 1..45
9.4.2.2 Scenario 2..45

9.5 VENDOR EXTENSIONS ..46
10 OPERATIONS ..47

10.1 OPERATION PARAMETERS..47
10.2 OPERATIONCODE FORMAT...47
10.3 OPERATIONCODE SUMMARY ...47
10.4 OPERATION DESCRIPTIONS...49

10.4.1 GetDeviceInfo..49
10.4.2 OpenSession ..49
10.4.3 CloseSession..50
10.4.4 GetStorageIDs ...50
10.4.5 GetStorageInfo ..51
10.4.6 GetNumObjects..51
10.4.7 GetObjectHandles ...53
10.4.8 GetObjectInfo ..54
10.4.9 GetObject...54
10.4.10 GetThumb ..55
10.4.11 DeleteObject ..55
10.4.12 SendObjectInfo ..56
10.4.13 SendObject ..58
10.4.14 InitiateCapture ..59
10.4.15 FormatStore...61
10.4.16 ResetDevice ...62

PIMA 15740: 2000

viii
© 2000 PIMA, Inc. – All Rights Reserved

10.4.17 SelfTest ..62
10.4.18 SetObjectProtection...63
10.4.19 PowerDown ...63
10.4.20 GetDevicePropDesc ..64
10.4.21 GetDevicePropValue...64
10.4.22 SetDevicePropValue..65
10.4.23 ResetDevicePropValue ..65
10.4.24 TerminateOpenCapture...66
10.4.25 MoveObject ...67
10.4.26 CopyObject..67
10.4.27 GetPartialObject ...68
10.4.28 InitiateOpenCapture..69

11 RESPONSES ...71
11.1 RESPONSECODE FORMAT...71
11.2 RESPONSECODE SUMMARY ...71
11.3 RESPONSE DESCRIPTIONS...73

11.3.1 OK ...73
11.3.2 General Error..73
11.3.3 Session Not Open...73
11.3.4 Invalid TransactionID ...73
11.3.5 Operation Not Supported ..73
11.3.6 Parameter Not Supported..73
11.3.7 Incomplete Transfer...74
11.3.8 Invalid StorageID..74
11.3.9 Invalid ObjectHandle ..74
11.3.10 DeviceProp Not Supported..74
11.3.11 Invalid ObjectFormatCode..74
11.3.12 Store Full...74
11.3.13 Object WriteProtected ...75
11.3.14 Store Read-Only ..75
11.3.15 Access Denied..75
11.3.16 No Thumbnail Present...75
11.3.17 Self Test Failed..75
11.3.18 Partial Deletion...75
11.3.19 Store Not Available ...76
11.3.20 Specification By Format Unsupported ..76
11.3.21 No Valid ObjectInfo...76
11.3.22 Invalid Code Format ...76
11.3.23 Unknown Vendor Code ...76
11.3.24 Capture Already Terminated ...77
11.3.25 Device Busy ...77
11.3.26 Invalid ParentObject ...77
11.3.27 Invalid DeviceProp Format...77
11.3.28 Invalid DeviceProp Value ...77
11.3.29 Invalid Parameter..78
11.3.30 Session Already Open..78
11.3.31 Transaction Cancelled...78
11.3.32 Specification of Destination Unsupported...78

12 EVENTS...79
12.1 EVENT TYPES...79

12.1.1 Transports with In-Band Events ..79
12.1.2 Transports with Out-of-Band Events...79

PIMA 15740: 2000

ix
© 2000 PIMA, Inc. – All Rights Reserved

12.2 EVENT DATASET ..79
12.3 EVENTCODE FORMAT ..80
12.4 EVENTCODE SUMMARY...81
12.5 EVENT DESCRIPTIONS ..81

12.5.1 CancelTransaction ..81
12.5.2 ObjectAdded ..82
12.5.3 ObjectRemoved..82
12.5.4 StoreAdded ..82
12.5.5 StoreRemoved..83
12.5.6 DevicePropChanged ...83
12.5.7 ObjectInfoChanged ...83
12.5.8 DeviceInfoChanged ...84
12.5.9 RequestObjectTransfer ..84
12.5.10 Store Full...84
12.5.11 Device Reset ..84
12.5.12 StorageInfoChanged..85
12.5.13 CaptureComplete...85
12.5.14 UnreportedStatus...85

13 DEVICE PROPERTIES...87
13.1 VALUES OF A DEVICE PROPERTY ...87
13.2 DEVICE PROPERTY MANAGEMENT REQUIREMENTS...88

13.2.1 Device Property Interdependencies...88
13.3 DEVICE PROPERTY IDENTIFICATION...88

13.3.1 Device Property Describing Requirements ...89
13.3.2 Device Property Describing Methods ...89
13.3.3 Device Property Describing Dataset...89
13.3.4 DevicePropCode Format...91
13.3.5 DevicePropCode Summary ...92

13.4 DEVICE PROPERTY DESCRIPTIONS ...93
13.4.1 BatteryLevel...93
13.4.2 FunctionalMode ..93
13.4.3 ImageSize ..93
13.4.4 CompressionSetting...94
13.4.5 WhiteBalance...94
13.4.6 RGB Gain ..95
13.4.7 FNumber..96
13.4.8 FocalLength ..96
13.4.9 FocusDistance ...97
13.4.10 FocusMode ..97
13.4.11 ExposureMeteringMode ..97
13.4.12 FlashMode...98
13.4.13 ExposureTime..98
13.4.14 ExposureProgramMode ..99
13.4.15 ExposureIndex ...100
13.4.16 ExposureBiasCompensation..100
13.4.17 DateTime ...100
13.4.18 CaptureDelay ..101
13.4.19 StillCaptureMode ..101
13.4.20 Contrast ...102
13.4.21 Sharpness ..102
13.4.22 DigitalZoom...102
13.4.23 EffectMode...103
13.4.24 BurstNumber ...103

PIMA 15740: 2000

x
© 2000 PIMA, Inc. – All Rights Reserved

13.4.25 BurstInterval..103
13.4.26 TimelapseNumber..104
13.4.27 TimelapseInterval ..104
13.4.28 FocusMeteringMode..104
13.4.29 UploadURL ...105
13.4.30 Artist ..105
13.4.31 Copyright...105

14 CONFORMANCE SECTION ...106
Annex Listing

ANNEX A: GOALS OF THIS STANDARD ...109
ANNEX B: FILESYSTEM IMPLEMENTATION EXAMPLES ..110
ANNEX C: OPTIONAL DEVICE FEATURES..112
ANNEX D: USB IMPLEMENTATION OF PIMA15740 ...114
ANNEX E: BIBLIOGRAPHY..147

PIMA 15740: 2000

xi
© 2000 PIMA, Inc. – All Rights Reserved

Index of Figures
FIGURE 1: HORIZONTALPANORAMIC SEQUENCENUMBER EXAMPLE ...28
FIGURE 2: VERTICALPANORAMIC SEQUENCENUMBER EXAMPLE..28
FIGURE 3: 2DPANORAMIC SEQUENCENUMBER EXAMPLE ...29
FIGURE 4: STORAGEID LAYOUT ..33
FIGURE 6: TRANSACTION SEQUENCE ...38
FIGURE 8: SINGLE OBJECT INITIATECAPTURE SEQUENCE ..60
FIGURE 9: MULTIPLE OBJECT INITIATECAPTURE SEQUENCE ...61
FIGURE 10: SINGLE OBJECT INITIATEOPENCAPTURE SEQUENCE ...70
FIGURE 11: MULTIPLE OBJECT INITIATEOPENCAPTURE SEQUENCE...70

Annex Figures
FIGURE D.1: DEVICE CONFIGURATION...115
FIGURE D.2: DESCRIPTOR TREE...126
FIGURE D.3: OPERATION PHASE STATE DIAGRAM...133
FIGURE D.4: BULK-ONLY PROTOCOL STREAMS ..134
FIGURE D.5: A USB STILL IMAGE CAPTURE DEVICE ..135
FIGURE D.6: STILL IMAGE PROTOCOL DEVICE BEHAVIOR ...140
FIGURE D.7: STILL IMAGE PROTOCOL HOST BEHAVIOR ..141
FIGURE D.8: CANCELLATION CASES ..144

Index of Tables

TABLE 1: DATATYPE SUMMARY..10
TABLE 2: DATACODE FORMATS...11
TABLE 3: DATATYPE CODES..12
TABLE 4: STRING FORMAT...13
TABLE 5: ARRAY FORMAT...14
TABLE 6: DEVICEINFO DATASET ...16
TABLE 7: FUNCTIONALMODE VALUES...17
TABLE 8: OBJECTINFO DATASET ...18
TABLE 9: OBJECTINFO PROTECTIONSTATUS VALUES..19
TABLE 10: STORAGEINFO DATASET...21
TABLE 11: STORAGE TYPES...21
TABLE 12: FILESYSTEMTYPE VALUES ...22
TABLE 13: STORAGEINFO ACCESSCAPABILITY VALUES ..22
TABLE 14: OBJECTFORMATCODES ..26
TABLE 15: ASSOCIATION TYPES ..27
TABLE 16: OPERATIONREQUEST DATASET..39
TABLE 17: RESPONSE DATASET...40
TABLE 18: OPERATION SUMMARY...48
TABLE 19: SELFTESTTYPE VALUES...63
TABLE 20: RESPONSECODE SUMMARY..72
TABLE 21: EVENT DATASET ..80
TABLE 22: EVENTCODE SUMMARY ...81
TABLE 23: DEVICE PROPERTY DESCRIBING DATASET (DEVICEPROPDESC) ..90
TABLE 24: PROPERTY DESCRIBING DATASET, RANGE FORM...90
TABLE 25: PROPERTY DESCRIBING DATASET, ENUMERATION FORM ..91
TABLE 26: DEVICEPROPCODE SUMMARY ...92
TABLE 27: WHITE BALANCE SETTINGS..95
TABLE 28: FOCUSMODE SETTINGS ..97

PIMA 15740: 2000

xii
© 2000 PIMA, Inc. – All Rights Reserved

TABLE 29: EXPOSUREMETERINGMODE SETTINGS...98
TABLE 30: FLASHMODE SETTINGS ..98
TABLE 31: EXPOSUREPROGRAMMODE SETTINGS..99
TABLE 32: STILLCAPTUREMODE SETTINGS ...101
TABLE 33: EFFECTMODE SETTING...103
TABLE 34: FOCUSMETERINGMODE SETTINGS ...104
TABLE 35: OPERATION IMPLEMENTATION CONFORMANCE..107
TABLE 36: EVENT IMPLEMENTATION CONFORMANCE ...108

Annex Tables
TABLE D.1: USB TERMS AND ABBREVIATIONS...114
TABLE D.2: FORMAT OF SETUP DATA FOR THE CANCEL REQUEST ..122
TABLE D.3: FORMAT OF CANCEL REQUEST DATA...122
TABLE D.4: FORMAT OF SETUP DATA TO RETRIEVE THE EXTENDED EVENT DATA..123
TABLE D.5: DATA FORMAT OF GET EXTENDED EVENT DATA REQUEST ...123
TABLE D.6: FORMAT OF SETUP DATA FOR THE DEVICE RESET REQUEST ..124
TABLE D.7: FORMAT OF SETUP DATA TO RETRIEVE THE EXTENDED EVENT DATA..124
TABLE D.8: DATA FORMAT OF GET DEVICE STATUS REQUEST ...125
TABLE D.9: DEVICE DESCRIPTOR ..127
TABLE D.10: CONFIGURATION DESCRIPTOR ..128
TABLE D.11: STILL IMAGE INTERFACE DESCRIPTOR..128
TABLE D.12: DATA-IN ENDPOINT DESCRIPTOR ...129
TABLE D.13: DATA-OUT ENDPOINT DESCRIPTOR..129
TABLE D.14: INTERRUPT ENDPOINT DESCRIPTOR ...129
TABLE D.15: MANUFACTURER ID CODE DESCRIPTOR ..130
TABLE D.16: PRODUCT ID CODE DESCRIPTOR..130
TABLE D.17: SERIAL NUMBER DESCRIPTOR..131
TABLE D.18: LANGUAGE ID DESCRIPTOR ...131
TABLE D.19: VENDOR INFORMATION DESCRIPTOR ...131
TABLE D.20: GENERIC CONTAINER STRUCTURE ...136
TABLE D.21: COMMAND BLOCK PAYLOAD STRUCTURE ...137
TABLE D.22: RESPONSE BLOCK PAYLOAD STRUCTURE...138
TABLE D.23: FORMAT OF ASYNCHRONOUS EVENT INTERRUPT DATA...142

PIMA 15740: 2000

1
© 2000 PIMA, Inc. – All Rights Reserved

1 Scope
It is the objective of this standard to provide a common communication mechanism for
exchanging images with and between digital still photography devices (DSPDs). This
includes communication between digital still photography devices and host computers,
printers, other digital still devices, telecommunications kiosks, and image storage and display
devices.

This standard presents a protocol that is intended to be transport and platform independent.
The purpose of this intent is to enable standard behavior by allowing implementation of the
protocol in a variety of standard transports. In this document three transports are referenced:
USB (Universal Serial Bus), IEEE 1394, and IrDA (Infrared Data Association). The protocol
is by no means limited to these transports. This standard specifies the following:

• Behavior requirements for DSPDs. This includes the baseline features a device needs to
support to provide interoperability over conforming transports.

• Functional requirements needed by a transport to enable the creation of a transport-
dependent implementation specification that conforms to this standard.

• A high-level protocol for communicating with and between DSPDs consisting of
operation, data, and response phases.

• Sets of suggested data codes and their usages including:

• OperationCodes

• ResponseCodes

• ObjectFormatCodes

• DevicePropCodes

• EventCodes

• Required datasets and their usages.

• A means for describing data object associations and filesystems.

• Mechanisms for implementing extensibility.

This standard does not attempt to define any of the following:

• Any sort of device discovery, enumeration, or transport aggregation methods.
Implementation of this functionality is left to the transports and the platforms upon
which support for this standard is implemented.

• An application programming interface. This is left to the platforms upon which support
for this standard is implemented.

PIMA 15740: 2000

2
© 2000 PIMA, Inc. – All Rights Reserved

2 Normative References
The following standards contain provisions, which, through reference in this text, constitute
provisions of this standard. At the time of publication, the editions were valid. All standards
are subject to revision, and parties to agreements based on this standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated
below. Members of IEC and ISO maintain registers of currently valid standards.

IEC 61966-2-1:1999, Multimedia systems and equipment – Colour measurement and
management – Part 2-2: Colour management - Default RGB colour space - sRGB

ISO 8601: 1988 Data elements and interchange formats - Information interchange -
Representation of Dates and times

ISO 12234-1 Photography - Electronic still picture cameras - Removable memory, Part 1:
Basic removable memory reference model1

ISO 12234-2 Photography - Electronic still picture cameras - Removable memory, Part 2:
Image data format - TIFF/EP1

ISO/IEC 10918-1: 1994 Information technology - Digital compression and coding of
continuous-tone still images: Requirements and guidelines

ISO/IEC 10646-1:1993 Information technology -- Universal multiple-octet coded character
set (UCS) -- Part 1: Architecture and basic multilingual plane

1 To be published

PIMA 15740: 2000

3
© 2000 PIMA, Inc. – All Rights Reserved

3 Terms & Definitions
For the purpose of this standard, the following definitions shall apply:

album: End-user created object that is used to logically group data objects according to
some user-defined criteria. An album may or may not be a physical folder in a filesystem. In
this specification, album is a type of association.

Application Programming Interface: (API). High-level functional description of a software
interface that is typically language dependent.

association: Logical construct used to expose a relationship between discrete objects. In this
specification, associations are used to indicate that separate data objects are related.
Examples include a time sequence, or user-defined groupings by content or capture session.
Associations are represented like folders, and may be nested using a standard branched
hierarchical tree structure.

connection: Transport-provided mechanism for establishing paths for transferring data
between devices.

datacode: 16-bit unsigned integer whose Most Significant Nibble (4 bits) is used to indicate
the category of code, and whether the code value is standard or vendor-extended.

data object: Image or other type of data that typically exists in persistent storage of a DSPD
or other device.

dataset: Transport-independent collection of one or more individual data items with known
interpretations. Data sets are not necessarily opaque nor atomic to transport
implementations.

DCF: See Design rule for Camera File system.

Design rule for Camera File system (DCF): Standard convention for camera file systems
that specifies the file format, foldering, and naming conventions in order to promote file
interoperability between conforming digital photography devices.

Device discovery: Act of determining the set of all devices present on a particular transport
or platform that are physically or logically accessible.

Digital Still Photography Device (DSPD): Device with persistent storage that captures a
two-dimensional digital still image.

Digital Print Order Format (DPOF): Standardized ASCII file stored on removable media
along with the image files that indicates how many copies of which images should be printed.
It also allows index prints, cropping, and text overlays to be specified.

DSPD: See Digital Still Photography Device.

enumeration: Act of creating an ordered increasing numerical list that contains one
representative element for each member of a set.

PIMA 15740: 2000

4
© 2000 PIMA, Inc. – All Rights Reserved

Exif/JPEG: Compressed file format for digital cameras in which the images are compressed
using the baseline JPEG standard, described in ISO 12234, and metadata and thumbnail
images are stored using TIFF tags within an application segment at the beginning of the
JPEG file.

folder: Optional sub-structure in a hierarchical storage area that can contain data objects.

FlashPix: Image file format, defined in FlashPix Format Specification, using a structured
storage file containing metadata and a tiled, hierarchical image representation. The tiles are
normally baseline JPEG images, and individual image tiles of a particular resolution can be
easily accessed for rapid display and editing.

ICC profile: Data file that characterises the colour characteristics of an image capture or
image output device

IEEE 1394: High-speed serial bus standardised by the IEEE (Institute of Electrical and
Electronics Engineers) currently having clock rates of 100, 200, and 400 Mbits/sec.

image aspect ratio: Ratio of the image width to the image height.

image capture device: Device, such as a digital still picture camera or a scanner, for
converting a scene or a fixed image such as a print, film, or transparency, to digital image
data.

image output device: Device, such a printer or film recorder that can render a digital image
to hardcopy media.

in-band events: Transport only provides one logical connection, so events are transmitted
on the same logical connection as operations and responses. Events are therefore only
asynchronous to the degree of data granularity for which the transport implementation allows
event interleaving.

Initiator: Device that initiates a conversation by opening a session, and issues all formal
operations to the Responder. The Initiator is analogous to the client in the client/server
paradigm.

IrDA: Infrared Data Association. Infrared wireless communication system that currently
supports wireless communication at data rates between 9600bps and 4Mbps.

JPEG: Joint Photographic Experts Group. Image compression method defined in ISO/IEC
10918-1.

LogicalStorageID: Least significant sixteen bits of a StorageID. This value uniquely
identifies one logical storage area within the physical store indicated in the
PhysicalStorageID.

Most Significant Nibble (MSN): Most-significant four bits of the most-significant byte.

MSN: See Most Significant Nibble.

object aggregation: Act of taking one or more location-specific lists of objects that exists
on a particular device and grouping them together into one set.

PIMA 15740: 2000

5
© 2000 PIMA, Inc. – All Rights Reserved

ObjectHandle: Device-unique 32-bit unsigned integer assigned by a device to each data
object in local persistent storage. This handle is provided to external devices, which must
use it to reference that piece of data in subsequent transactions. ObjectHandles are
guaranteed to be persistent over at least a session.

out-of-band events: Transport provides a separate logical connection for transmitting
events, and events are therefore asynchronous from operation transactions.

PC: Personal Computer. Personal computing device, which may employ various hardware
architectures and operating systems.

PhysicalStorageID: Most significant sixteen bits of a StorageID. This value uniquely
identifies one physical storage area on a device, although there may be more than one logical
store per physical store.

PIMA: Photographic & Imaging Manufacturer’s Association. This organisation serves to
represent the common interests among manufacturers of imaging technology products. See
http://www.pima.net.

PNG: Portable Network Graphics. Extensible file format for lossless, portable, compressed
storage of raster images. PNG supports indexed-color, grayscale, truecolor, and an optional
alpha channel.

protocol: Defined mechanisms for exchanging data between devices.

pull model: Use paradigm for DSPDs where the object receiver initiates the operation
requests to transfer data objects from the sender.

push model: Use paradigm for DSPDs where the object sender initiates the operation
requests to transfer data objects to the receiver.

QuickDraw picture: File format consisting of sequences of saved drawing commands,
commonly referred to as PICT.

Responder: Device that responds to operations from the Initiator. The Responder is
analogous to the server in the client/server paradigm.

session: Logical connection between two devices defining a period of time during which
obtained state information, such as handle persistence, may be relied upon.

square pixel sampling: Image having equal sample spacing in the two orthogonal sampling
directions.

StorageID: Device-specific four byte unsigned integer (UINT32) that represents a unique
storage area that may contain data objects. The most significant sixteen bits of a StorageID
represents the PhysicalStorageID, while least significant sixteen bits of a StorageID
represents the LogicalStorageID.

transport aggregation: Act of taking one or more transport-specific lists of conforming
devices that are logically or physically accessible in a system and grouping them into one set
that spans all transports across the particular system.

http://www.pima.net

PIMA 15740: 2000

6
© 2000 PIMA, Inc. – All Rights Reserved

transport: Means of attaching the digital capture device to some other digital device. It may
include a physical wire or a wireless connection.

USB: Universal serial bus, a digital interface for connecting up to 127 devices in a tiered-star
topology. See http://www.usb.org.

http://www.usb.org

PIMA 15740: 2000

7
© 2000 PIMA, Inc. – All Rights Reserved

4 Digital Still Photography Device Model

4.1 Overview
Digital still photography devices (DSPDs) are used to acquire digitally encoded still images.
These devices include persistent storage capability so that any digital images and other data
acquired by the device are preserved across power cycle operations unless they are
specifically deleted.

A DSPD might support many different features. This standard supports devices with a wide
range of potential features. However, a small number of features are required for
conformance with this standard, while many others are optional. Clause 4.2, Baseline
Requirements, describes the required features and functionality. Annex C, Optional Device
Features, describes features that are not required for conformance, but should be
implementable using this standard and its extension mechanisms.

Standard data formats for datatypes and datasets are described in Clause 5, Data Format
Specification.

Clause 6, Image and Data Object Formats, describes required and optional support for
particular image and non-image formats and metadata. This clause also describes methods for
associating data objects.

A particular feature set places requirements on the transports used to connect the DSPD to
other devices. Clause 7, Transports, describes these requirements.

All DSPDs must store images in some form of storage area. Clause 8, Persistent Storage,
describes the usage of these stores, as well as the methods for referencing them.

Clause 9, Communication Protocol, describes the roles of devices, sessions, and
transactions that transports are required to use in order to communicate with and/or between
DSPDs. Clause 10, Operations, lists the standard operations, their corresponding optional
operation codes, and their usages. Standard responses to operations are defined in Clause 11,
Responses. The use of events is mandatory in order to ensure synchronization between
devices. Clause 12, Events, describes events and their usages.

In order to expose device controls and manipulate properties in a common way, a standard set
of device properties and their usages have been defined in Clause 13, Properties.

Clause 14, Conformance, serves as a summary of the individual operations and events that
are required to be supported by particular devices, as well as a checklist that can be used by
implementers.

PIMA 15740: 2000

8
© 2000 PIMA, Inc. – All Rights Reserved

4.2 Baseline Requirements
This section lists the requirements that must be met in order for a DSPD to conform to this
standard.

4.2.1 Implementation of a suitable transport
The DSPD shall provide appropriate hardware and software support for at least one transport
that meets the requirements specified in Clause 6, Transports.

4.2.2 Thumbnail Support
The DSPS shall provide support for thumbnails as described in Clause 6.1, Thumbnail
Image File Formats.

4.2.3 Standard Image and Data Reference Behavior
In order to ensure interoperability, it is necessary to define a standard mechanism for
describing image and data objects present on a device. The DSPD shall meet the
requirements described in Clause 6, Image and Data Object Formats.

4.2.4 Asynchronous Event Support
The DSPD shall be capable of generating and reacting to asynchronous events. Clause 12,
Events, describes events and their usages.

PIMA 15740: 2000

9
© 2000 PIMA, Inc. – All Rights Reserved

5 Data Format Specification
In order to ensure interoperability, this standard provides conventions for encoding relevant
datatypes and datasets.

5.1 General Format

5.1.1 Multibyte Data
For the purposes of interpretability, all data fields showing internal content representations
shall be read from left to right, in order of decreasing byte significance, commonly referred to
as big-endian notation. Therefore, the left-most byte shall represent the Most Significant
Byte (MSB), and the right-most byte shall represent the Least Significant Byte (LSB). The
most significant four bits of the MSB are referred to as the Most Significant Nibble (MSN),
while the least significant four bits of the LSB are referred to as the Least Significant Nibble
(LSN). The actual multibyte format used on the wire is transport-specific, while the actual
multibyte format used at the application interface is platform-specific.

5.1.2 Bit Format
Bit fields presented in this standard are numbered so that the least significant bit is at the zero
position, holding the right-most position in the field. For example, the most significant bit of
a UINT32 would be referred to as bit 31, while the least significant bit would be referred to
as bit 0.

5.1.3 Hexadecimal Notation
This standard uses hexadecimal notation as a means to concisely describe multibyte fields.
All hexadecimal bytefields are represented with the prefix ‘0x’. Following this prefix are
pairs of characters, where each pair represents one byte, with the most significant byte
appearing first, and the least significant byte appearing last.

PIMA 15740: 2000

10
© 2000 PIMA, Inc. – All Rights Reserved

5.2 Datatype Summary
The following types of data are defined in this standard as having specific interpretations of
their data content:

Table 1: Datatype Summary

Name Size
(Bytes) Format

OperationCode 2 Datacode (UINT16)
ResponseCode 2 Datacode (UINT16)
EventCode 2 Datacode (UINT16)
DevicePropCode 2 Datacode (UINT16)
ObjectFormatCode 2 Datacode (UINT16)
StorageID 4 Special (UINT32)
ObjectHandle 4 Handle (UINT32)
DateTime Variable String
DeviceInfo Variable Dataset
StorageInfo Variable Dataset
ObjectInfo Variable Dataset
DevicePropDesc Variable Dataset

DevicePropDescEnum Variable Enumerated form of
DevicePropDesc

DevicePropDescRange Variable Range form of
DevicePropDesc

Object Variable Variable

5.2.1 Datacodes
Datacodes are 16-bit unsigned integers (UINT16) with specified interpretations, used for the
purposes of enumeration. In order to aid in visual interpretation, potential transport
debugging, and to simplify some transport implementations, the primary and vendor-defined
datacodes for operations, responses, data formats, events, and properties in this standard have
mutually exclusive values. The most significant four bits of a datacode (most significant
nibble) shall have a particular bit pattern that identifies its code type. Therefore the
allocation of these four bits to type specification infers that the minimum value of any
enumerated datacode is 0 (xxxx0000-00000000) and the maximum value is 4,095
(xxxx1111-11111111).

It is strongly recommended that transport implementations use these codes directly in their
binary representations, but this is not mandatory. Particular transport implementations may
be unable to use the specified code systems for one or more code types, due to pre-existing
structure formats for data-wrapping, or other constraints. Where it is possible to use the
codes, they should be used. If one or more particular datacode types cannot be used, the
transport implementation specification should still attempt to accommodate those datacode
types that can be used. If the binary form suggested in this standard is not used for a

PIMA 15740: 2000

11
© 2000 PIMA, Inc. – All Rights Reserved

particular datacode type, an appropriate corresponding enumerated identifier in an alternate
form should be made available where possible for each datatype enumeration specified here,
each having the same usage and definition as those specified in this standard. This allows for
transport-aggregating abstractions in host software to use the codes defined in this standard,
even though a particular code might not be transmitted across the wire for a particular
transport in the binary form specified. Transports may also need to perform multiple
transactions over the wire in order to fulfill one operation defined in this standard, and
therefore one operation code may not be sufficient.

For example, if a transport does not use the sixteen-bit OperationCodes, it should still
provide an equivalent mechanism for the GetObject operation that supports the same usage
defined in this standard. Another example would be a transport that uses OperationCodes for
some operations but not others, because the transport in question possesses a built-in
mechanism for performing the equivalent operation, and provides its own operation
identification scheme for that operation.

Table 2: Datacode Formats

Bit
15

Bit
14

Bit
13

Bit
12

Bits
11-0 Code Type

0 0 0 0 Any Undefined (not a conforming code)
0 0 0 1 Any Standard OperationCode
0 0 1 0 Any Standard ResponseCode
0 0 1 1 Any Standard ObjectFormatCode
0 1 0 0 Any Standard EventCode
0 1 0 1 Any Standard DevicePropCode
0 1 1 0 Any Reserved
0 1 1 1 Any Reserved
1 0 0 0 Any Undefined
1 0 0 1 Any Vendor-Defined OperationCode
1 0 1 0 Any Vendor-Defined ResponseCode
1 0 1 1 Any Vendor-Defined ObjectFormatCode
1 1 0 0 Any Vendor-Defined EventCode
1 1 0 1 Any Vendor-Defined DevicePropCode
1 1 1 0 Any Reserved
1 1 1 1 Any Reserved

It is a convention of this standard that all datacodes shall set bit 15 to 1 in order to indicate
that the code value is vendor-specific, and therefore undefined in this standard. Codes
indicating that they are vendor-defined should be interpreted according to the
VendorExtensionID and VendorExtensionVersion fields of the DeviceInfo dataset as
described in Clause 5.5.1.

Individual datacode interpretations and usage are described in the appropriate section of this
standard for each type of datacode.

PIMA 15740: 2000

12
© 2000 PIMA, Inc. – All Rights Reserved

5.3 Simple Types
The following table describes the generic datatypes that may be used in this standard:

Table 3: Datatype Codes

Datatype Code Type Description
0x0000 UNDEF Undefined
0x0001 INT8 Signed 8 bit integer
0x0002 UINT8 Unsigned 8 bit integer
0x0003 INT16 Signed 16 bit integer
0x0004 UINT16 Unsigned 16 bit integer
0x0005 INT32 Signed 32 bit integer
0x0006 UINT32 Unsigned 32 bit integer
0x0007 INT64 Signed 64 bit integer
0x0008 UINT64 Unsigned 64 bit integer
0x0009 INT128 Signed 128 bit integer
0x000A UINT128 Unsigned 128 bit integer
0x4001 AINT8 Array of Signed 8 bit integers
0x4002 AUINT8 Array of Unsigned 8 bit integers
0x4003 AINT16 Array of Signed 16 bit integers
0x4004 AUINT16 Array of Unsigned 16 bit integers
0x4005 AINT32 Array of Signed 32 bit integers
0x4006 AUINT32 Array of Unsigned 32 bit integers
0x4007 AINT64 Array of Signed 64 bit integers
0x4008 AUINT64 Array of Unsigned 64 bit integers
0x4009 AINT128 Array of Signed 128 bit integers
0x400A AUINT128 Array of Unsigned 128 bit integers
0xFFFF STR Variable-length Unicode String

All other
values Undefined Reserved

All datatypes having bit 14 set to 1 are uniform arrays of individual fixed-length types.

5.3.1 Integers
The most common data type that is required in this standard is integer. Integers may be
signed or unsigned, and may be placed into arrays.

5.3.2 Handles
Handles are 32-bit device-unique unsigned integers (UINT32) that are exposed externally in
order to allow consistent referencing to its logical and/or physical elements by other
conforming devices. All handles act as UINT32 datatypes with the added constraint that they

PIMA 15740: 2000

13
© 2000 PIMA, Inc. – All Rights Reserved

have individually unique values relative to the currently open session. Handles shall be
persistent over at least a particular session, and may or may not be persistent over an entire
power cycle, or even across power cycles. There is no significance to the value of a handle
other than it is unique, and therefore they do not need to be consecutively assigned. The
values 0x00000000 and 0xFFFFFFFF may not refer to any valid objects, and are reserved for
context-specific meanings, such as “no handle,” “default handle,” or “all handles.” Any use
of context-specific meanings shall be described in the appropriate clauses.

Handles are used to refer to image and non-image objects that are present on a device as well
as objects that are expected to immediately become present, and in this context are referred to
as ObjectHandles. ObjectHandles may refer to image or non-image objects that are capable
of being retrieved as the response to an operation. The existence of an ObjectHandle infers
the ability to produce an ObjectInfo dataset for the object that is referred to, as well as
production of the object itself for object types that are not fully qualified by the ObjectInfo
dataset. An association (e.g. a generic folder) is an example of an object type that is fully
qualified by an ObjectInfo dataset, and therefore possesses no actual object to send. The type
of data object that the ObjectHandle refers to may be determined by examining the
ObjectFormatCode described in the data object’s ObjectInfo dataset described in Clause
5.5.2.

5.3.3 Decimal Types
Fixed-point datatypes may be represented using integers by contextually specifying a scalar
factor. This protocol does not currently require conventions for handling floating-point data.
Transmitted data of this type is typically contained inside of a data object that is opaque to
this protocol.

5.3.4 Strings
All strings shall consist of standard 2-byte Unicode characters as described in ISO10646,
with the added constraint of having a maximum number of characters of 255. Strings shall
be represented by a combination of two fields as described in the following table. An empty
string shall consist of one byte with value of 0x00.

Table 4: String Format

Dataset Field Size
(bytes) Data Type

NumChars 1 UINT8

StringChars Variable Unicode null-terminated string

NumChars: Represents the number of characters in the string, including the terminating null
character for non-empty strings. Allowed values are 0 to 255.

PIMA 15740: 2000

14
© 2000 PIMA, Inc. – All Rights Reserved

StringChars: This field holds the actual Unicode null-terminated string with 2 byte
characters. This field shall not contain more than 255 characters, including the
terminating null characters. This field is not present for empty strings.

5.3.4.1 DateTime String
When needed, the date and time shall be expressed using a compatible subset of ISO 8601 so
that it can be easily parseable. This shall take the form of a Unicode string in the format
“YYYYMMDDThhmmss.s” where YYYY is the year, MM is the month 01-12, DD is the
day of the month 01-31, T is a constant character, hh is the hours since midnight 00-23, mm
is the minutes 00-59 past the hour, and ss.s is the seconds past the minute, with the “.s” being
optional tenths of a second past the second. This string can optionally be appended with Z to
indicate UTC, or +/-hhmm to indicate the time is relative to a time zone. Appending neither
indicates the time zone is unspecified.

5.4 Arrays
An array is a concatenation of one or more elements of the same fixed-length type. All array
datasets contain a field representing the total number of elements contained in the array. The
datatype, element size, and interpretation of the individual elements shall be context-specific,
and therefore not explicit within the array structure. An empty array would consist of only a
single UINT32 value of 0x00000000. For internal array referencing purposes, arrays shall be
treated as zero-based.

Table 5: Array Format

Field Size
(bytes) Format

NumElements 4 UINT32

ArrayEntry[0] Element
Size Special

ArrayEntry[1] Element
Size Special

… Element
Size …

ArrayEntry[NumElements-1] Element
Size Special

NumElements: Represents the total number of elements contained in the array, and
therefore is equal to the number of ArrayEntry fields. This value may be 0x00000000,
which indicates an empty array that would only be 4 total bytes in size.

ArrayEntry[n]: The total number of these fields shall equal the value held by the
NumElements field. The size and interpretation (i.e. datatype) of each ArrayEntry is

PIMA 15740: 2000

15
© 2000 PIMA, Inc. – All Rights Reserved

context-dependent, but should be the same for all elements in an array. These fields are
not present for empty arrays.

5.5 Datasets
For the purposes of this standard, the term dataset is defined as a transport-independent
collection of one or more individual data items with defined interpretations. A dataset serves
as a set of requirements for the data that must accounted for by an opposing device as the
result of a particular operation or event. Individual data items may hold other embedded data
items. A transport implementation may or may not need to place its own wrappers around
the dataset, split datasets in multiple pieces, pack the fields a particular way, or pass different
fields using different mechanisms.

In order to avoid inconsistencies, transport implementations should reference the field
ordering in this specification when defining their implementations of the datasets. If the
transport is wrapping the dataset completely, it should retain the field ordering defined in this
specification unless a distinct benefit can be obtained by not doing so. The particular byte
packing mechanism for individual fields must be clearly defined, such as little-endian or big-
endian.

All unused fields in all datasets shall initially be set to their default value. If a field does not
have an explicit default value, the implicit default value is zero for integer datatypes, and the
empty string for strings. Any fields in a dataset that are unused are considered to have no
default value, and should be set to zero.

If datasets are changed in future versions of this standard, fields will only be added, never
deleted. No existing fields will be re-defined in future versions of this standard, and the
specified field ordering shall remain constant. Unless otherwise indicated, reserved fields in
datasets are required to be transmitted by the transport implementation, but should be set to
0x00000000 for integers and to an empty string for strings.

5.5.1 DeviceInfo Dataset
This dataset is used to hold the description information for a device. The Initiator can obtain
this dataset from the Responder without opening a session with the device. This dataset
holds data that describes the device and its capabilities. This information is only static if the
device capabilities cannot change during a session, which would be indicated by a change in
the FunctionalMode value in the dataset. For example, if the device goes into a sleep mode
in which it can still respond to GetDeviceInfo requests, the data in this dataset should reflect
the capabilities of the device while it is in that mode only (including any operations and
properties needed to change the FunctionalMode, if this is allowed remotely). If the power
state or the capabilities of the device changes (due to a FunctionalMode change), a
DeviceInfoChanged event shall be issued to all sessions in order to indicate how its
capabilities have changed.

PIMA 15740: 2000

16
© 2000 PIMA, Inc. – All Rights Reserved

Table 6: DeviceInfo Dataset

Dataset Field Field
Order

Size
(bytes) Data Type

StandardVersion 1 2 UINT16
VendorExtensionID 2 4 UINT32
VendorExtensionVersion 3 2 UINT16
VendorExtensionDesc 4 Variable String
FunctionalMode 5 2 UINT16
OperationsSupported 6 Variable OperationCode Array
EventsSupported 7 Variable EventCode Array
DevicePropertiesSupported 8 Variable DevicePropCode Array
CaptureFormats 9 Variable ObjectFormatCode Array
ImageFormats 10 Variable ObjectFormatCode Array
Manufacturer 11 Variable String
Model 12 Variable String
DeviceVersion 13 Variable String
SerialNumber 14 Variable String

All optional strings that are not provided should consist of an empty string. Clause 5.3.3
describes the use of strings.

Standard Version: Highest version of the standard that the device can support. This
represents the standard version expressed in hundredths (e.g. 1.32 would be stored as
132).

VendorExtensionID: Provides the context for interpretation of any vendor extensions used
by this device. If no extensions are supported, this field shall be set to 0x00000000. If
vendor-specific codes of any type are used, this field is mandatory, and should not be set
to 0x00000000. These IDs are assigned by PIMA, as described in Clause 9.5.

VendorExtensionVersion: The vendor-specific version number of extensions that are
supported. This shall be expressed in hundredths (e.g. 1.32 would be stored as 132).

VendorExtensionDesc: An optional string used to hold a human-readable description of the
VendorExtensionID. This field should only be used for informational purposes, and not
as the context for the interpretation of vendor-extensions.

FunctionalMode: An optional field used to hold the functional mode. This field controls
whether the device is in an alternate mode that provides a different set of capabilities
(i.e. supported operations, events, etc.) If the device only supports one mode, this value
should always be zero. The following table describes the standard functional modes:

PIMA 15740: 2000

17
© 2000 PIMA, Inc. – All Rights Reserved

Table 7: FunctionalMode Values

Value Description
0x0000 Standard Mode
0x0001 Sleep State

All other values with
Bit 15 set to zero Reserved
All values with Bit

15 set to 1 Vendor-Defined

The functional mode information is held by the device as a device property. This
property is described in Clause 13.4.2. In order to change the functional mode of the
device remotely, a session needs to be opened with the device, and the SetDeviceProp
operation needs to be used.

OperationsSupported: This field is an array of OperationCodes representing operations that
the device is currently supporting, given the FunctionalMode indicated. Clause 10.2
describes these codes.

EventsSupported: This field is an array of EventCodes representing the events that are
currently generated by the device in appropriate situations, given the FunctionalMode
indicated. Clause 12.5 describes these codes.

DevicePropertiesSupported: This field is an array of DevicePropCodes representing
DeviceProperties that are currently exposed for reading and/or modification, given the
FunctionalMode indicated. Clause 13.3.5 describes these codes.

CaptureFormats: The list of data formats in ObjectFormatCode form that the device can
create using an InitiateCapture operation and/or an InitiateOpenCapture operation, given
the FunctionalMode indicated. These are typically image object formats, but can include
any object format that can be fully captured using a single trigger mechanism, or an
initiate/terminate mechanism. All image object formats that a device can capture data in
shall be listed prior to any non-image object formats, and shall be in preferential order
such that the default capture format is first. ObjectFormats are described in Clause 6,
Image and Data Object Formats.

ImageFormats: The list of image formats in ObjectFormatCode form that the device
supports in order of highest preference to lowest preference. Support for an image
format refers to the ability to interpret image file contents according to that format’s
specifications, for display and/or manipulation purposes. For image output devices, this
field represents the image formats that the output device is capable of outputting. This
field does not describe any device format-translation capabilities. Refer to Clause 6 for
more information on image format support.

Manufacturer: An optional human-readable string used to hold the Responder’s
manufacturer.

Model: An optional human-readable string used to communicate the Responder’s model
name.

PIMA 15740: 2000

18
© 2000 PIMA, Inc. – All Rights Reserved

DeviceVersion: An optional string used to communicate the Responder’s firmware or
software version in a vendor-specific way

SerialNumber: An optional string used to communicate the Responder’s serial number,
which is defined as a unique value among all devices sharing identical Model and
Device Version fields. If unique serial numbers are not supported, this field shall be set
to the empty string. The presence of a non-null string in the SerialNumber field for one
device infers that this field is non-zero and unique among all devices of that model and
version.

5.5.2 ObjectInfo Dataset
This dataset is used to define the information about data objects in persistent store, as
well as optional information if the data is known to be an image or an association object.
It is required that these data items be accounted for in response to a GetObjectInfo
operation. If the data is not known to be an image, or the image information is
unavailable, the image-specific fields shall be set to zero. Objects of type Association
are fully qualified by the ObjectInfo dataset.

Table 8: ObjectInfo Dataset

Dataset Field Field
Order

Size
(bytes) Data Type Image

Specific
Association

Specific
StorageID 1 4 StorageID No No
ObjectFormat 2 2 ObjectFormatCode No No
ProtectionStatus 3 2 UINT16 No No
ObjectCompressedSize 4 4 UINT32 No No
ThumbFormat 5 2 ObjectFormatCode Yes No
ThumbCompressedSize 6 4 UINT32 Yes No
ThumbPixWidth 7 4 UINT32 Yes No
ThumbPixHeight 8 4 UINT32 Yes No
ImagePixWidth 9 4 UINT32 Yes No
ImagePixHeight 10 4 UINT32 Yes No
ImageBitDepth 11 4 UINT32 Yes No
ParentObject 12 4 ObjectHandle No No
AssociationType 13 2 AssociationCode No Yes
AssociationDesc 14 4 AssociationDesc No Yes
SequenceNumber 15 4 UINT32 No No
Filename 16 Variable String No No
CaptureDate 17 Variable DateTime String No No
ModificationDate 18 Variable DateTime String No No
Keywords 19 Variable String No No

StorageID: The StorageID of the device’s store in which the image resides. See Clause 8.1
for a description of StorageIDs.

ObjectFormat: Indicates ObjectFormatCode of the object. See Clause 6.2 for a list of these
codes.

PIMA 15740: 2000

19
© 2000 PIMA, Inc. – All Rights Reserved

ObjectCompressedSize: The size of the buffer needed to hold the entire binary object in
bytes. This field may be used for memory allocation purposes in object receivers by
transport implementations.

ProtectionStatus: An optional field representing the write-protection status of the data
object. Objects that are protected may not be deleted as the result of any operations
specified in this standard without first separately removing their protection status in a
separate transaction. The values are enumerated according to the following table:

Table 9: ObjectInfo ProtectionStatus Values

Value Description
0x0000 No Protection
0x0001 Read-Only

All other
values Reserved

All values not explicitly defined are reserved for future use. This protection field is
distinctly different in scope than the AccessCapability field present in the StorageInfo
dataset, described in Clause 5.5.3. If an attempt to delete an object is made, success will
only occur if the ProtectionStatus of the object is 0x0000 and the AccessCapability of
the store allows deletion. If a device does not support object protection, this field should
always be set to 0x0000, and the SetProtection operation should not be supported. Refer
to Clause 5.5.3 for a description of the StorageInfo dataset.

ThumbFormat: Indicates ObjectFormat of the thumbnail. In order for an object to be
referred to as an image, it must be able to produce a thumbnail as the response to a
request. Therefore, this value should only be 0x00000000 for the case of non-image
objects. Refer to Clause 6.2 for a list of ObjectFormatCodes.

ThumbCompressedSize: The size of the buffer needed to hold the thumbnail. This field
may be used for memory allocation purposes. In order for an object to be referred to as
an image, it must be able to produce a thumbnail as the response to a request. Therefore,
this value should only be 0x00000000 for the case of non-image objects.

ThumbPixWidth: An optional field representing the width of the thumbnail in pixels. If
this field is not supported or the object is not an image, the value 0x00000000 shall be
used.

ThumbPixHeight: An optional field representing the height of the thumbnail in pixels. If
this field is not supported or the object is not an image, the value 0x00000000 shall be
used.

ImgPixWidth: An optional field representing the width of the image in pixels. If the data is
not known to be an image, this field should be set to 0x00000000. The purpose of this
field is to enable an application to provide the width information to a user prior to
transferring the image. If this field is not supported, the value 0x00000000 shall be
used.

PIMA 15740: 2000

20
© 2000 PIMA, Inc. – All Rights Reserved

ImgPixHeight: An optional field representing the height of the image in pixels. If the data is
not known to be an image, this field should be set to 0x00000000. The purpose of this
field is to enable an application to provide the height information to a user prior to
transferring the image. If this field is not supported, the value 0x00000000 shall be
used.

ImgBitDepth: An optional field representing the total number of bits per pixel of the
uncompressed image. If the data is not known to be an image, this field should be set to
0x00000000. The purpose of this field is to enable an application to provide the bit
depth information to a user prior to transferring the image. This field does not attempt to
specify the number of bits assigned to particular color channels, but instead represents
the total number of bits used to describe one pixel. If this field is not supported, the
value 0x00000000 shall be used. This field should not be used for memory allocation
purposes, but is strictly information that is typically inside of an image object, that may
affect whether or not a user wishes to transfer the image, and therefore is exposed prior
to object transfer in the ObjectInfo dataset.

ParentObject: Indicates the handle of the object that is the parent of this object. The
ParentObject must be of object type Association. If the device does not support
associations, or the object is in the “root” of the hierarchical store, then this value should
be set to 0x00000000.

AssociationType: A field that is only used for objects of type Association. This code
indicates the type of association. Refer to Clause 6.4 for a description of associations
and a list of defined types. If the object is not an association, this field should be set to
0x0000.

AssociationDesc: This field is used to hold a descriptor parameter for the association, and
may therefore only be non-zero if the AssociationType is non-zero. The interpretation of
this field is dependent upon the particular AssociationType, and is only used for certain
types of associations. If unused, this field should be set to 0x00000000. Refer to Clause
6.4 for information on this descriptor.

SequenceNumber: This field is optional, and is only used if the object is a member of an
association, and only if the association is ordered. If the object is not a member of an
ordered association, this value should be set to 0x00000000. These numbers should be
created consecutively. However, to be a valid sequence, they do not need to be
consecutive, but only monotonically increasing. Therefore, if a data object in the
sequence is deleted, the SequenceNumbers of the other objects in the ordered association
do not need to be renumbered, and examination of the sequential numbers will indicate a
possibly deleted object by the missing sequence number.

Filename: An optional string representing filename information. This field should not
include any filesystem path information, but only the name of the file or directory itself.
The interpretation of this string is dependent upon the FilenameFormat field in the
StorageInfo dataset that describes the logical storage area in which this object is stored.
See Clause 5.5.3 for information on this field.

PIMA 15740: 2000

21
© 2000 PIMA, Inc. – All Rights Reserved

CaptureDate: A static optional field representing the time that the data object was initially
captured. This is not necessarily the same as any date held in the ModificationDate field.
This dataset uses the DateTime string described in Clause 5.3.4.1.

ModificationDate: An optional field representing the time of last modification of the data
object. This is not necessarily the same as the CaptureDate field. This dataset uses the
DateTime string described in Clause 5.3.4.1.

Keywords: An optional string representing keywords associated with the image. Each
keyword shall be separated by a space. A keyword that consists of more than one word
shall use underscore (_) characters to separate individual words within one keyword.

5.5.3 StorageInfo Dataset
This dataset is used to hold the state information for a storage device.

Table 10: StorageInfo Dataset

Dataset Field Field
Order

Length
(bytes)

Data
Type

StorageType 1 2 UINT16
FilesystemType 2 2 UINT16
AccessCapability 3 2 UINT16
MaxCapacity 4 8 UINT64
FreeSpaceInBytes 5 8 UINT64
FreeSpaceInImages 6 4 UINT32
StorageDescription 7 Variable String
VolumeLabel 8 Variable String

StorageType: The code that identifies the type of storage, particularly whether the store is
inherently random-access or read-only memory, and whether it is fixed or removable
media.

Table 11: Storage Types

Code Value Storage Type
0x0000 Undefined
0x0001 Fixed ROM
0x0002 Removable ROM
0x0003 Fixed RAM
0x0004 Removable RAM

All other
values Reserved

All undefined values are reserved for future use.

PIMA 15740: 2000

22
© 2000 PIMA, Inc. – All Rights Reserved

FilesystemType: This optional code indicates the type of filesystem present on the device.
This field may be used to determine the filenaming convention used by the storage
device, as well as to determine whether support for a hierarchical system is present. If
the storage device is DCF-conformant, it shall indicate so here.

Table 12: FilesystemType Values

Value Description
0x0000 Undefined
0x0001 Generic Flat
0x0002 Generic Hierarchical
0x0003 DCF

All other values with
Bit 15 set to 0 Reserved

All values with Bit 15
set to 1 Vendor-Defined

All values having bit 31 set to zero are reserved for future use. If a proprietary
implementation wishes to extend the interpretation of this field, bit 31 should be set to 1.

AccessCapability: This field indicates whether the store is read-write or read-only. If the
store is read-only, deletion may or may not be allowed. The allowed values are
described in the following table. Read-Write is only valid if the StorageType is non-
ROM, as described in the StorageType field above.

Table 13: StorageInfo AccessCapability Values

Value Description
0x0000 Read-Write
0x0001 Read-Only without Object Deletion
0x0002 Read-Only with Object Deletion

All other
values Reserved

All values having bit 15 set to zero are reserved for future use. If a proprietary
implementation wishes to extend the interpretation of this field, bit 15 should be set to 1.

MaxCapacity: This is an optional field that indicates the total storage capacity of the store
in bytes. If this field is unused, it should report 0xFFFFFFFF.

FreeSpaceInBytes: The amount of free space that is available in the store in bytes. If this
value is not useful for the device, it may set this field to 0xFFFFFFFF and rely upon the
FreeSpaceInImages field instead.

FreeSpaceInImages: The number of images that may still be captured into this store
according to the current image capture settings of the device. If the device does not
implement this capability, this field should be set to 0xFFFFFFFF. This field may be

PIMA 15740: 2000

23
© 2000 PIMA, Inc. – All Rights Reserved

used for devices that do not report FreeSpaceInBytes, or the two fields may be used in
combination.

StorageDescription: An optional field that may be used for a human-readable text
description of the storage device. This should be used for storage-type specific
information as opposed to volume-specific information. Examples would be “Type I
Compact Flash,” or “3.5-inch 1.44 MB Floppy”. If unused, this field should be set to the
empty string.

VolumeLabel: An optional field that may be used to hold the volume label of the storage
device, if such a label exists and is known. If unused, this field should be set to the
empty string.

PIMA 15740: 2000

24
© 2000 PIMA, Inc. – All Rights Reserved

6 Image and Data Object Formats
A data object is defined to be an image or other type of data that exists in persistent storage
of a DSPD or other device. This standard specifies how image and data objects are
transferred between a digital still photography device (DSPD) and other devices, but it does
not specify how they are stored within such devices. A DSPD conforming to this standard
shall transfer images to other devices using a particular data or datafile format for storage.
The DSPD shall identify the data format used for the main (e.g. full size) image transferred,
and shall provide a thumbnail (e.g. reduced size) image using one of the two thumbnail
image file formats defined in this clause. The image file formats used to transfer the main
image shall be either:

• EXIF/JPEG version 2.1, the preferred format

• One of the allowed image file formats listed in table 21

• A proprietary image file format

All devices conforming to this standard that receive images shall be capable of receiving (but
not necessarily displaying) image files using any of these file formats. In addition, if the
receiving device displays images, it shall be capable of decoding and displaying both of the
thumbnail image file formats defined in this clause.

For all image and data objects, an ObjectFormatCode is provided in the ObjectInfo dataset to
specify the format, as described in Clause 5.5.2. Setting bit 31 of this code can be used in
conjunction with the VendorExtensionID in the DeviceInfo dataset to create a vendor-
extended ObjectFormatCode to handle transfer of these non-standard file formats.

6.1 Thumbnail Formats
• The thumbnail images provided by a DSPD shall be either compressed JPEG images or

uncompressed TIFF images. Compressed JPEG images are preferred.

• The device may optionally be capable of producing a thumbnail for non-still-image object
formats, such as video clips, audio formats, etc. The method that a device should use to
generate a thumbnail from these object types is not specified. This capability would be
apparent if the device correctly responded to a GetThumb operation request for a data
object with a DataFormat that is a non-still-image type.

6.1.1 Compressed JPEG thumbnail image files
The format of compressed thumbnail files shall be a JPEG interchange file using the baseline
process specified in table 1 of ISO/IEC 10918-1. This requires that the image file use:

• DCT-based image compression process

• 8-bit samples within each component

PIMA 15740: 2000

25
© 2000 PIMA, Inc. – All Rights Reserved

• Baseline sequential (non-progressive) process

• Huffman coding with 2 AC and 2 DC tables

The baseline image file format is further restricted in that it shall have:

• Square pixel sampling

• A single interleaved scan (e.g. Y, Cr, Cb interleaved blocks)

• sRGB color space as defined in IEC 61966-2-1

• 3 color components: Y, Cr, Cb derived from the sRGB signals as follows, as specified in
ITU-R BT.601:

Y = 0.299 R + 0.587 G + 0.114 B

Cb = (-0.299R - 0.587 G + 0.886B) * 0.564 + offset

Cr = (-0.701R - 0.587 G + 0.114B) * 0.713 + offset

or a single (luminance) component

• Either 4:2:2 or 4:2:0 Y:Cb:Cr spatially centered color subsampling or Y:Cb:Cr co-sited
subsampling. Writers may use either option. Readers shall support both options.

Note that these features are all requirements of the EXIF version 2.1 specification.

In addition, it is preferred that the thumbnails meet the thumbnail image data format
requirements specified in section 3.3.6 of “Design rule for Camera File system” (DCF),
version 1.0. These requirements include:

• JPEG compression using 4:2:2 chrominance sampling and the “typical” Huffman table
provided in ISO/IEC 10918-1

• 160 x 120 pixel image record with a 4:3 aspect ratio

6.1.2 Uncompressed TIFF thumbnail image files
The format of the uncompressed thumbnail images shall meet the requirements for the
TIFF/EP format described in ISO 12234-2 Photography - Electronic still picture cameras -
Removable memory, Part 2: Image data format - TIFF/EP. The thumbnail image shall have
a Compression tag value = 1 (no compression) with the thumbnail image contained within
IFD0.

6.2 ObjectFormatCodes
A list of object formats is given in the following table. An ObjectFormatCode is a 16-bit
unsigned integer (UNIT16) that represents the format of an image or data object that resides
on a DSPD. Setting bit 15 to 1 in the ObjectFormatCode indicates a vendor-defined format.
All ObjectFormatCodes that represent image formats shall also have bit 11 set to 1, including
those that are vendor-defined.

PIMA 15740: 2000

26
© 2000 PIMA, Inc. – All Rights Reserved

Table 14: ObjectFormatCodes

Object
FormatCode Type Format Description

0x3000 A Undefined Undefined non-image object
0x3001 A Association Association (e.g. folder)
0x3002 A Script Device-model-specific script
0x3003 A Executable Device-model-specific binary executable
0x3004 A Text Text file
0x3005 A HTML HyperText Markup Language file (text)
0x3006 A DPOF Digital Print Order Format file (text)
0x3007 A AIFF Audio clip
0x3008 A WAV Audio clip
0x3009 A MP3 Audio clip
0x300A A AVI Video clip
0x300B A MPEG Video clip
0x300C A ASF Microsoft Advanced Streaming Format (video)
0x3800 I Undefined Unknown image object
0x3801 I EXIF/JPEG Exchangeable File Format, JEIDA standard

0x3802 I TIFF/EP Tag Image File Format for Electronic
Photography

0x3803 I FlashPix Structured Storage Image Format
0x3804 I BMP Microsoft Windows Bitmap file
0x3805 I CIFF Canon Camera Image File Format
0x3806 I Undefined Reserved
0x3807 I GIF Graphics Interchange Format
0x3808 I JFIF JPEG File Interchange Format
0x3809 I PCD PhotoCD Image Pac
0x380A I PICT Quickdraw Image Format
0x380B I PNG Portable Network Graphics
0x380C I Undefined Reserved
0x380D I TIFF Tag Image File Format

0x380E I TIFF/IT Tag Image File Format for Information
Technology (graphic arts)

0x380F I JP2 JPEG2000 Baseline File Format
0x3810 I JPX JPEG2000 Extended File Format

All other
codes with
MSN of 0011

Any Undefined Reserved for future use

All other
codes with
MSN of 1011

Any Vendor-
Defined Vendor-Defined

Type: Image File Format (I) Ancillary Data File Format (A)

PIMA 15740: 2000

27
© 2000 PIMA, Inc. – All Rights Reserved

6.3 Object Format Version Identification
The version of the object format should be contained in the data object in a context-specific
manner. Support for a particular ObjectFormatCode implies that the device possesses the
capability to read the internal structure of the data object in a way that is particular to its
format, and this includes the discovery and interpretation of any version information that may
exist. The format for specifying the version information is dependent upon the versioning
methodology used by the particular format. Formats that change over time should remain
backward compatible with older formats. However, if backward compatibility is not retained
for a certain format, the specific format for that version and above should be considered as a
separate format, and therefore a new ObjectFormatCode should be assigned to the new
versions of that format.

6.4 Data Object Association
This standard provides an optional method for associating related image and data objects, and
this mechanism is what is used for representing folders and filesystems. Associations are
represented using objects that are of type Association. All of the objects that are part of an
association must be in the branch of the object tree underneath the corresponding association,
in a folder-like manner. The association to which an object belongs may be determined by
examining the ParentObject fields of each object’s ObjectInfo dataset. There are different
types of associations. The type is specified in the AssociationType field of the ObjectInfo
dataset of the Association object.

6.4.1 Association Types
The following table describes the various associations that may be used:

Table 15: Association Types

AssociationCode AssociationType AssociationDesc
Interpretation

0x0000 Undefined Undefined
0x0001 GenericFolder Unused
0x0002 Album Reserved
0x0003 TimeSequence DefaultPlaybackDelta
0x0004 HorizontalPanoramic Unused
0x0005 VerticalPanoramic Unused
0x0006 2DPanoramic ImagesPerRow
0x0007 AncillaryData Undefined

All other values
with bit 15 set to 0 Reserved Undefined
All values with bit

15 set to 1 Vendor-Defined Vendor-Defined

PIMA 15740: 2000

28
© 2000 PIMA, Inc. – All Rights Reserved

GenericFolder: This association type is used to represent a folder that may hold any type of
object, and is analogous to the standard folder present in most filesystems. This
association is typically used to represent a local grouping of objects, with no other
relationship implied.

Album: This association type is the same as a folder but is used to hold image and data
objects that have logical groupings according to content, capture sessions, or any other
unspecified user-determined grouping. These are typically created by a user or
automation technique. Some devices may wish to expose albums to the user but not all
generic folders. Devices that do not distinguish between albums and folders should only
use the AssociationType of GenericFolder. The AssociationDesc field is reserved for
future definition by this standard, and for devices that support this version of the
specification, shall be set to 0x00000000.

TimeSequence: Indicates that the data objects are part of a sequence of data captures that
make up a set of time-ordered data of the same subject. This association is used to
represent time-lapse or burst sequences. The order is interpreted to be sequential by
capture time from first captured to last, and is indicated by the increasing values of the
SequenceNumber fields in the ObjectInfo dataset for each object. If known, the
AssociationDesc acts as a DefaultPlaybackDelta, and should be set to the desired time in
milliseconds to delay between each object if exposing them sequentially in real-time. If
unknown, this value should be set to 0x00000000.

HorizontalPanoramic: Indicates that the associated data objects make up a panoramic series
of images that are arranged side-by-side, in a horizontal fashion. The order of the
sequence, from left to right when facing the subject, is indicated by the increasing values
of the SequenceNumber fields in each object. The AssociationDesc is unused, and
should be set to 0x00000000. For example, four images would have SequenceNumbers
assigned as follows:

Figure 1: HorizontalPanoramic SequenceNumber Example

1 2 3 4

VerticalPanoramic: Indicates that the associated data objects make up a panoramic series of
images that are arranged bottom-to-top, in a vertical fashion. The order of the sequence,
from bottom to top when facing the subject, is indicated by the increasing values of the
SequenceNumber fields in each object. The AssociationDesc is unused, and should be
set to 0x00000000. For example, four images would have SequenceNumbers assigned
as follows:

Figure 2: VerticalPanoramic SequenceNumber Example

4
3
2
1

PIMA 15740: 2000

29
© 2000 PIMA, Inc. – All Rights Reserved

2DPanoramic: Indicates that the associated data objects make up a two-dimensional
panoramic series of images that are arranged left-to-right and bottom-to-top in adjacent
or overlapping horizontal strips. The order of the sequence, from bottom-left to top-right
when facing the subject, is indicated by the increasing values of the SequenceNumber
fields in each object. The AssociationDesc is used to indicate the number of images in
each row. For example, sixteen images arranged in a 4x4 2Dpanoramic would have
SequenceNumbers assigned as follows:

Figure 3: 2DPanoramic SequenceNumber Example

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

AncillaryData: Indicates that the association represents one or more non-image objects
being associated with an image object. For example, an image capture that also stores
independent audio text files that are temporally related to the image capture may use this
type of association to indicate the relationship. Optionally, if the individual objects are
ordered (e.g. multiple temporally-related sound files), the SequenceNumber field of each
object’s ObjectInfo dataset should contain increasing integers. If the individual objects
are unordered, the AssociationDesc should be set to 0x00000000. The AssociationDesc
field is unused, and should be set to 0x00000000.

6.4.1.1 Unordered Associations
Unordered associations are the standard type of association used to relate data objects non-
sequentially, such as filesystem folders, albums, etc. Objects that belong to unordered
associations always possess ObjectInfo datasets with SequenceNumber fields equal to zero.

6.4.1.2 Ordered Associations
Ordered associations are an optional mechanism that may be used to represent associated
objects, some or all of which are sequential in some context-specific fashion. Objects that
are part of the ordered association may or may not have a non-zero SequenceNumber.

A. Objects of any type may be children of ordered associations, including other ordered or
unordered associations.

B. Sequence numbers are used to order a proper or improper subset of child objects of a
particular ordered association.

C. The value of a sequence number is only relevant between objects at the same level of the
same hierarchical tree branch (i.e. siblings with the common ordered association parent.)

PIMA 15740: 2000

30
© 2000 PIMA, Inc. – All Rights Reserved

D. The value of a sequence number is only persistent while the child/parent relationship is
intact. If an object that is part of an ordered association is assigned a new parent, the
object’s SequenceNumber should be invalidated (i.e. set to zero or to a new appropriate
SequenceNumber if the new parent is an ordered association.)

E. Not all child objects of an ordered association have to have a sequence number. Objects
without sequence numbers whose parent is an ordered association are considered related
to the entire set of sequential objects, but are not a proper part of the sequence.

F. Non-zero sequence numbers among objects in an ordered association must be unique.

6.4.2 Associations as Filesystem Folders
Unordered associations may be used to represent file system layouts of data objects within a
store. This allows representation of filesystems that are not dependent upon particular
pathname conventions. Each object contains a ParentObject field in its ObjectInfo dataset.
This ParentObject is the ObjectHandle of the Association object that “contains” this data
object. This mechanism serves to expose a bottom-up singly-linked list that may be used to
reconstruct the filesystem hierarchy, which may be stored on the opposing device optionally
using a different data structure (e.g. double-linked list, top-down enumerator, etc.) Only
objects of type Association may serve as ParentObjects. The bottom-up nature of the
child/parent link information results in ParentObjects that are stateless with regard to which
objects are their children, and infers that if a child is deleted, the parent and the ObjectInfo
dataset describing it do not need to be updated. If the object exists in the “root” of the store,
the value 0x00000000 shall be used for its ParentObject. Pathnames may be recreated using
the Filename and ParentObject fields of each ObjectInfo dataset, inserting the separators of
choice, in a platform-specific manner. Some receiving devices may not support exposing a
hierarchical structure, in which case objects of type Association would be ignored. In other
cases, devices may only wish to show associations of type Album as hierarchical. For an
example of representing a filesystem using associations, refer to Appendix B.2.

PIMA 15740: 2000

31
© 2000 PIMA, Inc. – All Rights Reserved

7 Transport Requirements
This standard requires that underlying transports support certain features to enable the
functionality described in this standard. This section describes these required features.

7.1 Disconnection Events
The transport shall be capable of notifying the overlying agents or system software that
device has been disconnected from its previous environment. This environment may be
either a wire interconnect or a wireless medium.

7.2 Reliable, Error Free Channel
The transport shall provide a reliable connection between devices comprising a session,
assuming that the connection is not physically broken or terminated. This may be provided
in a transport specific manner using error correction codes, retry scenarios, and fault
recovery.

7.3 Asynchronous Event Support
Since a conforming device is required to notify other devices about any changes in its
operational status, configuration, available objects or stores, the transport shall provide a
mechanism that supports generation of outgoing events and servicing of incoming events
asynchronously from operations, responses, or data transfers. In order to generate events,
some transports may require initiation of an operation while others may require a notification
mechanism.

7.4 Device Discovery and Enumeration
Transports shall possess the capability to discover and enumerate connected devices.

7.5 Specific Transports
The following transports are particularly relevant to digital still photography devices, and
have independent organizations and specifications related to device implementations.

7.5.1 USB
Devices using this transport shall conform to the following specifications:

• USB Specification, Version 1.1, Sept. 23rd, 1998.

PIMA 15740: 2000

32
© 2000 PIMA, Inc. – All Rights Reserved

7.5.2 IrDA
Devices using this transport shall conform to the following specifications:

• Infrared Data Association Serial Infrared Physical Layer Specification, Version 1.1;

• Infrared Data Association Serial Infrared Link Access Protocol Specification, Version
1.1

• Infrared Data Association Link Management Protocol Specification, Version 1.1

• Infrared Data Association Tiny Transport Protocol, Version 1.1

7.5.3 IEEE1394
Devices using this transport IEEE1394 shall conform to the following specifications:

• IEEE Std 1394-1995, Standard for High Performance Serial Bus.

7.5.4 RS232C (Serial)
Typical serial transport layers will likely not meet the transport requirements for this standard
without the addition of a support layer.

PIMA 15740: 2000

33
© 2000 PIMA, Inc. – All Rights Reserved

8 Persistent Storage
Digital still photography devices all share the capability for persistent local storage. It is the
purpose of this section to describe how these storage devices are described and referenced.

The StorageInfo dataset is used to contain information on a store and is described in Clause
5.5.3.

8.1 StorageID
Every storage area on a device is represented by a unique, 4-byte, unsigned integer (UINT32)
referred to as a StorageID. Each StorageID has two parts. The sixteen most significant bits
represent a physical storage device, while the lower sixteen least significant bits represent a
logical storage area within a physical store.

Figure 4: StorageID Layout
A physical store may possess zero or more logical stores. The StorageIDs for all logical
stores within a physical store shall have the same PhysicalStorageID (i.e. the upper sixteen
bits shall be identical). PhysicalStorageIDs are unique for a particular device at all times. In
cases where there is more than one logical store within a physical store, all
LogicalStorageIDs (i.e. the lower sixteen bits) within that physical store shall be unique.
LogicalStorageIDs need only be unique within a physical store, and not globally across all
stores. If a physical store does not contain any logical stores, the LogicalStorageID should be
set to 0x0000, and it shall be assumed that the store does not contain any data, nor can it
receive any data. Neither PhysicalStorageIDs nor LogicalStorageIDs need be consecutive,
nor are they interpreted in any other way than as unique identifiers, in the same manner as
handles.

StorageIDs should remain unique and persistent over a session. StorageIDs of 0x00000000
and 0xFFFFFFFF are not used to refer to real stores, but have context-specific meanings,
such as “all-stores,” or “the default store.” These context-specific extended meanings are
indicated in the sections where they are appropriate.

PhysicalStorageID LogicalStorageID

PIMA 15740: 2000

34
© 2000 PIMA, Inc. – All Rights Reserved

8.2 Data Object Referencing

8.2.1 Referencing via ObjectHandles
In order to ensure interoperability, images and data files shall be referenced using a 4-byte
unsigned integer (heretofore referred to as an ObjectHandle). For information on this
datatype, refer to Clause 5.3.2.

8.2.1.1 ObjectHandle Assignment
All conforming DSPDs shall allow data object referencing via the following behavior:

A. ObjectHandles shall be globally unique across all physical and logical storage areas on
the device.

B. The values 0x00000000 and 0xFFFFFFFF shall be considered undefined or have
context-specific meanings, and shall not be assigned to any valid object.

C. ObjectHandles shall be persistent for each data object present on the device for at least
the particular session within which they are exposed, unless the object that the handle
refers to becomes inaccessible (e.g. the data object is deleted or the store in which it
resides is removed, in which case the device would be required to have issued the
appropriate event indicating this change).

D. A particular ObjectHandle is only meaningful when used in the context of the device that
assigned that handle. Moving the data object to another device does not imply that it will
have the same handle on the new device that is possessed on the originating device, nor
the originally assigned handle if the object is placed back into the originating device.

E. For each new data object that is added to the device while a session is open, the device
shall:

1) Immediately assign a unique handle to the newly acquired data object that does not
conflict with any other currently assigned handles.

2) Broadcast an appropriate ObjectAdded event to all open sessions according to Clause
12 of this standard. The Initiator is responsible for re-obtaining the StorageInfo
dataset if necessary in order to get an updated version of the FreeSpaceInBytes or
FreeSpaceInImages field.

PIMA 15740: 2000

35
© 2000 PIMA, Inc. – All Rights Reserved

F. If a data object is removed from the device during a session, the device shall:

1) Broadcast an appropriate ObjectRemoved event to all open sessions according to
Clause 12 of this standard. If the data object is deleted as the result of an operation,
the session within which the operation was issued should not receive the event. The
Initiator is responsible for re-obtaining the StorageInfo dataset if necessary in order
to get an updated version of the FreeSpaceInBytes or FreeSpaceInImages field.

8.2.2 AccessCapability
All stores have an AccessCapability field in their StorageInfo dataset that indicates whether
they are read-only or not. If a store is read-only, objects cannot be sent to it, regardless of the
individual protection status of individual data objects, as described in each object’s
ObjectInfo dataset. Optionally, a device may still allow objects to be deleted from the store
even if the store is read-only with regard to new objects being placed there. For a description
of allowed values, refer to Clause 5.5.3. For a description of individual data object
protection, refer to the description of the ObjectInfo dataset in Clause 5.5.2.

8.3 Receiver Object Placement
The object receiver must possess the ability to determine where to place an incoming object
that it has requested. In a GetObject scenario, the object receiver is the Initiator. In a
SendObject scenario, the object receiver is the Responder, and therefore the Responder shall
possess the ability to determine where to put an object that it is receiving if the destination is
unspecified by the sender. The destination location chosen by the receiver may or may not
be a function of the information that describes the object in its ObjectInfo dataset, such as
ObjectFormat, size parameters, etc. In a SendObject scenario, the receiver informs the
sender of the actual location it will be placed into upon operation completion using the
response parameters from the SendObjectInfo operation. This is to allow for cases where
the sender may have to deal with different kinds of receivers, some more capable than
others. This allows receiver intervention from a GUI or receiver-side script to allow all
incoming objects to be handled in some prescribed or functionally dynamic way, to queue
images for printing by placing them in a spool folder, etc. The sender may attempt to
request that the object be stored in a specific place on the receiver using the parameters in
the SendObjectInfo operation, but the receiver may or may not allow this behavior. A
particular receiver might not provide a structured filesystem, and may store all images in a
“flat” area of memory. This type of device would either ignore all Association objects or
store the associations using some technique other than a filenaming/foldering convention,
such as a database.

In SendObject scenarios, a sending device may attempt one of two techniques for specifying
object receiver location:

1. The Initiator does not specify receiver location for object being sent. The
Responder chooses the location, and informs the Initiator where the object will be
placed in the response to the SendObjectInfo operation.

PIMA 15740: 2000

36
© 2000 PIMA, Inc. – All Rights Reserved

2. The Initiator attempts to specify where the object should be placed on the
Responder by using the operation parameters of SendObjectInfo. If the Responder
cannot comply with placing the object there, the SendObjectInfo operation should
fail with one of the following responses:

A. The appropriate access response such as Invalid_StorageID,
Invalid_ParentObject, Store_Full, Access_Denied, etc. In these cases, the
Initiator may wish to try the SendObjectInfo operation again with an alternate
destination.

B. Specification_of_Destination_Unsupported. This is used to indicate that the
Responder does not support Initiator-specified destination locations. The
Initiator should not attempt to specify the destination again.

PIMA 15740: 2000

37
© 2000 PIMA, Inc. – All Rights Reserved

9 Communication Protocol
This section describes the protocol that shall be used by devices and transports in order to
conform to this standard.

9.1 Device Roles
Rather than assume a host to device connection or a peer-to-peer connection, this standard
will only refer to two devices, an Initiator and a Responder. The Initiator is the device that
opens the session and initiates operation requests over a suitable transport according to that
transport’s implementation specification. A Responder is a device that responds to operation
requests by sending requested data, responses, and events. Devices may have the capability
to be only an Initiator, only a Responder, or both. A personal computer that detects and
configures a USB camera is likely to only be capable of being an Initiator, while a USB-only
camera may only be capable of being a Responder. An IR camera that opens an IrDA
connection with a printer and pushes images to it might only be capable of being an Initiator,
while that corresponding printer might only be capable of being a Responder. A digital
camera that can send and receive images to and from other digital cameras must be capable
of both roles. By assuming the Initiator role, a device is assuming added responsibility for
device enumeration, transport aggregation if the device supports multiple PTP conforming
transports, controlling the flow of the conversation, and negotiating the transport-specific
attributes of the session, all in transport-specific ways. Initiators typically will have some
form of graphical user interface that allows thumbnails to be displayed and selected by a user,
as where devices that are only Responders will typically not.

9.2 Sessions
Sessions are defined as logical connections between two devices, over which ObjectHandles
and StorageIDs are persistent.

Sessions are required when requesting handles from a device, as sessions define the
minimum persistence period for handle assignments. Sessions do not need to be opened to
obtain device capabilities via the GetDeviceInfo operation, but do need to be opened to
transfer image and data objects, as well as their descriptors, such as the StorageInfo and
ObjectInfo datasets. Any such datasets communicated during a session are considered valid
for the duration of that session unless an explicit known event occurs indicating otherwise.
All ObjectHandles and datasets other than the DeviceInfo dataset shall be considered invalid
outside of the session in which they were provided.

A session is considered open as soon as the OpenSession operation sent by the Initiator
completes with a valid response from the Responder. A session is closed when the
CloseSession operation request is sent or the transport closes the communications channel,
whichever occurs first.

PIMA 15740: 2000

38
© 2000 PIMA, Inc. – All Rights Reserved

9.2.1 SessionID
Each session shall have a SessionID that consists of one device-unique 32-bit unsigned
integer (UINT32). SessionIDs are assigned by the Initiator as a parameter to the
OpenSession operation, and must be non-zero.

9.3 Transactions
All transactions are considered atomic invocations whose origins can be traced to a single
operation request being issued by an Initiator to a Responder. All transactions are considered
synchronous and blocking within a session unless otherwise indicated. Devices that support
multiple sessions must be able to keep each session asynchronous and opaque to each other.
Asynchronous types of transactions, such as InitiateCapture, are handled by making the
operation initiation synchronous. The response to these types of operations indicates only the
success or failure of the operation initiation, and asynchronous events are used to handle the
communication of new objects becoming available on the device at a later point in time. If
an operation request is received which cannot be accommodated due to another previously
invoked asynchronous operation still being executed, the device shall indicate that it is busy,
using a Device_Busy response, and the Initiator is required to re-issue the operation at a later
time.

Transactions in this protocol consist of three phases. Depending on the operation, the data
phase may not be present. If the data phase is present, data may either be sent from the
Initiator to the Responder (I -> R), or from the Responder to the Initiator (R -> I), but never
in both directions for the same operation. The operation and response phases are always
present. Only one transaction at a time can take place within a session. A transaction may be
cancelled by an event. The following table describes the sequence of a transaction, with time
increasing from left to right:

Figure 5: Transaction Sequence

Response

Phase

Operation
Request
Phase

Data
Phase

9.3.1 TransactionID
Each transaction within a session shall have a unique transaction identifier called
TransactionID that is a session-unique 32-bit unsigned integer (UINT32). TransactionIDs are
continuous sequences in numerical order starting from 0x00000001. The TransactionID used
for the OpenSession operation shall be 0x00000000. The first operation issued by an
Initiator after an OpenSession operation shall possess a TransactionID of 0x00000001, the

PIMA 15740: 2000

39
© 2000 PIMA, Inc. – All Rights Reserved

second operation shall possess a TransactionID of 0x00000002, etc. The TransactionID of
0xFFFFFFFF shall not be considered valid, and is reserved for context-specific meanings.
The presence of TransactionID allows asynchronous events to refer to specific previously
initiated operations. If this field reaches its maximum value (0xFFFFFFFE), the device
should “rollover” to 0x00000001. TransactionIDs allow events to refer to particular
operation requests, allow correspondence between data objects and their describing datasets,
and aid in debugging.

9.3.2 Operation Request Phase
The operation request phase consists of the transport-specific transmission of a 30-byte
operation dataset from the Initiator to the Responder. The following table describes the fields
that must be accounted for by the Responder in order for the OperationRequest phase to be
considered complete:

Table 16: OperationRequest Dataset

Field Size
(Bytes)

Data
Type

OperationCode 2 UINT16
SessionID 4 UINT32
TransactionID 4 UINT32
Parameter1 4 Any
Parameter2 4 Any
Parameter3 4 Any
Parameter4 4 Any
Parameter5 4 Any

OperationCode: The code indicating which operation is being initiated. For a list of these
codes and their usages, refer to Clause 10.2.

SessionID: The identifier for the session within which this operation is being initiated. This
value is assigned by the Initiator using the OpenSession operation. This field should be
set to 0x00000000 for operations that do not occur within a session, and for the
OpenSession OperationRequest dataset. Refer to Clause 9.2.1 for a description of
SessionIDs.

TransactionID: The identifier of this particular transaction. This value shall be a value that
is unique within a particular session, and shall increment by one for each subsequent
transaction. Refer to Clause 9.3.1 for a description of transaction identifiers. This field
should be set to 0x00000000 for the OpenSession operation.

Parameter n: This field holds the operation-specific nth parameter. Operations may have at
most five parameters. The interpretation of any parameter is dependent upon the
OperationCode. Any unused parameter fields should be set to 0x00000000. If a

PIMA 15740: 2000

40
© 2000 PIMA, Inc. – All Rights Reserved

parameter holds a value that is less than 32 bits, the lowest significant bits shall be used
to store the value, with the most significant bits being set to zeros.

9.3.3 Data Phase
The data phase is an optional phase that is used to transmit data that is larger than what can
fit in the operation or response datasets. Typically, this is either a data object such as an
image, an ancillary data file, or other datasets that are defined in this standard or are vendor
extensions. All data that is not composed of small, fixed-length types must be sent via a data
phase. For any particular operation, during the data phase data may flow from the Responder
to the Initiator, from the Initiator to the Responder, or not at all. However, no operation shall
send data in both directions during the data phase.

The format for data transferred during a data phase is context-specific by operation and
ObjectFormat. If a particular transport wishes to wrap the data with some sort of header, or
allow for division into multiple packets with wrappers for re-assembly and possibly event
insertion, it is the responsibility of the transport-implementation to specify how the data
should be handled, wrapped, and re-assembled. If the data phase is being used to transport a
data object, it shall be considered opaque to the transport. If a dataset is being transmitted, it
would likely be sent in some sort of transport-specific structure(s) or re-assembled from
various transport-specific descriptors.

9.3.4 Response Phase
The response phase consists of the transport-specific transmission of a 30-byte response
dataset from the Responder to the Initiator. The following table describes the fields that are
required to be accounted for as part of the response phase:

Table 17: Response Dataset

Field Size
(Bytes) Format

ResponseCode 2 UINT16
SessionID 4 UINT32
TransactionID 4 UINT32
Parameter1 4 Special
Parameter2 4 Special
Parameter3 4 Special
Parameter4 4 Special
Parameter5 4 Special

ResponseCode: Indicates the interpretation of the response as defined in the ResponseCode
section in Clause 11.2.

SessionID: The identifier for the session within which this operation is being responded to.
This value is assigned by the Initiator using the OpenSession operation, and should be

PIMA 15740: 2000

41
© 2000 PIMA, Inc. – All Rights Reserved

copied from the OperationRequest dataset that is received by the Responder prior to
responding.

TransactionID: The identifier of the particular transaction. This field should be copied
from the OperationRequest dataset that is received by the Responder prior to responding.

Parameter n: This field holds the operation-specific nth response parameter. Response
datasets may have at most five parameters. The interpretation of any parameter is
dependent upon the OperationCode for which the response has been generated, and
secondarily may be a function of the particular ResponseCode itself. Any unused
parameter fields should be set to 0x00000000. If a parameter holds a value that is less
than 32 bits, the lowest significant bits shall be used to store the value, with the most
significant bits being set to zeros.

PIMA 15740: 2000

42
© 2000 PIMA, Inc. – All Rights Reserved

9.4 Operation Flow
The purpose of this section is to describe the flow of a conversation between two devices.
The conversation varies depending on the scenario. The Initiator determines the flow of
operations, while the Responder issues responses to the operations and may also issue events.
Push mode consists of an Initiator sending one or more objects to the Responder. In Pull
mode, the Initiator retrieves objects from the Responder. Pull mode usually first involves
retrieving thumbnails so that a user can choose which images to retrieve. Ancillary data can
also be transferred through either of these modes.

An Initiator should always be prepared to receive an event asynchronously relative to
response or data phases, as event reception is not limited to transaction phase boundaries.
This is of particular concern during the data phase, which may be lengthy if large image or
data objects are being transferred. Similarly, the Responder should always be prepared to
receive an event in place of an operation request, data, or a response for transports that use
in-band events. Refer to Clause 12 for a description of Events.

9.4.1 Pull Scenarios
This clause describes some typical scenarios that are likely to occur between an Initiator and
a Responder when the Initiator wants to get objects from the Responder.

9.4.1.1 Scenario 1
Initiator requests all image objects from the Responder, ignoring thumbnails, non-image
objects and associations.

Step Initiator Action Parameter1 Parameter2 Parameter3 Responder Action
1 GetDeviceInfo 0x00000000 0x00000000 0x00000000 Send DeviceInfo dataset

2 OpenSession SessionID 0x00000000 0x00000000 Create ObjectHandles,
Storage IDs if necessary

3 GetObjectHandles 0xFFFFFFFF 0xFFFFFFFF 0x00000000 Send ObjectHandle Array

4 GetObjectInfo ObjHandle 1 0x00000000 0x00000000 Send ObjectInfo 1
Dataset

5 Repeat Step 4 for
each ObjectHandle ObjHandle n 0x00000000 0x00000000 Send ObjectInfo n

Dataset
6 GetObject ObjHandle 1 0x00000000 0x00000000 Send Object 1 Data

7 Repeat Step 6 for
each ObjectHandle ObjHandle n 0x00000000 0x00000000 Send Object n Data

8 Close Session 0x00000000 0x00000000 0x00000000 None

PIMA 15740: 2000

43
© 2000 PIMA, Inc. – All Rights Reserved

9.4.1.2 Scenario 2
Initiator requests all objects from Responder, including non-image objects and associations.

Step Initiator Action Parameter1 Parameter2 Parameter3 Responder Action
1 GetDeviceInfo 0x00000000 0x00000000 0x00000000 Send DeviceInfo dataset

2 OpenSession SessionID 0x00000000 0x00000000 Create ObjectHandles,
Storage IDs if necessary

3 GetObjectHandles 0xFFFFFFFF 0x00000000 0x00000000 Send ObjectHandle
Array

4 GetObjectInfo ObjHandle 1 0x00000000 0x00000000 Send ObjectInfo 1
Dataset

5 Repeat Step 4 for each
ObjectHandle ObjHandle n 0x00000000 0x00000000 Send ObjectInfo n

Dataset
6 GetObject ObjHandle 1 0x00000000 0x00000000 Send Object 1 Data

7 Repeat Step 6 for each
ObjectHandle ObjHandle n 0x00000000 0x00000000 Send Object n Data

8 Close Session 0x00000000 0x00000000 0x00000000 None

9.4.1.3 Scenario 3
Initiator requests all thumbnails from the Responder, ignoring non-images and associations.
Initiator then requests a subset of the image objects.

Step Initiator Action Parameter1 Parameter2 Parameter3 Responder Action
1 GetDeviceInfo 0x00000000 0x00000000 0x00000000 Send DeviceInfo dataset

2 OpenSession SessionID 0x00000000 0x00000000 Create ObjectHandles,
Storage IDs if necessary

3 GetObjectHandles 0xFFFFFFFF 0xFFFFFFFF 0x00000000 Send ObjectHandle
Array

4 GetObjectInfo ObjHandle 1 0x00000000 0x00000000 Send ObjectInfo 1
Dataset

5 Repeat Step 4 for each
ObjectHandle ObjHandle n 0x00000000 0x00000000 Send ObjectInfo n

Dataset
6 GetThumb ObjHandle 1 0x00000000 0x00000000 Send Thumb 1 Data

7 Repeat Step 6 for each
ObjectHandle ObjHandle n 0x00000000 0x00000000 Send Thumb n Data

8 GetObject ObjHandle a 0x00000000 0x00000000 Send Object a Data

9 Repeat Step 8 for each
ObjectHandle Selected ObjHandle m 0x00000000 0x00000000 Send Object m Data

10 Close Session 0x00000000 0x00000000 0x00000000 None

PIMA 15740: 2000

44
© 2000 PIMA, Inc. – All Rights Reserved

9.4.1.4 Scenario 4
The Initiator examines the list of stores on the Responder. The Initiator chooses one store
and discovers all objects in the root of the hierarchical file system of that store. The Initiator
then retrieves all thumbnails for any image objects discovered there.

Step Initiator Action Parameter1 Parameter2 Parameter3 Responder Action
1 GetDeviceInfo 0x00000000 0x00000000 0x00000000 Send DeviceInfo dataset

2 OpenSession SessionID 0x00000000 0x00000000 Create ObjectHandles,
Storage IDs if necessary

3 GetStorageIDs 0x00000000 0x00000000 0x00000000 Send StorageID Array
4 GetStorageInfo StorageID 1 0x00000000 0x00000000 Send StorageInfo 1

5
Repeat Step 4 for each
ObjectHandle in array
returned in step 4

StorageID n 0x00000000 0x00000000 Send StorageInfo n

6 GetObjectHandles StorageID of
selected store

0x00000000 0xFFFFFFFF
Send ObjectHandle
Array for objects in root
of selected store

7 GetObjectInfo ObjHandle 1 0x00000000 0x00000000 Send ObjectInfo 1
Dataset

8
Repeat Step 7 for each
ObjectHandle in array
returned in step 6

ObjHandle n 0x00000000 0x00000000 Send ObjectInfo n
Dataset

9 GetThumb
ObjHandle of

first image
object

0x00000000 0x00000000 Send Thumb 1 Data

10

Repeat Step 9 for each
ObjectHandle in array
returned in step 6 that
represents an image

ObjHandle n 0x00000000 0x00000000 Send Thumb n Data

11 Close Session 0x00000000 0x00000000 0x00000000 None

PIMA 15740: 2000

45
© 2000 PIMA, Inc. – All Rights Reserved

9.4.2 Push Scenarios
This clause describes some typical scenarios that are likely to occur between an Initiator and
a Responder, when the Initiator wants to send objects to the Responder.

9.4.2.1 Scenario 1
The Initiator pushes all objects to the Responder, allowing the Responder to determine where
to place the objects it is receiving.

Step Initiator Action Parameter1 Parameter2 Parameter3 Responder Action
1 GetDeviceInfo 0x00000000 0x00000000 0x00000000 Send DeviceInfo dataset

2 OpenSession SessionID 0x00000000 0x00000000 Create ObjectHandles,
Storage IDs if necessary

3 SendObjectInfo 0x00000000 0x00000000 0x00000000

Allocate memory, assign
new ObjHandle, return
StorageID, Parent
ObjHandle, ObjHandle

4 SendObject 0x00000000 0x00000000 0x00000000 Write data to store,
invalidate SendObjInfo

5

Repeat Steps 3 and
4 for each Object to
send in a top-down
fashion

6 Close Session 0x00000000 0x00000000 0x00000000 None

9.4.2.2 Scenario 2
The Initiator pushes all objects to the Responder, specifying the intended location on the
Responder for each.

Step Initiator Action Parameter1 Parameter2 Parameter3 Responder Action
1 GetDeviceInfo 0x00000000 0x00000000 0x00000000 Send DeviceInfo dataset

2 OpenSession SessionID 0x00000000 0x00000000 Create ObjectHandles,
Storage IDs if necessary

3 SendObjectInfo Responder
Target StorageID

Responder Target
Parent’s

ObjectHandle
0x00000000

Allocate memory, assign
new ObjHandle, return
StorageID, Parent
ObjHandle, ObjHandle

4 SendObject 0x00000000 0x00000000 0x00000000 Write data to store,
invalidate ObjInfo

5

Repeat Steps 3and 4
for each Object to
send in a breadth-
wise fashion

6 Close Session 0x00000000 0x00000000 0x00000000 None

PIMA 15740: 2000

46
© 2000 PIMA, Inc. – All Rights Reserved

9.5 Vendor Extensions
Device manufacturers can extend this standard through several mechanisms outlined in this
specification. The VendorExtensionID and VendorExtensionVersion fields of the DeviceInfo
dataset can be used to uniquely identify the vendor extensions. For example, two vendors
may happen to use the same vendor extended OperationCode 0x8001 for different uses, but
the VendorExtensionID and/or VendorExtensionVersion fields for the two devices will be
different, and therefore the intended interpretation and usage can be determined. All vendor-
extended values shall be qualified with the VendorExtensionID for unique identification. For
example, a device cannot use a vendor extended operation until it checks the
VendorExtensionID and VendorExtensionVersion fields of sent by the other device in the
DeviceInfo dataset. VendorExtensionIDs shall be assigned by PIMA (Photographic Imaging
Manufacturer’s Association). A list of assigned IDs may be found at http://www.pima.net.
VendorExtensionVersion numbers shall be maintained internally by each vendor, and should
be publicly advertised if vendors wish others to be able to access their extensions.

http://www.pima.net/ptp.htm

PIMA 15740: 2000

47
© 2000 PIMA, Inc. – All Rights Reserved

10 Operations
This section describes the various operations that are defined in these standard, along with
their parameters and intended usages. The operations have been defined in order to ensure
the following:

• The basic core functionality is accessible easily and uniformly for all devices.

• Advanced functionality is exposed in an optional, common way for more capable
devices.

• Vendor extensibility is accessible via a well-defined mechanism.

• The transport layer and the controlling device are completely abstracted.

10.1 Operation Parameters
Many operations have parameters that must be accounted for by all implementations, even if
particular values of particular parameters are not supported. All parameters are 32 bits in
length. If a particular parameter for a particular operation needs less than 32 bits, the least
significant bits shall be used, with the non-used most significant bits being set to zero.

For some operations, parameters act like device properties, as both can modify the way an
operation is carried out. In the case of an inconsistency between operation parameters and
device properties, the parameter shall take precedence over any device property, but will not
cause the device property or the device behavior to change for any subsequent similar
operation requests that do not specify the parameter similarly.

10.2 OperationCode Format
OperationCodes are transferred as part of the operation dataset described in Clause 9.3.3. All
OperationCodes shall take the form of a 16-bit integer, are referred to using hexadecimal
notation, and have bit 12 set to 1, and bits 13 and 14 set to 0. All non-defined
ResponseCodes having bit 15 set to zero are reserved for future use. If a proprietary
implementation wishes to define a proprietary OperationCode, bit 15 should be set to 1.

10.3 OperationCode Summary
The following table summarizes the operations defined by this standard and their
corresponding OperationCodes. Refer to Clause 14, Conformance Section, for information
on which operations are required and which are optional. Parameters that are in brackets are
optional. For details on extending operations, refer to Clause 9.5, Vendor Extensions. The
following table gives a summary of the operations and parameters defined in this standard:

PIMA 15740: 2000

48
© 2000 PIMA, Inc. – All Rights Reserved

Table 18: Operation Summary

Operation Code Operation Name
0x1000 Undefined
0x1001 GetDeviceInfo
0x1002 OpenSession
0x1003 CloseSession
0x1004 GetStorageIDs
0x1005 GetStorageInfo
0x1006 GetNumObjects
0x1007 GetObjectHandles
0x1008 GetObjectInfo
0x1009 GetObject
0x100A GetThumb
0x100B DeleteObject
0x100C SendObjectInfo
0x100D SendObject
0x100E InitiateCapture
0x100F FormatStore
0x1010 ResetDevice
0x1011 SelfTest
0x1012 SetObjectProtection
0x1013 PowerDown
0x1014 GetDevicePropDesc
0x1015 GetDevicePropValue
0x1016 SetDevicePropValue
0x1017 ResetDevicePropValue
0x1018 TerminateOpenCapture
0x1019 MoveObject
0x101A CopyObject
0x101B GetPartialObject
0x101C InitiateOpenCapture

All other codes
with MSN of

0001
Reserved

All codes with
MSN of 1001 Vendor-Extended Operation Code

PIMA 15740: 2000

49
© 2000 PIMA, Inc. – All Rights Reserved

10.4 Operation Descriptions
This Clause describes each individual operation, as well as the usage of the operation.

10.4.1 GetDeviceInfo
OperationCode: 0x1001

Operation Parameter1: None

Operation Parameter2: None

Operation Parameter3: None

Data: DeviceInfo dataset

Data Direction: R -> I

ResponseCode Options: OK, Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: This operation returns information and capabilities about the Responder device
by returning a DeviceInfo dataset. This dataset is described in Clause 5.5.1. This
operation is the only operation that may be issued inside or outside of a session. When
used outside a session, both the SessionID and the TransactionID in the
OperationRequest dataset shall be set to 0x00000000.

10.4.2 OpenSession
OperationCode: 0x1002

Operation Parameter1: SessionID

Operation Parameter2: None

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Parameter_Not_Supported, Invalid_Parameter,
Session_Already_Open, Device_Busy

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

PIMA 15740: 2000

50
© 2000 PIMA, Inc. – All Rights Reserved

Description: Causes device to allocate resources, assigns handles to data objects if necessary,
and performs any connection-specific initialization. The SessionID will then be used by
all other operations during the session. Unless otherwise specified, an open session is
required to invoke an operation. If the first parameter is 0x00000000, the operation
should fail with a response of Invalid_Parameter. If a session is already open, and the
device does not support multiple sessions, the response Session_Already_Open should
be returned, with the SessionID of the already open session as the first response
parameter. The response Session_Already_Open should also be used if the device
supports multiple sessions, but a session with that ID is already open. If the device
supports multiple sessions, and the maximum number of sessions are open, the device
should respond with Device_Busy.

The SessionID and TransactionID fields of the operation dataset should both be set to
0x00000000 for this operation.

10.4.3 CloseSession
OperationCode: 0x1003

Operation Parameter1: None

Operation Parameter2: None

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Session_Not_Open, Invalid_TransactionID,
Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Closes the session. Causes device to perform any session-specific cleanup.

10.4.4 GetStorageIDs
OperationCode: 0x1004

Operation Parameter1: None

Operation Parameter2: None

Operation Parameter3: None

Data: StorageIDArray

Data Direction: R -> I

PIMA 15740: 2000

51
© 2000 PIMA, Inc. – All Rights Reserved

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: This operation returns a list of the currently valid StorageIDs. This array shall
contain one StorageID for each valid logical store. One StorageID should also be
present for each removable media that is not inserted, which would contain a non-zero
PhysicalStorageID and a LogicalStorageID with the value 0x0000.

10.4.5 GetStorageInfo
OperationCode: 0x1005

Operation Parameter1: StorageID

Operation Parameter2: None

Operation Parameter3: None

Data: StorageInfo

Data Direction: R -> I

ResponseCode Options: OK, Session_Not_Open, Invalid_TransactionID, Access_Denied,
Invalid_StorageID, Store_Not_Available, Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Returns a StorageInfo dataset for the particular storage area indicated in the first
parameter. This dataset is defined in Clause 5.5.3.

10.4.6 GetNumObjects
OperationCode: 0x1006

Operation Parameter1: StorageID

Operation Parameter2: [ObjectFormatCode]

Operation Parameter3: [ObjectHandle of Association for which number of children is
desired]

Data: None

Data Direction: N/A

PIMA 15740: 2000

52
© 2000 PIMA, Inc. – All Rights Reserved

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_StorageID, Store_Not_Available,
Specification_By_Format_Unsupported, Invalid_Code_Format,
Parameter_Not_Supported, Invalid_ParentObject, Invalid_ObjectHandle,
Invalid_Parameter

Response Parameter1: NumObjects

Response Parameter2: None

Response Parameter3: None

Description: Returns the total number of objects present in the store indicated by the first
parameter. If the number of objects aggregated across all stores is desired, a StorageID
of 0xFFFFFFFF may be used. If a single store is specified, and the store is unavailable
because of media removal, this operation should return Store_Not_Available.

By default, this operation returns the total number of objects, which includes both image
and non-image objects of all types.

The second parameter, ObjectFormatCode, is optional, and may not be supported. This
parameter is used to identify a particular ObjectFormatCode, so that only objects of the
particular type will be counted towards NumObjects. If the number of objects of all
formats that are images is desired, the value 0xFFFFFFFF may be used. If this
parameter is not used, it shall be set to 0x00000000. If the value is non-zero, and the
Responder does not support specification by ObjectFormatCode, it should fail the
operation by returning a ResponseCode with the value of
Specification_By_Format_Unsupported.

The third parameter is optional, and may be used to request only the number of objects
that belong directly to a particular association. If the third parameter is a valid
ObjectHandle for an Association, this operation should only return the number of
ObjectHandles that exist for objects that are direct children of the Association, and
therefore only the number of ObjectHandles which refer to objects that possess an
ObjectInfo dataset with the ParentObject field set to the value indicated in the third
parameter. If the number of only those ObjectHandles corresponding to objects in the
“root” of a store is desired, this parameter may be set to 0xFFFFFFFF. If the
ObjectHandle referred to is not a valid ObjectHandle, the appropriate response is
Invalid_ObjectHandle. If this parameter is specified, is a valid ObjectHandle, but the
object referred to is not an association, the response Invalid_ParentObject should be
returned. If unused, this operation returns the number of ObjectHandles aggregated
across the entire device (modified by the second parameter), and the third parameter
should be set to 0x00000000.

PIMA 15740: 2000

53
© 2000 PIMA, Inc. – All Rights Reserved

10.4.7 GetObjectHandles
OperationCode: 0x1007

Operation Parameter1: StorageID

Operation Parameter2: [ObjectFormatCode]

Operation Parameter3: [ObjectHandle of Association for which a list of children is desired]]

Data: ObjectHandleArray

Data Direction: R -> I

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_StorageID, Store_Not_Available,
Invalid_ObjectFormatCode, Specification_By_Format_Unsupported,
Invalid_Code_Format, Invalid_ObjectHandle, Invalid_Parameter,
Parameter_Not_Supported, Invalid_ParentObject, Invalid_ObjectHandle

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Returns an array of ObjectHandles present in the store indicated by the
StorageID in the first parameter. If an aggregated list across all stores is desired, this
value shall be set to 0xFFFFFFFF. Arrays are described in Clause 5.4.

The second parameter is optional, and may or may not be supported. This parameter
allows the Initiator to ask for only the handles that represent data objects that possess a
format specified by the ObjectFormatCode. If a list of handles that represent only image
objects is desired, this second parameter may be set to 0xFFFFFFFF. If it is not used, it
shall be set to 0x00000000. If the value is non-zero, and the Responder does not support
specification by ObjectFormatCode, it should fail the operation by returning a
ResponseCode with the value of Specification_By_Format_Unsupported. If a single
store is specified, and the store is unavailable because of media removal, this operation
should return Store_Not_Available.

The third parameter is optional, and may be used to request only a list of the handles of
objects that belong to a particular association. If the third parameter is a valid
ObjectHandle for an Association, this operation should return only a list of
ObjectHandles of objects that are direct children of the Association, and therefore only
ObjectHandles who refer to objects that possess an ObjectInfo dataset with the
ParentObject field set to the value indicated in the third parameter. If a list of only those
ObjectHandles corresponding to objects in the “root” of a store is desired, this parameter
may be set to 0xFFFFFFFF. If the ObjectHandle referred to is not a valid ObjectHandle,
the appropriate response is Invalid_ObjectHandle. If this parameter is specified, is a
valid ObjectHandle, but the object referred to is not an association, the response
Invalid_ParentObject should be returned. If the third parameter is unused, this operation

PIMA 15740: 2000

54
© 2000 PIMA, Inc. – All Rights Reserved

returns ObjectHandles aggregated across the entire device (modified by the second
parameter), and the third parameter should be set to 0x00000000.

10.4.8 GetObjectInfo
OperationCode: 0x1008

Operation Parameter1: ObjectHandle

Operation Parameter2: None

Operation Parameter3: None

Data: ObjectInfo

Data Direction: R -> I

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_ObjectHandle, Store_Not_Available,
Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Returns the ObjectInfo dataset, as described in Clause 5.5.2. The primary
purpose of this operation is to obtain information about a data object present on the
device before deciding whether to retrieve that object or its thumbnail with a succeeding
GetThumb or GetObject operation. This information may also be used by the caller to
allocate memory before receiving the object. Objects that possess an ObjectFormat of
type Association do not require a GetObject operation, as these objects are fully
qualified by their ObjectInfo dataset.

10.4.9 GetObject
OperationCode: 0x1009

Operation Parameter1: ObjectHandle

Operation Parameter2: None

Operation Parameter3: None

Data: DataObject

Data Direction: R -> I

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_ObjectHandle, Invalid_Parameter, Store_Not_Available,
Parameter_Not_Supported, Incomplete_Transfer

Response Parameter1: None

PIMA 15740: 2000

55
© 2000 PIMA, Inc. – All Rights Reserved

Response Parameter2: None

Response Parameter3: None

Description: Retrieves one object from the device. This operation is used for all types of
data objects present on the device, including both images and non-image data objects,
and should be preceded (although not necessarily immediately) by a GetObjectInfo
operation that uses the same ObjectHandle. This operation is not necessary for objects
of type Association, as these objects are fully qualified by their ObjectInfo dataset. If the
store that contains the object being sent is removed during the object transfer, the
Incomplete_Transfer response should be used, along with the Store_Removed event.

10.4.10 GetThumb
OperationCode: 0x100A

Operation Parameter1: ObjectHandle

Operation Parameter2: None

Operation Parameter3: None

Data: ThumbnailObject

Data Direction: R -> I

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_ObjectHandle, Thumbnail_Not_Present,
Invalid_ObjectFormatCode, Store_Not_Available, Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Retrieves the thumbnail from the device that is associated with the
ObjectHandle that is indicated in the first parameter.

10.4.11 DeleteObject
OperationCode: 0x100B

Operation Parameter1: ObjectHandle

Operation Parameter2: [ObjectFormatCode]

Operation Parameter3: None

Data: None

Data Direction: N/A

PIMA 15740: 2000

56
© 2000 PIMA, Inc. – All Rights Reserved

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_ObjectHandle, Object_WriteProtected,
Store_Read_Only, Partial_Deletion, Store_Not_Available,
Specification_By_Format_Unsupported, Invalid_Code_Format, Device_Busy,
Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Deletes the data object specified by the ObjectHandle from the device if it is not
protected. If the ObjectHandle passed has the value of 0xFFFFFFFF, then all objects on
the device shall be deleted. Any write-protected objects shall also not be deleted by this
operation. If one object is indicated for deletion and it is write-protected, the response
code Object_WriteProtected shall be returned. If all objects are indicated for deletion
and a subset of the objects are write-protected, only the objects that are not protected
shall be deleted, and the response code of Partial_Deletion shall be returned. If the store
is read-only without object deletion, the response Store_Read_Only should be returned.
If the store is read-only with object deletion, this operation should succeed unless other
factors prevent it from succeeding.

The second parameter is optional, and may not be supported. This parameter may only
be used if the first parameter is set to 0xFFFFFFFF. This parameter is used to indicate
that objects only of the type specified are to be deleted. If this second parameter is also
set to 0xFFFFFFFF, then only objects that are images shall be deleted. If it is not used, it
shall be set to 0x00000000. If the value is non-zero, and the Responder does not support
specification by ObjectFormatCode, it should fail the operation by returning a
ResponseCode with the value of Specification_By_Format_Unsupported.

If the ObjectHandle indicated in the first parameter is an Association, then all objects
that are a part of that association (and all descendants of descendants) shall be deleted as
well. If only individual items within an association are to be deleted, then individual
DeleteObject operations should be issued on each object or sub-association individually.

10.4.12 SendObjectInfo
OperationCode: 0x100C

Operation Parameter1: [Destination StorageID on Responder]

Operation Parameter2: [Parent ObjectHandle on Responder where object should be placed]

Operation Parameter3: None

Data: ObjectInfo

Data Direction: I -> R

PIMA 15740: 2000

57
© 2000 PIMA, Inc. – All Rights Reserved

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Access_Denied, Invalid_StorageID, Store_Read_Only,
Store_Full, Invalid_ObjectFormatCode, Store_Not_Available,
Parameter_Not_Supported, Invalid_ParentObject, Invalid_Dataset

Response Parameter1: Responder StorageID in which the object will be stored

Response Parameter2: Responder Parent ObjectHandle in which the object will be stored

Response Parameter3: Responder’s reserved ObjectHandle for the incoming object

Description: This operation is used as the first operation when the Initiator wishes to send an
object to the Responder. This operation sends an ObjectInfo dataset from the Initiator to
the Responder. All the fields in this ObjectInfo dataset are from the perspective of the
Initiator, meaning that the StorageID, for example, would be interpreted as the StorageID
of the store in which the object resides on the Initiator before being sent to the
Responder. This operation is sent prior to the SendObject operation, described in Clause
10.4.13, in order to inform the Responder about the properties of the object that it
intends to send later, and to effectively ask permission whether the object can be sent to
the Responder. A response of OK infers that the receiver can accept the object, and
serves to inform the sender that it may now issue a SendObject operation for the object.

The first parameter is optionally used to indicate the store on the Responder into which
the object should be stored. If this parameter is specified, and the Responder will not be
able to store the object in the indicated store, the operation should fail, and the
appropriate response, such as Specification_Of_Destination_Unsupported,
Store_Not_Available, Store_Read_Only, or Store_Full should be used. If this parameter
is unused, it should be set to 0x00000000, and the Responder shall decide in which store
to place the object, be that a Responder-determined default location, or the location with
the most room (or possibly the only location with enough room).

The second parameter is optionally used to indicate where on the indicated store the
object should be placed (i.e. the association/folder that the object should become a child
of.) If this parameter is used, the first parameter must also be used. If the receiver is
unable to place the object as a child of the indicated second parameter, the operation
should fail. If the problem with the attempted specification is the general inability of the
receiving device to allow the specification of destination, the response
Specification_of_Destination_Unsupported should be sent. This response infers that the
Initiator should not try to specify a destination location in future invocations of
SendObjectInfo, as all attempts at such specification will fail. If the problem is only
with the particular destination specified, the Invalid_ObjectHandle or
Invalid_ParentObject response should be used, depending on whether the ObjectHandle
did not refer to a valid object, or whether the indicated object is a valid object but is not
an association. If the root directory of the indicated store is desired, the second
parameter should be set to 0xFFFFFFFF. If this parameter is unused, it should be set to
0x00000000, and the Responder shall decide where in the indicated store the object is to
be placed. If neither the first nor the second parameter is used, the Responder shall

PIMA 15740: 2000

58
© 2000 PIMA, Inc. – All Rights Reserved

decide both which store to place the object in as well as where to place it within that
store.

If the Responder agrees that the object may be sent, it is required to retain this
ObjectInfo dataset until the next SendObject or SendObjectInfo operation is performed
subsequently within the session. If the SendObjectInfo operation succeeds, and the next
occurring SendObject operation does not return a successful response, the
SendObjectInfo held by the Responder shall be retained in case the Initiator wishes to re-
attempt the SendObject operation for that previously successful SendObjectInfo
operation. If the Initiator wishes to resend the ObjectInfo dataset before attempting to
resend the object it may do so. Successful completion of the SendObjectInfo operation
conveys that the Responder possesses a copy of the ObjectInfo and that the Responder
has allocated space for the incoming data object. Any other response code other than
OK indicates that the Responder has not retained the ObjectInfo dataset, and that the
object should not attempt to be sent.

For a particular session, the receiving device shall only retain one ObjectInfo that is the
result of a SendObjectInfo operation in memory at a time. If another SendObjectInfo
operation occurs before a SendObject operation, the new ObjectInfo shall replace the
previously held one. If this occurs, any storage space or memory space reserved for the
object described in the overwritten ObjectInfo dataset should be freed before overwriting
and allocation of the resources for the new ObjectInfo dataset.

The first response parameter of this operation should be set to the StorageID that the
Responder will store the object into if it sent. The second response parameter of this
operation should be set to the Parent ObjectHandle of the association that the object
becomes a child of. If the object is stored in the root of the store, this parameter should
be set to 0xFFFFFFFF.

If the Initiator wishes to retain associations and/or hierarchies on the Responder for the
objects it is sending, then the objects should be sent top down, starting with the highest
level of the hierarchy, proceeding in either a depth-first or breadth-first fashion down the
hierarchy tree. The Initiator shall use the Responder’s newly assigned ObjectHandle in
the third response parameter for the ParentObject that is returned in the SendObjectInfo
response as the second operation parameter for a child’s SendObjectInfo operation.

10.4.13 SendObject
OperationCode: 0x100D

Operation Parameter1: None

Operation Parameter2: None

Operation Parameter3: None

Data: DataObject

Data Direction: I -> R

PIMA 15740: 2000

59
© 2000 PIMA, Inc. – All Rights Reserved

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Store_Full, Store_Not_Available, No_Valid_ObjectInfo,
Device_Busy, Parameter_Not_Supported, Incomplete_Transfer

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: This operation is used as the second operation when the Initiator wishes to send
an object to the Responder, following the SendObjectInfo operation, described in Clause
10.4.12. This operation sends a data object to the device to be written to the
Responder’s store, according to the information in the ObjectInfo dataset as transmitted
during the most recent SendObjectInfo operation in the same session, and the
information indicated by the responder in the response parameters of the
SendObjectInfo.

Upon successful completion of this operation, the Responder should discard and/or
invalidate the Initiator’s ObjectInfo that the Responder held while waiting for that
object. If there is no valid ObjectInfo held by the Responder, the response
No_Valid_ObjectInfo should be returned. Any response other than OK indicates that the
SendObject failed, for the reason indicated by the response code. In this case, the
unassigned ObjectInfo should be retained by the Responder in case the Initiator wishes
to attempt to resend the object, for at most the duration of the session. If the destination
store is removed during object transmission, the Incomplete_Transfer response should be
issued along with the StoreRemoved event.

10.4.14 InitiateCapture
OperationCode: 0x100E

Operation Parameter1: [StorageID]

Operation Parameter2: [ObjectFormatCode]

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_StorageID, Store_Full, Invalid_ObjectFormatCode,
Invalid_Parameter, Store_Not_Available, Invalid_Code_Format, Device_Busy,
Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

PIMA 15740: 2000

60
© 2000 PIMA, Inc. – All Rights Reserved

Description: Causes the device to initiate the capture of one or more new data objects
according to its current device properties, storing the data into the store indicated by the
first parameter. If the StorageID is 0x00000000, the object(s) will be stored in a store
that is determined by the capturing device. If the particular store specified is not
available, or no store is specified and there are no stores available, this operation should
return Store_Not_Available.

The capturing of new data objects is an asynchronous operation. This operation may be
used to capture images or any type of data that can be fully captured using a single
operation trigger. For these types of captures, the length of the capture and the number
of objects to capture is known apriori by the Responder, as opposed to being
dynamically terminable after capture initiation by the Initiator. A separate operation,
InitiateOpenCapture, described in Clause 10.4.28, can be used to support dynamically
controlled captures that are terminable by the Initiator.

If the ObjectFormatCode in the second operation parameter is 0x00000000, the device
shall capture an image in the format that is the default for the device. A successful
response to an InitiateCapture operation indicates the Responder’s acceptance of the
InitiateCapture operation, and not the completion status of the actual object capture,
which is indicated using the CaptureComplete event.

As the capture is executed, one or more new data objects should be created on the
device. The number of objects to be captured is not specified as part of the
InitiateCapture operation, but is determined by the state of the capturing device, and may
optionally be set by the Initiator using an appropriate DeviceProperty. As each of the
newly captured objects becomes available, the Responder is required to send an
ObjectAdded event to the Initiator, indicating the ObjectHandle that is assigned to each
as described in Clause 12.5.2. This ObjectAdded event shall contain the TransactionID
of the InitiateCapture operation with which it is associated. If, at any time, the store
becomes full, the device shall invoke a Store_Full event, which shall contain the
TransactionID of the InitiateCapture operation that failed to cause a new object to be
stored. In the case of multiple objects being captured, each object shall be handled
separately, so any object captured before the store becomes full should be retained.
When all objects have been captured, the Responder shall send a CaptureComplete event
to the Initiator. If the Store_Full event was issued, the CaptureComplete event should
not be issued. If another capture is occurring when this operation is invoked, the
Device_Busy response should be used.

Figure 6: Single Object InitiateCapture Sequence
 Initiator Responder

 InitiateCapture Operation
 InitiateCapture Response
 ObjectAdded Event
 CaptureComplete Event
 GetObjectInfo Operation
 ObjectInfo Dataset/Response

PIMA 15740: 2000

61
© 2000 PIMA, Inc. – All Rights Reserved

Figure 7: Multiple Object InitiateCapture Sequence
 Initiator Responder

 InitiateCapture Operation
 InitiateCapture Response
 ObjectAdded Event(1)
 ObjectAdded Event(2)

. . .
 ObjectAdded Event(n-1)
 ObjectAdded Event(n)
 CaptureComplete Event
 GetObjectInfo Operation(1)
 ObjectInfo Dataset/Response(1)
 GetObjectInfo Operation(2)
 ObjectInfo Dataset/Response(2)

 . . .
 GetObjectInfo Operation(n-1)
 ObjectInfo Dataset/Response(n-1)
 GetObjectInfo Operation(n)
 ObjectInfo Dataset/Response(n)

10.4.15 FormatStore
OperationCode: 0x100F

Operation Parameter1: StorageID

Operation Parameter2: [FilesystemFormat]

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_StorageID, Store_Not_Available, Device_Busy,
Parameter_Not_Supported, Invalid_Parameter, Store_Read_Only

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Formats the media specified by the StorageID. The second parameter is
optional and may be used to indicate the format that the store should be formatted in,
according to the FilesystemFormat codes described in Clause 5.5.3. If a given format is
not supported, the response Invalid_Parameter should be returned. If the device is
currently capturing objects to the store, or is otherwise unable to format due to
concurrent access, the Device_Busy operation should be returned.

PIMA 15740: 2000

62
© 2000 PIMA, Inc. – All Rights Reserved

10.4.16 ResetDevice
OperationCode: 0x1010

Operation Parameter1: None

Operation Parameter2: None

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Device_Busy

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Resets the device to its device-dependent default state. This does not include
resetting any device properties, which is performed using ResetDeviceProp. This does
include closing the current session, and any other open sessions. If this operation is
supported and the device supports multiple concurrent sessions, the device is responsible
for supporting the DeviceReset event, which should be sent to all open sessions
excluding the one within which the ResetDevice operation was initiated prior to closing
the sessions.

10.4.17 SelfTest
OperationCode: 0x1011

Operation Parameter1: [SelfTestType]

Operation Parameter2: None

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, SelfTest_Failed, Device_Busy, Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Causes the device to initiate a device-dependent self-test. The first parameter is
used to indicate the type of self-test that should be performed, according to the following
table:

PIMA 15740: 2000

63
© 2000 PIMA, Inc. – All Rights Reserved

Table 19: SelfTestType Values

Value Description
0x0000 Default device-specific self-test

All other
values with Bit

15 set to 0
Reserved

All values with
Bit 15 set to 1 Vendor-Defined

10.4.18 SetObjectProtection
OperationCode: 0x1012

Operation Parameter1: ObjectHandle

Operation Parameter2: ProtectionStatus

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Access_Denied, Invalid_ObjectHandle, Invalid_Parameter,
Store_Not_Available, Parameter_Not_Supported, Store_Read_Only

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Sets the write-protection status for the data object referred to in the first
parameter to the value indicated in the second parameter. For a description of the
ProtectionStatus field, refer to the ObjectInfo dataset described in Clause 5.5.2. If the
ProtectionStatus field does not hold a legal value, the ResponseCode should be
Invalid_Parameter.

10.4.19 PowerDown
OperationCode: 0x1013

Operation Parameter1: None

Operation Parameter2: None

Operation Parameter3: None

Data: None

Data Direction: N/A

PIMA 15740: 2000

64
© 2000 PIMA, Inc. – All Rights Reserved

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Device_Busy, Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Causes the device to power down. This will cause all currently open sessions to
close.

10.4.20 GetDevicePropDesc
OperationCode: 0x1014

Operation Parameter1: DevicePropCode

Operation Parameter2: None

Operation Parameter3: None

Data: DevicePropDesc Dataset

Data Direction: R -> I

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Access_Denied, DeviceProp_Not_Supported, Device_Busy,
Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Returns the appropriate Property Describing Dataset as indicated by the first
parameter.

10.4.21 GetDevicePropValue
OperationCode: 0x1015

Operation Parameter1: DevicePropCode

Operation Parameter2: None

Operation Parameter3: None

Data: DeviceProperty Value

Data Direction: R -> I

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, DeviceProp_Not_Supported, Device_Busy,
Parameter_Not_Supported

PIMA 15740: 2000

65
© 2000 PIMA, Inc. – All Rights Reserved

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Returns the current value of a property. The size and format of the data
returned from this operation should be determined from the corresponding
DevicePropDesc dataset returned from the GetDevicePropDesc operation. The current
value of a property can also be retrieved directly from the DevicePropDesc, so this
operation is not typically required unless a DevicePropChanged event occurs.

10.4.22 SetDevicePropValue
OperationCode: 0x1016

Operation Parameter1: DevicePropCode

Operation Parameter2: None

Operation Parameter3: None

Data: Device Property Value

Data Direction: I -> R

ResponseCode Options: OK, Session_Not_Open, Invalid_TransactionID, Access_Denied,
DeviceProp_Not_Supported, Property_Not_Supported, Invalid_DeviceProp_Format,
Invalid_DeviceProp_Value, Device_Busy, Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Sets the current value of the device property indicated by parameter 1 to the
value indicated in the data phase of this operation. The format of the property value
object sent in the data phase can be determined from the DatatypeCode field of the
property’s DevicePropDesc dataset. If the property is not settable, the response
Access_Denied should be returned. If the value is not allowed by the device,
Invalid_DeviceProp_Value should be returned. If the format or size of the property
value is incorrect, Invalid_DeviceProp_Format should be returned.

10.4.23 ResetDevicePropValue
OperationCode: 0x1017

Operation Parameter1: DevicePropCode

Operation Parameter2: None

Operation Parameter3: None

Data: None

PIMA 15740: 2000

66
© 2000 PIMA, Inc. – All Rights Reserved

Data Direction: None

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, DeviceProp_Not_Supported, Device_Busy,
Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Sets the value of the indicated device property to the factory default setting.
The first parameter may be set to 0xFFFFFFFF to indicate that all properties should be
reset to their factory default settings.

10.4.24 TerminateOpenCapture
OperationCode: 0x1018

Operation Parameter1: TransactionID

Operation Parameter2: None

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Parameter_Not_Supported, Invalid_Parameter,
Capture_Already_Terminated

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: This operation is used after an InitiateOpenCapture operation for situations
where the capture operation length is open-ended, and determined by the Initiator. This
operation is not used for trigger captures, which are invoked using a separate operation,
InitiateCapture, described in Clause 10.4.14. This operation allows the termination of
one capture operation that is being used to capture many objects over some period of
time, such as a burst, or for long single objects such as manually-controlled image
exposures, audio captures, or video clips. The first parameter of this operation indicates
the TransactionID of the InitiateOpenCapture operation that is being terminated. If the
capture has already terminated for some other reason, this operation should return
Capture_Already_Terminated. If the TransactionID parameter does not refer to
transaction that was an InitiateOpenCapture, this operation should return
Invalid_TransactionID.

PIMA 15740: 2000

67
© 2000 PIMA, Inc. – All Rights Reserved

10.4.25 MoveObject
OperationCode: 0x1019

Operation Parameter1: ObjectHandle

Operation Parameter2: StorageID of store to move object to

Operation Parameter3: ObjectHandle of new ParentObject

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Store_Read_Only, Store_Not_Available, Invalid_ObjectHandle,
Invalid_ParentObject, Device_Busy, Parameter_Not_Supported, Invalid_StorageHandle

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: This operation causes the object to be moved from its location within the
hierarchy to a new location indicated by the second and third parameters. If the root of
the store is desired, the third parameter may be set to 0x00000000. If the third parameter
does not refer to a valid object of type Association, the response Invalid_ParentObject
should be returned. If a store is read-only (with or without deletion) the response
Store_Read_Only should be returned. This operation does not cause the ObjectHandle
of the object that is being moved to change. If the object is to be moved

10.4.26 CopyObject
OperationCode: 0x101A

Operation Parameter1: ObjectHandle

Operation Parameter2: StorageID that the newly copied object should be placed into

Operation Parameter3: ObjectHandle of newly copied object’s parent

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Store_Read_Only, Invalid_ObjectHandle, Invalid_ParentObject,
Device_Busy, Store_Full, Parameter_Not_Supported, Invalid_StorageID

Response Parameter1: ObjectHandle of new copy of object

Response Parameter2: None

Response Parameter3: None

PIMA 15740: 2000

68
© 2000 PIMA, Inc. – All Rights Reserved

Description: This operation causes the object to be replicated within the Responder. The
first parameter refers to the ObjectHandle of the object that is to be copied. The second
parameter refers to the StorageID into which the newly copied object should be placed.
The third parameter refers to the ParentObject of where the newly replicated copy should
be placed. If the object is to be copied into the root of the store, this value should be set
to 0x00000000.

10.4.27 GetPartialObject
OperationCode: 0x101B

Operation Parameter1: ObjectHandle

Operation Parameter2: Offset in bytes

Operation Parameter3: Maximum number of bytes to obtain

Data: DataObject

Data Direction: R -> I

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_ObjectHandle, Invalid_ObjectFormatCode,
Invalid_Parameter, Store_Not_Available, Device_Busy, Parameter_Not_Supported

Response Parameter1: Actual number of bytes sent

Response Parameter2: None

Response Parameter3: None

Description: Retrieves a partial object from the device. This operation is optional, and may
be used in place of the GetObject operation for devices that support this alternative. If
supported, this operation should be generic, and therefore useable with all types of data
objects present on the device, including both images and non-image data objects, and
should be preceded (although not necessarily immediately) by a GetObjectInfo operation
that uses the same ObjectHandle. For this operation, the size fields in the ObjectInfo
represent maximum size as opposed to actual size. This operation is not necessary for
objects of type Association, as objects of this type are fully qualified by their ObjectInfo
dataset.

The operation behaves exactly like GetObject, except that the second and third
parameters hold the offset in bytes and the number of bytes to obtain starting from the
offset, respectively. If the portion of the object that is desired is from the offset to the
end, the third parameter may be set to 0xFFFFFFFF. The first response parameter
should contain the actual number of bytes of the object sent, not including any wrappers
or overhead structures.

PIMA 15740: 2000

69
© 2000 PIMA, Inc. – All Rights Reserved

10.4.28 InitiateOpenCapture
OperationCode: 0x101C

Operation Parameter1: [StorageID]

Operation Parameter2: [ObjectFormatCode]

Operation Parameter3: None

Data: None

Data Direction: N/A

ResponseCode Options: OK, Operation_Not_Supported, Session_Not_Open,
Invalid_TransactionID, Invalid_StorageID, Store_Full, Invalid_ObjectFormatCode,
Invalid_Parameter, Store_Not_Available, Invalid_Code_Format, Device_Busy,
Parameter_Not_Supported

Response Parameter1: None

Response Parameter2: None

Response Parameter3: None

Description: Causes the device to initiate the capture of one or more new data objects
according to its current device properties, storing the data into the store indicated by the
StorageID. If the StorageID is 0x00000000, the object(s) will be stored in a store that is
determined by the capturing device. If the particular store specified is not available, or
no store is specified and there are no stores available, this operation should return
Store_Not_Available.

The capturing of new data objects is an asynchronous operation. This operation may be
used to implement an Initiate/Terminate mechanism to capture one or more objects over
an Initiator-controlled time period, such as a single long still exposure, a series of stills,
audio capture, etc. Whether the time period controls the time of capture for a single
object or the number of fixed-time objects that are captured is determined by the
Responder, and may be a function of the ObjectFormat as well as any appropriate
DeviceProperties.

A separate operation, InitiateCapture, described in Clause 10.4.14, can be used to
support captures that do not require the Initiator to indicate when the capture should
terminate.

If the ObjectFormatCode in the second operation parameter is 0x00000000, the device
shall capture an image in the format that is the default for the device. A successful
response to an InitiateOpenCapture operation indicates the Responder’s acceptance of
the InitiateOpenCapture operation, and not the completion status of the capture
operation.

A successful response to the InitiateOpenCapture operation implies that the Responder
has started to capture one or more objects. When the Initiator wishes to terminate the
capture, it is required to send a TerminateOpenCapture operation. The CaptureComplete

PIMA 15740: 2000

70
© 2000 PIMA, Inc. – All Rights Reserved

event is not used for this operation, as the end of the capture period is determined by the
Initiator. As each of the newly captured objects becomes available, the Responder is
required to send an ObjectAdded event to the Initiator, indicating the ObjectHandle that
is assigned to each as described in Clause 12.5.2. The ObjectAdded event shall contain
the TransactionID of the InitiateOpenCapture operation with which it is associated. If, at
any time, the store becomes full, the device shall issue a Store_Full event, which shall
contain the TransactionID of the InitiateOpenCapture operation that failed to cause a
new object to be stored. In the case of multiple objects being captured, each object shall
be treated separately, so any object captured before the store becomes full should be
retained. Whether or not an object that was partially captured can be retained and used is
a function of the device’s behavior and object format. For example, if the device runs
out of room while capturing a video clip, it may be able to save the portion that it had
room to store. Any object that is retained in these situations should cause an
ObjectAdded event to be issued, while any object that is not retained should cause no
event to be issued. A Store_Full event effectively terminates the capture, and in these
cases, issuing the TerminateOpenCapture operation is not used. If another object capture
is occurring when this operation is invoked, the Device_Busy response should be used.

Figure 8: Single Object InitiateOpenCapture Sequence
 Initiator Responder

 InitiateOpenCapture Operation
 InitiateOpenCapture Response
 TerminateOpenCapture Operation
 TerminateOpenCapture Response
 ObjectAdded Event
 GetObjectInfo Operation
 ObjectInfo Dataset/Response

Figure 9: Multiple Object InitiateOpenCapture Sequence
 Initiator Responder

 InitiateOpenCapture Operation
 InitiateOpenCapture Response
 ObjectAdded Event(1)*
 ObjectAdded Event(2)

. . .
 ObjectAdded Event(n-1)
 ObjectAdded Event(n)
 TerminateOpenCapture Operation
 TerminateOpenCapture Response
 GetObjectInfo Operation(1)
 ObjectInfo Dataset/Response(1)
 GetObjectInfo Operation(2)
 ObjectInfo Dataset/Response(2)

 . . .
 GetObjectInfo Operation(n-1)
 ObjectInfo Dataset/Response(n-1)
 GetObjectInfo Operation(n)
 ObjectInfo Dataset/Response(n)

PIMA 15740: 2000

71
© 2000 PIMA, Inc. – All Rights Reserved

11 Responses

11.1 ResponseCode Format
ResponseCodes are part of the response dataset described in Clause 9.3.3. All
ResponseCodes shall take the form of a 16-bit integer, are referred to using hexadecimal
notation, have bits 12 and 14 set to 0, and bit 13 set to 1. All non-defined ResponseCodes
having bit 15 set to zero are reserved for future use. If a proprietary implementation wishes
to define a proprietary ResponseCode, bit 15 should be set to 1 as well.

ResponseCodes other than “OK” indicate failure of an operation to complete.

11.2 ResponseCode Summary
The following table summarizes the ResponseCodes defined by this standard.

PIMA 15740: 2000

72
© 2000 PIMA, Inc. – All Rights Reserved

Table 20: ResponseCode Summary

ResponseCode Description
0x2000 Undefined
0x2001 OK
0x2002 General Error
0x2003 Session Not Open
0x2004 Invalid TransactionID
0x2005 Operation Not Supported
0x2006 Parameter Not Supported
0x2007 Incomplete Transfer
0x2008 Invalid StorageID
0x2009 Invalid ObjectHandle
0x200A DeviceProp Not Supported
0x200B Invalid ObjectFormatCode
0x200C Store Full
0x200D Object WriteProtected
0x200E Store Read-Only
0x200F Access Denied
0x2010 No Thumbnail Present
0x2011 SelfTest Failed
0x2012 Partial Deletion
0x2013 Store Not Available
0x2014 Specification By Format Unsupported
0x2015 No Valid ObjectInfo
0x2016 Invalid Code Format
0x2017 Unknown Vendor Code
0x2018 Capture Already Terminated
0x2019 Device Busy
0x201A Invalid ParentObject
0x201B Invalid DeviceProp Format
0x201C Invalid DeviceProp Value
0x201D Invalid Parameter
0x201E Session Already Open
0x201F Transaction Cancelled
0x2020 Specification of Destination Unsupported

All other codes
with MSN of 0010 Reserved
All codes with
MSN of 1010 Vendor-Extended Response Code

PIMA 15740: 2000

73
© 2000 PIMA, Inc. – All Rights Reserved

11.3 Response Descriptions

11.3.1 OK
ResponseCode: 0x2001

Desc: Operation completed successfully.

11.3.2 General Error
ResponseCode: 0x2002

Desc: Operation did not complete. This response is used when the cause of the error is
unknown or there is no better failure ResponseCode to use.

11.3.3 Session Not Open

ResponseCode: 0x2003

Desc: Indicates that the session handle of the operation is not a currently open session.

11.3.4 Invalid TransactionID

ResponseCode: 0x2004

Desc: Indicates that the TransactionID is zero or does not refer to a valid transaction.

11.3.5 Operation Not Supported

ResponseCode: 0x2005

Desc: Indicates that the indicated OperationCode appears to be a valid code, but the
Responder does not support the operation. This error should not normally occur, as the
Initiator should only invoke operations that the Responder indicated were supported in
its DeviceInfo dataset.

11.3.6 Parameter Not Supported

ResponseCode: 0x2006

Desc: Indicates that a non-zero parameter was specified in conjunction with the operation,
and that parameter is not used for that operation. This response is distinctly different
from Invalid_Parameter, as described in Clause 11.3.29.

PIMA 15740: 2000

74
© 2000 PIMA, Inc. – All Rights Reserved

11.3.7 Incomplete Transfer

ResponseCode: 0x2007

Desc: Indicates that the transfer did not complete. Any data transferred should be discarded.
This response should not be used if the transaction was manually cancelled. See
Response Transaction_Cancelled, described in Clause 11.3.31

11.3.8 Invalid StorageID

ResponseCode: 0x2008

Desc: Indicates that a StorageID sent with an operation does not refer to an actual valid store
that is present on the device. The list of valid StorageIDs should be re-requested, along
with any appropriate StorageInfo datasets.

11.3.9 Invalid ObjectHandle

ResponseCode: 0x2009

Desc: Indicates that an ObjectHandle does not refer to an actual object that is present on the
device. The list of valid ObjectHandles should be re-requested, along with any
appropriate ObjectInfo datasets.

11.3.10 DeviceProp Not Supported

ResponseCode: 0x200A

Desc: The indicated DevicePropCode appears to be a valid code, but that property is not
supported by the device. This response should not normally occur, as the Initiator
should only attempt to manipulate properties that the Responder indicated were
supported in the DevicePropertiesSupported array in the DeviceInfo dataset.

11.3.11 Invalid ObjectFormatCode

ResponseCode: 0x200B

Desc: Indicates that the device does not support the particular ObjectFormatCode supplied in
the given context.

11.3.12 Store Full

ResponseCode: 0x200C

Desc: Indicates that the store that the operation referred to is full.

PIMA 15740: 2000

75
© 2000 PIMA, Inc. – All Rights Reserved

11.3.13 Object WriteProtected

ResponseCode: 0x200D

Desc: Indicates that the object that the operation referred to is write-protected.

11.3.14 Store Read-Only

ResponseCode: 0x200E

Desc: Indicates that the store that the operation referred to is read-only.

11.3.15 Access Denied

ResponseCode: 0x200F

Desc: Indicates the access to the data referred to by the operation was denied. The intent of
this response is not to indicate that the device is busy, but that given the current state of
the device does not change, access will be continued to be denied.

11.3.16 No Thumbnail Present

ResponseCode: 0x2010

Desc: Indicates that a data object exists with the specified ObjectHandle, but the data object
does not contain a producible thumbnail.

11.3.17 Self Test Failed

ResponseCode: 0x2011

Desc: Indicates that the device failed an internal device-specific self-test.

11.3.18 Partial Deletion

ResponseCode: 0x2012

Desc: Indicates that only a subset of the objects indicated for deletion were actually deleted,
due to the fact that some were write-protected, or that some objects were on stores that
are read-only.

PIMA 15740: 2000

76
© 2000 PIMA, Inc. – All Rights Reserved

11.3.19 Store Not Available

ResponseCode: 0x2013

Desc: Indicates that the store indicated (or the store that contains the indicated object) is not
physically available. This can be caused by media ejection. This response shall not be
used to indicate that the store is busy, as described in Clause 11.3.25.

11.3.20 Specification By Format Unsupported

ResponseCode: 0x2014

Desc: Indicates that the operation attempted to specify action only on objects of a particular
format, and that capability is unsupported. The operation should be re-attempted
without specifying by format. Any response of this nature infers that any future attempt
to specify by format with the indicated operation will result in the same response.

11.3.21 No Valid ObjectInfo

ResponseCode: 0x2015

Desc: Indicates that the Initiator attempted to issue a SendObject operation without having
previously sent a corresponding SendObjectInfo successfully. The Initiator should
successfully complete a SendObjectInfo operation before attempting another SendObject
operation.

11.3.22 Invalid Code Format

ResponseCode: 0x2016

Desc: Indicates that the indicated data code does not have the correct format, and is therefore
invalid. This response is used when the most-significant nibble of a datacode does not
have the format required for that type of code.

11.3.23 Unknown Vendor Code

ResponseCode: 0x2017

Desc: Indicates that the indicated data code has the correct format, but has bit 15 set to 1.
Therefore, the code is a vendor-extended code, and this device does not know how to
handle the indicated code. This response should typically not occur, as the supported
vendor extensions should be identifiable by examination of the VendorExtensionID and
VendorExtensionVersion fields in the DeviceInfo dataset.

PIMA 15740: 2000

77
© 2000 PIMA, Inc. – All Rights Reserved

11.3.24 Capture Already Terminated

ResponseCode: 0x2018

Desc: Indicates that an operation is attempting to terminate a capture session initiated by a
preceding InitiateOpenCapture operation, and that preceding operation has already
terminated. This response is only used for the TerminateOpenCapture operation, which
is only used for open-ended captures. Clause 10.4.24 provides a description of the
TerminateOpenCapture operation.

11.3.25 Device Busy

ResponseCode: 0x2019

Desc: Indicates that the device is not currently able to process a request because it, or the
specified store, is busy. The intent of this response is to imply that perhaps at a future
time, the operation should be re-requested. This response shall not be used to indicate
that a store is physically unavailable, as described in Clause 11.3.19.

11.3.26 Invalid ParentObject

ResponseCode: 0x201A

Desc: Indicates that the indicated object is not of type Association, and therefore is not a
valid ParentObject. This response is not intended to be used for specified ObjectHandles
that do not refer to valid objects, which is handled by the Invalid_ObjectHandle response
described in Clause 11.3.9.

11.3.27 Invalid DeviceProp Format

ResponseCode: 0x201B

Desc: Indicates that an attempt was made to set a DeviceProperty, but the DevicePropDesc
dataset is not the correct size or format.

11.3.28 Invalid DeviceProp Value

ResponseCode: 0x201C

Desc: Indicates that an attempt was made to set a DeviceProperty to a value that is not
allowed by the device.

PIMA 15740: 2000

78
© 2000 PIMA, Inc. – All Rights Reserved

11.3.29 Invalid Parameter

ResponseCode: 0x201D

Desc: Indicates that a parameter was specified in conjunction with the operation, and that
although a parameter was expected, the value of the parameter is not a legal value. This
response is distinctly different from Parameter_Not_Supported, as described in Clause
11.3.6.

11.3.30 Session Already Open

ResponseCode: 0x201E

Desc: This response code may be used as the response to an OpenSession operation. For
multisession devices/transports, this response indicates that a session with the specified
Session ID is already open. For single-session devices/transports, this response indicates
that a session is open, and must be closed before another session can be opened.

11.3.31 Transaction Cancelled

ResponseCode: 0x201F

Desc: This response code may be used to indicate that the operation was interrupted due to
manual cancellation by the opposing device.

11.3.32 Specification of Destination Unsupported

ResponseCode: 0x2020

Desc: This response code may be used as the response to a SendObjectInfo operation to
indicate that the Responder does not support the specification of destination by the
Initiator. This response infers that the Initiator should not attempt to specify the object
destination in any future SendObjectInfo operations, as they will also fail with the same
response.

PIMA 15740: 2000

79
© 2000 PIMA, Inc. – All Rights Reserved

12 Events
This section describes events, their datasets, and their usages. Event support shall be
mandatory.

12.1 Event Types
Although either the Initiator or the Responder can send an event, most events are typically
sent by the Responder. The Responder also uses events to communicate a state change (e.g.
arrival of a new object or store) or optionally to ask the Initiator to start a transaction.
CancelTransaction is used to cancel a transaction, and may be sent by either an Initiator or a
Responder.

12.1.1 Transports with In-Band Events
For transports that use in-band events due to the lack of existence of a separate logical
connection for events, a method of interleaving events into a data stream that meets the
device’s responsiveness requirements will need to be implemented in a transport-specific
fashion.

12.1.2 Transports with Out-of-Band Events
Transports that use a separate logical connection for interrupts effectively have support for
out-of-band events. This support means that such transport implementations will not need to
break up long image transfers into smaller data blocks in order to accommodate the potential
need to interleave events that may occur during the transfer.

12.2 Event Dataset
Events are described using the Event Dataset, which consists of the minimal information that
is required for qualified notification. Fully qualified events will need to send only this
dataset in order to fully describe the event and obtain post-event synchronization. In different
transport implementations, the fulfillment of all the fields of this dataset may or may not
happen atomically, and therefore may require a lightweight event notification mechanism
separate from the operation of actually requesting the dataset fields. Some events, by the
very nature of the information that they convey, will infer the need for the event-receiving
device to perform an operation to re-synchronize inter-device state.

PIMA 15740: 2000

80
© 2000 PIMA, Inc. – All Rights Reserved

Table 21: Event Dataset

Field Size Format
EventCode 2 bytes UINT16
SessionID 4 bytes UINT32
TransactionID 4 bytes UINT32
Parameter1 4 bytes Any
Parameter2 4 bytes Any
Parameter3 4 bytes Any

SessionID: Indicates the SessionID of the session for which the event is relevant. If the
event is relevant to all open sessions, this field should be set to 0xFFFFFFFF. Refer to
Clause 9.2.1 for a description of session handles.

EventCode: Indicates the event as defined in the EventCode section.

TransactionID: If the event corresponds to a previously initiated transaction, this field shall
hold the TransactionID of that operation. If the event is not specific to a particular
transaction, this field shall be set to 0xFFFFFFFF. Refer to Clause 9.3.1 for a
description of TransactionID.

Parameter n: This field holds the event-specific nth parameter. Events may have at most
three parameters. The interpretation of any parameter is dependent upon the EventCode.
Any unused parameter fields should be set to 0x00000000. If a parameter holds a value
that is less than 32 bits, the lowest significant bits shall be used to store the value, with
the most significant bits being set to zeros.

12.3 EventCode Format
EventCodes are part of the event dataset described in Clause 12.2. All EventCodes shall take
the form of a 16-bit integer, are referred to using hexadecimal notation, have bits 12 and 13
set to zero, and bit 14 set to 1. All non-defined ResponseCodes having bit 15 set to zero are
reserved for future use. If a proprietary implementation wishes to define a proprietary
EventCode, bit 15 should be set to 1 as well.

PIMA 15740: 2000

81
© 2000 PIMA, Inc. – All Rights Reserved

12.4 EventCode Summary
The following events are defined in this standard:

Table 22: EventCode Summary

EventCode Name
0x4000 Undefined
0x4001 CancelTransaction
0x4002 ObjectAdded
0x4003 ObjectRemoved
0x4004 StoreAdded
0x4005 StoreRemoved
0x4006 DevicePropChanged
0x4007 ObjectInfoChanged
0x4008 DeviceInfoChanged
0x4009 RequestObjectTransfer
0x400A StoreFull
0x400B DeviceReset
0x400C StorageInfoChanged
0x400D CaptureComplete
0x400E UnreportedStatus

All other codes
with MSN of 0100 Reserved
All codes with
MSN of 1100

Vendor-Extended
Response Code

12.5 Event Descriptions

12.5.1 CancelTransaction
EventCode: 0x4001

Parameter1: None

Parameter2: None

Parameter3: None

Desc: This formal event is used to cancel a transaction for transports that do not have a
specified or standard way of canceling transactions. The particular method used to
cancel transactions may be transport-specific. When an Initiator or Responder receives a
CancelTransaction event, it should abort the transaction referred to by the TransactionID
in the event dataset. If that transaction is already complete, the event should be ignored.

PIMA 15740: 2000

82
© 2000 PIMA, Inc. – All Rights Reserved

After receiving a CancelTransfer event from the Initiator, the Responder shall send an
IncompleteTransfer response for the operation that was cancelled. Both devices will then
be ready for the next transaction.

12.5.2 ObjectAdded
EventCode: 0x4002

Parameter1: ObjectHandle

Parameter2: None

Parameter3: None

Desc: A new data object was added to the device. The new handle assigned by the device to
the new object should be passed in the Parameter1 field of the event. If more than one
object was added, each new object should generate a separate ObjectAdded event. The
appearance of a new store on the device should not cause the creation of new
ObjectAdded events for the new objects present on the new store, but should instead
cause the generation of a StoreAdded event, as described in Clause 12.5.4.

12.5.3 ObjectRemoved
EventCode: 0x4003

Parameter1: ObjectHandle

Parameter2: None

Parameter3: None

Desc: A data object was removed from the device unexpectedly due to something external
to the current session. The handle of the object that was removed should be passed in
the Parameter1 field of the event. If more than one image was removed, the separate
ObjectRemoved events should be generated for each. If the data object that was
removed was removed because of a previous operation that is a part of this session, no
event needs to be sent to the opposing device. The removal of a store on the device
should not cause the creation of ObjectRemoved events for the objects present on the
removed store, but should instead cause the generation of one StoreRemoved event with
the appropriate PhysicalStorageID, as described in Clause 12.5.5.

12.5.4 StoreAdded
EventCode: 0x4004

Parameter1: StorageID

Parameter2: None

Parameter3: None

PIMA 15740: 2000

83
© 2000 PIMA, Inc. – All Rights Reserved

Desc: A new store was added to the device. If this is a new physical store that contains only
one logical store, then the complete StorageID of the new store should be indicated in
the first parameter. If the new store contains more than one logical store, then the first
parameter should be set to 0x00000000. This indicates that the list of StorageIDs should
be re-obtained using the GetStorageIDs operation, and examined appropriately. Any
new StorageIDs discovered should result in the appropriate invocations of
GetStorageInfo operations, as described in Clause 10.4.5.

12.5.5 StoreRemoved
EventCode: 0x4005

Parameter1: StorageID

Parameter2: None

Parameter3: None

Desc: The indicated stores are no longer available. The opposing device may assume that
the StorageInfo datasets and ObjectHandles associated with those stores are no longer
valid. The first parameter is used to indicate the StorageID of the store that is no longer
available. If the store removed is only a single logical store within a physical store, the
entire StorageID should be sent, which indicates that any other logical stores on that
physical store are still available. If the physical store and all logical stores upon it are
removed (e.g. removal of an ejectable media with multiple partitions), the first parameter
should contain the PhysicalStorageID in the most significant sixteen bits, with the least
significant sixteen bits set to 0xFFFF.

12.5.6 DevicePropChanged
EventCode: 0x4006

Parameter1: DevicePropCode

Parameter2: None

Parameter3: None

Desc: A property changed on the device due to something external to this session. The
appropriate property dataset should be requested from the opposing device.

12.5.7 ObjectInfoChanged
EventCode: 0x4007

Parameter1: ObjectHandle

Parameter2: None

Parameter3: None

PIMA 15740: 2000

84
© 2000 PIMA, Inc. – All Rights Reserved

Desc: Indicates that the ObjectInfo dataset for a particular object has changed, and that it
should be re-requested.

12.5.8 DeviceInfoChanged
EventCode: 0x4008

Parameter1: None

Parameter2: None

Parameter3: None

Desc: Indicates that the capabilities of the device have changed, and that the DeviceInfo
should be re-requested. This may be caused by the device going into or out of a sleep
state, or by the device losing or gaining some functionality in some way.

12.5.9 RequestObjectTransfer
EventCode: 0x4009

Parameter1: ObjectHandle

Parameter2: None

Parameter3: None

Desc: This event can be used by a Responder to ask the Initiator to initiate a GetObject
operation on the handle specified in the first parameter. This allows for push-mode to be
enabled on devices/transports that are intrinsically pull mode.

12.5.10 Store Full
EventCode: 0x400A

Parameter1: StorageID

Parameter2: None

Parameter3: None

Desc: This event shall be sent when a store becomes full. Any multi-object capture that
may be occurring should retain the objects that were written to a store before the store
became full.

12.5.11 Device Reset
EventCode: 0x400B

Parameter1: None

Parameter2: None

PIMA 15740: 2000

85
© 2000 PIMA, Inc. – All Rights Reserved

Parameter3: None

Desc: This event needs only to be supported for devices that support multiple sessions or in
the case if the device is capable of resetting itself automatically or manually through user
intervention while connected. This event shall be sent to all open sessions other than the
session that initiated the operation. This event shall be interpreted as indicating that the
sessions are about to be closed.

12.5.12 StorageInfoChanged
EventCode: 0x400C

Parameter1: StorageID

Parameter2: None

Parameter3: None

Desc: This event is used when information in the StorageInfo dataset for a store changes.
This can occur due to device properties changing, such as ImageSize, which can cause
changes in fields such as FreeSpaceInImages. This event is typically not needed if the
change is caused by an in-session operation that affects whole objects in a deterministic
manner. This includes changes in FreeSpaceInImages or FreeSpaceInBytes caused by
operations such as InitiateCapture or CopyObject, where the Initiator can recognize the
changes due to the successful response code of the operation, and/or related required
events.

12.5.13 CaptureComplete
EventCode: 0x400D

Parameter1: TransactionID

Parameter2: None

Parameter3: None

Desc: This event is used to indicate that a capture session, previously initiated by the
InitiateCapture operation, is complete, and that no more ObjectAdded events will occur
as the result of this asynchronous operation. This operation is not used for
InitiateOpenCapture operations.

12.5.14 UnreportedStatus
EventCode: 0x400E

Parameter1: None

Parameter2: None

Parameter3: None

PIMA 15740: 2000

86
© 2000 PIMA, Inc. – All Rights Reserved

Desc: This event may be implemented for certain transports where situations can arise
where the Responder was unable to report events to the Initiator regarding changes in its
internal status. When an Initiator receives this event, it is responsible for doing whatever
is necessary to ensure that its knowledge of the Responder is up to date. This may
include re-obtaining individual datasets, ObjectHandle lists, etc., or may even result in
the session being closed and re-opened. This event is typically only needed in situations
where the transport used by the device supports a suspend/resume/remote-wakeup
feature and the Responder has gone into a suspend state and has been unable to report
state changes during that time period. This prevents the need for queuing of these
unreportable events. The details of the use of this event are transport-specific and should
be fully specified in the specific transport implementation specification.

PIMA 15740: 2000

87
© 2000 PIMA, Inc. – All Rights Reserved

13 Device Properties
A device that is conformant to this standard may optionally provide different modes of
operations or different attributes that can be modified. Collectively these items comprise the
device properties. Properties are attributes of the device, and not any particular data object
contained in the device. Each property has an associated DevicePropCode. Attributes of
individual data objects may be determined by examining their corresponding ObjectInfo
datasets as described in Clause 5.5.2, or are contained inside the data objects themselves in a
manner specified by its data format, as described by the ObjectFormat field.

13.1 Values of a Device Property
This standard defines how the device is to report the values that it supports for a given
property and a means for controlling the setting of the property value. This standard also
defines how the physical units and the data type that the values of a particular property are
cast. The device vendor chooses the set of properties to implement.

This standard identifies the methods used to:

• Determine the value of the factory default setting of a particular device property.

• Determine the value of the current setting of a particular device property.

• Change the current value of a particular device property.

• Describe an enumerated list of the properties that the device supports.

• Describe the values supported for a given property for a given device.

In a conforming PIMA15740 device:

• Device properties may be read-only or read-write.

• Multi-session devices shall have one global set of device properties that apply to all
sessions. A change in a property caused by one session shall cause a
DevicePropChanged event to be issued to all other sessions for each property that
changes as the result of the initial change.

• Single standard operations are able to be set or retrieved only one device property at a
time. Vendor extended properties may be provided that handle multiple properties for
one operation.

• Property functionality should be able to take advantage of any event mechanism
supported by the transport. (e.g. a change in a device property value should be able to
transparently signal an event to notify any connected devices of a change in state).

PIMA 15740: 2000

88
© 2000 PIMA, Inc. – All Rights Reserved

13.2 Device Property Management Requirements
This section describes requirements around the management of properties.

A device that is conformant with this standard may be requested to perform the following
operations.

• The device may be queried (by an initiating device) to determine the properties that it
supports.

• The device may be queried (by an initiating device) to determine the possible values for
a particular property that it supports.

• The device may be queried (by an initiating device) to determine the current value of a
particular property.

• The device may be requested (by an initiating device) to change a current property value
to a new value, for properties that are identified as being settable.

13.2.1 Device Property Interdependencies
Upon the completion of an operation that requests a change in a device property, other
properties on the device may change due to property interdependency. This standard does
not attempt to provide a mechanism for a-priori discovery of these interdependencies.
Instead, each operation is limited to directly changing only single properties at a time. If
multiple properties are tightly integrated into one multi-dimensional property (e.g.
ImageSize, RGBgain), one string property may be used with multiple fields separated by
specified delimiters. Each time a property is changed, the device is responsible for changing
any other properties in a device-dependent way that are affected by the new property setting.
This typically includes defaulting to a value that is compatible with the new value of the
property for which the change was requested. In these cases, the device is required to notify
all open sessions with a DevicePropChanged event for each property that changed as a side
effect of the requested change.

13.3 Device Property Identification
This standard defines a set of DevicePropCodes that identify common properties recognized
by all conforming devices capable of functioning as an Initiator. A conforming device shall
provide information describing what properties it supports. The conforming device shall also
provide information that describes the particular values of a property supported by the device.
This information is returned to the initiating device when the responding device is queried for
the supported values of a particular property.

PIMA 15740: 2000

89
© 2000 PIMA, Inc. – All Rights Reserved

13.3.1 Device Property Describing Requirements
The describing information shall contain the DevicePropCode, the data type of the property,
the values of the property supported by the device, and an identification of which of the
supported values is the current value as well as the factory default value.

13.3.2 Device Property Describing Methods
A device's supported values of a particular property may be described using one of two
methods. The device may return a list that enumerates all supported values of a particular
property. In situations where the set of supported values comprise a linear range a triad of
parameters; minimum, maximum, and step size may be used to describe the range of
supported property values.

13.3.3 Device Property Describing Dataset
A PIMA15740 conforming device shall be capable of returning a Device Property Describing
Dataset (DevicePropDesc) for each property supported. This dataset is used to hold the
information detailing the datatype, allowed values, whether the property is settable, etc. This
dataset also holds the current value of the property. This dataset is returned as the response
to the GetDevicePropDesc operation. The GetDevicePropValue operation may also be used
if only the current value of the device property is desired.

The supported values of a particular device property may be described by an enumeration of
the values a device supports or by describing the minimum and maximum supported range of
values with a corresponding inter-value step size. Two forms of the Property Describing
Dataset are defined in this standard to enable the two describing methods. The following
tables describe the content of the Device Property Describing Dataset.

PIMA 15740: 2000

90
© 2000 PIMA, Inc. – All Rights Reserved

Table 23: Device Property Describing Dataset (DevicePropDesc)

Field Field
Order

Size
(Bytes) Description

Device Property
Code 1 2 A specific DevicePropCode

DataType 2 2 This field identifies the Datatype Code of
the property, as indicated in Section 5.3

GetSet 3 1

This field indicates whether the property is
read-only (Get) or read-write (Get/Set).
0x00 Get
0x01 Get/Set

Factory Default
Value 4 DTS This field identifies the value of the factory

default setting for the property

Current Value 5 DTS This field identifies the current value of the
property

Form Flag 6 1

This field indicates the format of the next
field.
0x00 None. This is for properties like

DateTime. In this case the FORM
field is not present.

0x01 Range-Form
0x02 Enumeration-Form

FORM N/A <variable> This dataset is the Enumeration-Form or the
Range-Form, or is absent if Form Flag = 0

Table 24: Property Describing Dataset, Range Form

Field Field
Order

Size
(Bytes) Description

MinimumValue 7 DTS Minimum value of property supported by
the device.

MaximumValue 8 DTS Maximum value of property supported by
the device.

StepSize 9 DTS

A particular vendor's device shall support all
values of a property defined by
MinimumValue + N x StepSize which is less
than or equal to MaximumValue where N=
0 to a vendor defined maximum

PIMA 15740: 2000

91
© 2000 PIMA, Inc. – All Rights Reserved

Table 25: Property Describing Dataset, Enumeration Form

Field Field
Order

Size
(Bytes) Description

Number of Values 7 2
This field indicates the number of values of
size DTS of the particular property
supported by the device.

SupportedValue1 8 DTS A particular vendor's device shall support
this value of the property.

SupportedValue2 9 DTS A particular vendor's device shall support
this value of the property.

SupportedValue3 10 DTS A particular vendor's device shall support
this value of the property.

- - - -

SupportedValueM Special DTS A particular vendor's device shall support
this value of the property.

13.3.4 DevicePropCode Format
All DevicePropCodes shall take the form of a 16-bit integer, are referred to using
hexadecimal notation, have bits 12 and 14 set to 1, and bit 13 set to zero. All non-defined
DevicePropCodes having bit 15 set to zero are reserved for future use. If a proprietary
implementation wishes to define a proprietary DevicePropCode, bit 15 should be set to 1 as
well.

PIMA 15740: 2000

92
© 2000 PIMA, Inc. – All Rights Reserved

13.3.5 DevicePropCode Summary
The following properties are defined in this Standard:

Table 26: DevicePropCode Summary

DevicePropCode Name
0x5000 Undefined
0x5001 BatteryLevel
0x5002 FunctionalMode
0x5003 ImageSize
0x5004 CompressionSetting
0x5005 WhiteBalance
0x5006 RGB Gain
0x5007 F-Number
0x5008 FocalLength
0x5009 FocusDistance
0x500A FocusMode
0x500B ExposureMeteringMode
0x500C FlashMode
0x500D ExposureTime
0x500E ExposureProgramMode
0x500F ExposureIndex
0x5010 ExposureBiasCompensation
0x5011 DateTime
0x5012 CaptureDelay
0x5013 StillCaptureMode
0x5014 Contrast
0x5015 Sharpness
0x5016 DigitalZoom
0x5017 EffectMode
0x5018 BurstNumber
0x5019 BurstInterval
0x501A TimelapseNumber
0x501B TimelapseInterval
0x501C FocusMeteringMode
0x501D UploadURL
0x501E Artist
0x501F CopyrightInfo

All other codes
with MSN of 0101 Reserved
All codes with
MSN of 1101 Vendor-Extended Property Code

PIMA 15740: 2000

93
© 2000 PIMA, Inc. – All Rights Reserved

13.4 Device Property Descriptions

13.4.1 BatteryLevel
DevicePropCode = 0x5001

DataType: UINT8

DescForms: Enum, Range

Get/Set: Get

Description: Battery level is a read-only property typically represented by a range of
integers. The minimum field should be set to the integer used for no power (example 0),
and the maximum should be set to the integer used for full power (example 100). The
step field, or the individual thresholds in an enumerated list, are used to indicate when
the device intends to generate a DevicePropChanged event to let the opposing device
know a threshold has been reached, and therefore should be conservative (example 10).

The value 0 may be realized in situations where the device has alternate power provided
by the transport or some other means.

13.4.2 FunctionalMode
DevicePropCode = 0x5002

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: Allows the functional mode of the device to be controlled. All devices are
assumed to default to a “standard mode.” Alternate modes are typically used to indicate
support for a reduced mode of operation (e.g. sleep state) or an advanced mode or add-on
that offers extended capabilities. The definition of non-standard modes is device-
dependent. Any change in capability caused by a change in FunctionalMode shall be
evident by the DeviceInfoChanged event that is required to be sent by a device if its
capabilities can change. This property is described using the Enumeration form of the
DevicePropDesc dataset. This property is also exposed outside of sessions in the
corresponding field in the DeviceInfo dataset. The allowed values are described in
Clause 5.5.1.

13.4.3 ImageSize
DevicePropCode = 0x5003

Data Type: String

DescForms: Enum, Range

PIMA 15740: 2000

94
© 2000 PIMA, Inc. – All Rights Reserved

Get/Set: Get, Get/Set

Description: This property controls the height and width of the image that will be captured in
pixels supported by the device. This property takes the form of a Unicode, null-
terminated string that is parsed as follows: “WxH” where the W represents the width and
the H represents the height interpreted as unsigned integers. Example: width = 800,
height = 600, ImageSize string = “800x600” with a null-terminator on the end. This
property may be expressed as an enumerated list of allowed combinations, or if the
individual width and height are linearly settable and orthogonal to each other, they may
be expressed as a range. For example, for a device that could set width from 1 to 640
and height from 1 to 480, the minimum in the range field would be “1x1” (null-
terminated), for a one-pixel image, and the maximum would be “640x480” (null-
terminated), for the largest possible image. In this example, the step would be “1x1”
(null-terminated), indicating that the width and height are each incrementable to the
integer.

Changing this device property often causes fields in StorageInfo datasets to change, such
as FreeSpaceInImages. If this occurs, the device is required to issue a
StorageInfoChanged event immediately after this property is changed.

13.4.4 CompressionSetting
DevicePropCode = 0x5004

Data Type: UINT8

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: Compression setting is a property intended to be as close as is possible to being
linear with respect to perceived image quality over a broad range of scene content, and is
represented by either a range or an enumeration of integers. Low integers are used to
represent low quality (i.e. maximum compression) while high integers are used to
represent high quality (i.e. minimum compression). No attempt is made in this standard
to assign specific values of this property with any absolute benchmark, so any available
settings on a device are relative to that device only and are therefore device-specific.

13.4.5 WhiteBalance
DevicePropCode = 0x5005

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: This property is used to set how the device weights color channels. The device
enumerates its supported values for this property.

PIMA 15740: 2000

95
© 2000 PIMA, Inc. – All Rights Reserved

Table 27: White Balance Settings

Value Setting
0x0000 Undefined
0x0001 Manual
0x0002 Automatic
0x0003 One-push Automatic
0x0004 Daylight
0x0005 Florescent
0x0006 Tungsten
0x0007 Flash

All other
values with Bit
15 set to zero

Reserved

All values
with Bit 15 set

to 1
Vendor-Defined

Manual: The white balance is set directly using the RGB Gain property, described in Clause
13.4.6, and is static until changed.

Automatic: The device attempts to set the white balance using some kind of automatic
mechanism.

One-push Automatic: The user must press the capture button while pointing the device at a
white field, at which time the device determines the white balance setting.

Daylight: The device attempts to set the white balance to a value that is appropriate for use
in daylight conditions.

Tungsten: The device attempts to set the white balance to a value that is appropriate for use
in conditions with a tungsten light source.

Flash: The device attempts to set the white balance to a value that is appropriate for flash
conditions.

13.4.6 RGB Gain
DevicePropCode = 0x5006

Data Type: String

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property takes the form of a Unicode, null-terminated string that is parsed
as follows: “R:G:B” where the R represents the red gain, the G represents the green gain, and
the B represents the blue gain. For example, for an RGB ratio of (red=4, green=2, blue=3),
RGB string could be “4:2:3” (null-terminated) or “2000:1000:1500” (null-terminated). The
string parser for this property value should be able to support up to UINT16 integers for R,

PIMA 15740: 2000

96
© 2000 PIMA, Inc. – All Rights Reserved

G, and B. These values are relative to each other, and therefore may take on any integer
value. This property may be supported as an enumerated list of settings, or using a range.
The minimum value would represent the smallest numerical value (typically “1:1:1” null
terminated). Using values of zero for a particular color channel would mean that color
channel would be dropped, so a value of “0:0:0” would result in images with all pixel values
being equal to zero. The maximum value would represent the largest value each field may be
set to (up to “65535:65535:65535” null-terminated), effectively determining the setting’s
granularity by an order of magnitude per significant digit. The step value is typically “1:1:1”.
If a particular implementation desires the capability to enforce minimum and/or maximum
ratios, the green channel may be forced to a fixed value. An example of this would be a
minimum field of “1:1000:1”, a maximum field of “20000:1000:20000” and a step field of
“1:0:1”.

13.4.7 FNumber
DevicePropCode = 0x5007

DataType: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: This property corresponds to the aperture of the lens. The units are equal to the
F-number scaled by 100. When the device is in an automatic Exposure Program Mode,
the setting of this property via the SetDeviceProp operation may cause other properties
such as Exposure Time and Exposure Index to change. Like all device properties that
cause other device properties to change, the device is required to issue
DevicePropChanged events for the other device properties that changed as a side effect
of the invoked change. The setting of this property is typically only valid when the
device has an ExposureProgramMode setting of Manual or Aperture Priority.

13.4.8 FocalLength
DevicePropCode = 0x5008

Data Type: UINT32

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property represents the 35mm equivalent focal length. The values of this
property correspond to the focal length in millimeters multiplied by 100.

PIMA 15740: 2000

97
© 2000 PIMA, Inc. – All Rights Reserved

13.4.9 FocusDistance
DevicePropCode = 0x5009

Data Type: UINT16

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: The values of this property are unsigned integers with the values corresponding
to millimeters. A value of 0xFFFF corresponds to a setting greater than 655 meters.

13.4.10 FocusMode
DevicePropCode = 0x500A

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: The device enumerates the supported values of this property. The following
values are defined:

Table 28: FocusMode Settings

Value Description
0x0000 Undefined
0x0001 Manual
0x0002 Automatic
0x0003 Automatic Macro (close-up)

All other values with
Bit 15 set to zero Reserved

All values with Bit 15
set to 1 Vendor-Defined

13.4.11 ExposureMeteringMode
DevicePropCode = 0x500B

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: The device enumerates the supported values of this property. The following
values are defined:

PIMA 15740: 2000

98
© 2000 PIMA, Inc. – All Rights Reserved

Table 29: ExposureMeteringMode Settings

Value Description
0x0000 Undefined
0x0001 Average
0x0002 Center-weighted-average
0x0003 Multi-spot
0x0004 Center-spot

All other values with
Bit 15 set to zero Reserved

All values with Bit 15
set to 1 Vendor-Defined

13.4.12 FlashMode
DevicePropCode = 0x500C

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: The device enumerates the supported values of this property. The following
values are defined:

Table 30: FlashMode Settings

Value Description
0x0000 Undefined
0x0001 auto flash
0x0002 Flash off
0x0003 Fill flash
0x0004 Red eye auto
0x0005 Red eye fill
0x0006 External Sync

All other values with
Bit 15 set to zero Reserved
All values with Bit

15 set to 1 Vendor-Defined

13.4.13 ExposureTime
DevicePropCode = 0x500D

Data Type: UINT32

DescForms: Enum, Range

Get/Set: Get, Get/Set

PIMA 15740: 2000

99
© 2000 PIMA, Inc. – All Rights Reserved

Description: This property corresponds to the shutter speed. It has units of seconds scaled by
10,000. When the device is in an automatic Exposure Program Mode, the setting of this
property via SetDeviceProp may cause other properties to change. Like all properties
that cause other properties to change, the device is required to issue DevicePropChanged
events for the other properties that changed as the result of the initial change. This
property is typically only used by the device when the ProgramExposureMode is set to
Manual or Shutter Priority.

13.4.14 ExposureProgramMode
DevicePropCode = 0x500E

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: This property allows the exposure program mode settings of the device,
corresponding to the "Exposure Program" tag within an EXIF or a TIFF/EP image file, to
be constrained by a list of allowed exposure program mode settings supported by the
device. The following values are defined:

Table 31: ExposureProgramMode Settings

Value Description
0x0000 Undefined
0x0001 Manual
0x0002 Automatic
0x0003 Aperture Priority
0x0004 Shutter Priority
0x0005 Program Creative (greater depth of field)
0x0006 Program Action (faster shutter speed)
0x0007 Portrait

All other values with
Bit 15 set to zero Reserved
All values with Bit

15 set to 1 Vendor-Defined

PIMA 15740: 2000

100
© 2000 PIMA, Inc. – All Rights Reserved

13.4.15 ExposureIndex
DevicePropCode = 0x500F

Data Type: UINT16

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property allows for the emulation of film speed settings on a Digital
Camera. The settings correspond to the ISO designations (ASA/DIN). Typically, a
device supports discrete enumerated values but continuous control over a range is
possible. A value of 0xFFFF corresponds to Automatic ISO setting.

13.4.16 ExposureBiasCompensation
DevicePropCode = 0x5010

Data Type: INT16

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property allows for the adjustment of the set point of the digital camera's
auto exposure control. For example, a setting of 0 will not change the factory set auto
exposure level. The units are in “stops” scaled by a factor of 1000, in order to allow for
fractional stop values. A setting of 2000 corresponds to 2 stops more exposure (4X
more energy on the sensor) yielding brighter images. A setting of -1000 corresponds to
one stop less exposure (1/2x the energy on the sensor) yielding darker images. The setting
values are in APEX units (Additive system of Photographic Exposure). This property
may be expressed as an enumerated list or as a range. This property is typically only
used when the device has an ExposureProgramMode of Manual.

13.4.17 DateTime
DevicePropCode = 0x5011

Data Type: String

DescForms: None

Get/Set: Get, Get/Set

Description: This property allows the current device date/time to be read and set. Date and
time are represented in ISO standard format as described in ISO 8601 from the most
significant number to the least significant number. This shall take the form of a Unicode
string in the format “YYYYMMDDThhmmss.s” where YYYY is the year, MM is the
month 01-12, DD is the day of the month 01-31, T is a constant character, hh is the hours
since midnight 00-23, mm is the minutes 00-59 past the hour, and ss.s is the seconds past
the minute, with the “.s” being optional tenths of a second past the second. This string

PIMA 15740: 2000

101
© 2000 PIMA, Inc. – All Rights Reserved

can optionally be appended with Z to indicate UTC, or +/-hhmm to indicate the time is
relative to a time zone. Appending neither indicates the time zone is unknown.

This property does not need to use a range or an enumeration, as the possible allowed
time values are implicitly specified by the definition of standard time and the format
given in this and the ISO 8601 specifications.

13.4.18 CaptureDelay
DevicePropCode = 0x5012

Data Type: UINT32

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This value describes the amount of time delay that should be inserted between
the capture trigger and the actual initiation of the data capture. This value shall be
interpreted as milliseconds. This property is not intended to be used to describe the time
between frames for single-initiation multiple captures such as burst or time-lapse, which
have separate interval properties outlined in Clauses 13.4.25 and 13.4.27. In those cases
it would still serve as an initial delay before the first image in the series was captured,
independent of the time between frames. For no pre-capture delay, this property should
be set to zero.

13.4.19 StillCaptureMode
DevicePropCode = 0x5013

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: This property allows for the specification of the type of still capture that is
performed upon a still capture initiation, according to the following table:

Table 32: StillCaptureMode Settings

Value Description
0x0000 Undefined
0x0001 Normal
0x0002 Burst
0x0003 Timelapse

All other values with
Bit 15 set to zero Reserved

All values with Bit 15
set to 1 Vendor-Defined

PIMA 15740: 2000

102
© 2000 PIMA, Inc. – All Rights Reserved

13.4.20 Contrast
DevicePropCode = 0x5014

Data Type: UINT8

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property controls the perceived contrast of captured images. This property
may use an enumeration or range. The minimum supported value is used to represent
the least contrast, while the maximum value represents the most contrast. Typically a
value in the middle of the range would represent normal (default) contrast.

13.4.21 Sharpness
DevicePropCode = 0x5015

Data Type: UINT8

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property controls the perceived sharpness of captured images. This
property may use an enumeration or range. The minimum value is used to represent the
least amount of sharpness, while the maximum value represents maximum sharpness.
Typically a value in the middle of the range would represent normal (default) sharpness.

13.4.22 DigitalZoom
DevicePropCode = 0x5016

Data Type: UINT8

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property controls the effective zoom ratio of digital camera's acquired
image scaled by a factor of 10. No digital zoom (1X) corresponds to a value of 10,
which is the standard scene size captured by the camera. A value of 20 corresponds to a
2X zoom where 1/4 of the standard scene size is captured by the camera. This property
may be represented by an enumeration or a range. The minimum value should represent
the minimum digital zoom (typically 10), while the maximum value should represent the
maximum digital zoom that the device allows.

PIMA 15740: 2000

103
© 2000 PIMA, Inc. – All Rights Reserved

13.4.23 EffectMode
DevicePropCode = 0x5017

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: This property addresses special image acquisition modes of the camera. The
following values are defined:

Table 33: EffectMode Setting

Value Description
0x0000 Undefined
0x0001 Standard (color)
0x0002 Black & White
0x0003 Sepia

All other values with
Bit 15 set to zero Reserved

All values with Bit 15
set to 1 Vendor-Defined

13.4.24 BurstNumber
DevicePropCode = 0x5018

Data Type: UINT16

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property controls the number of images that the device will attempt to
capture upon initiation of a burst operation.

13.4.25 BurstInterval
DevicePropCode = 0x5019

Data Type: UINT16

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property controls the time delay between captures upon initiation of a burst
operation. This value is expressed in whole milliseconds.

PIMA 15740: 2000

104
© 2000 PIMA, Inc. – All Rights Reserved

13.4.26 TimelapseNumber
DevicePropCode = 0x501A

Data Type: UINT16

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property controls the number of images that the device will attempt to
capture upon initiation of a time-lapse capture.

13.4.27 TimelapseInterval
DevicePropCode = 0x501B

Data Type: UINT32

DescForms: Enum, Range

Get/Set: Get, Get/Set

Description: This property controls the time delay between captures upon initiation of a
time-lapse capture operation. This value is expressed in milliseconds.

13.4.28 FocusMeteringMode
DevicePropCode = 0x501C

Data Type: UINT16

DescForms: Enum

Get/Set: Get, Get/Set

Description: This property controls which automatic focus mechanism is used by the device.
The device enumerates the supported values of this property. The following values are
defined:

Table 34: FocusMeteringMode Settings

Value Description
0x0000 Undefined
0x0001 Center-spot
0x0002 Multi-spot

All other values with
Bit 15 set to zero Reserved

All values with Bit 15
set to 1 Vendor-Defined

PIMA 15740: 2000

105
© 2000 PIMA, Inc. – All Rights Reserved

13.4.29 UploadURL
DevicePropCode = 0x501D

Data Type: String

DescForms: None

Get/Set: Get, Get/Set

Description: This property is used to describe a standard Internet URL (Universal Resource
Locator) that the receiving device may use to upload images or objects to once they are
acquired from the device.

13.4.30 Artist
DevicePropCode = 0x501E

Data Type: String

DescForms: None

Get/Set: Get, Get/Set

Description: This property is used to contain the name of the owner/user of the device. This
property is intended for use by the device to populate the Artist field in any EXIF images
that are captured with the device.

13.4.31 Copyright
DevicePropCode = 0x501F

Data Type: String

DescForms: None

Get/Set: Get, Get/Set

Description: This property is used to contain the copyright notification. This property is
intended for use by the device to populate the Copyright field in any EXIF images that
are captured with the device.

PIMA 15740: 2000

106
© 2000 PIMA, Inc. – All Rights Reserved

14 Conformance Section
To determine if the Responder supports Push mode, the Initiator should look for the
SendObject OperationCode in the device’s DeviceInfo dataset. Presence of the GetObject
operation indicates Pull mode is supported.

An Initiator shall be able to send operations, receive responses and events, and poll for in-
band events if necessary for that transport. A Responder shall be able to respond to all
operations that it reports in its DeviceInfo dataset.

All devices shall implement the following operations: GetDeviceInfo, OpenSession, and
CloseSession.

A Responder shall support either GetObject and GetObjectInfo, or SendObject and
SendObjectInfo, or all four operations.

If the Responder supports GetObject, it must also support GetNumImages as well as
GetObjectHandles, GetObjectInfo, and GetThumb.

PIMA 15740: 2000

107
© 2000 PIMA, Inc. – All Rights Reserved

Table 35: Operation Implementation Conformance

OperationCode Operation Name Mandatory Pull Push
0x1001 GetDeviceInfo X X X
0x1002 OpenSession X X X
0x1003 CloseSession X X X
0x1004 GetStorageIDs X X X
0x1005 GetStorageInfo X X X
0x1006 GetNumObjects X
0x1007 GetObjectHandles X
0x1008 GetObjectInfo X
0x1009 GetObject X
0x100A GetThumb X
0x100B DeleteObject
0x100C SendObjectInfo X
0x100D SendObject X
0x100E InitiateCapture
0x100F FormatStore
0x1010 ResetDevice
0x1011 SelfTest
0x1012 SetObjectProtection
0x1013 PowerDown
0x1014 GetDevicePropDesc
0x1015 GetDevicePropValue
0x1016 SetDevicePropValue
0x1017 ResetDevicePropValue
0x1018 TerminateOpenCapture
0x1019 MoveObject
0x101A CopyObject
0x101B GetPartialObject
0x101C InitiateOpenCapture

A device shall be capable of generating and/or responding to all events as indicated in the
following table. A Responder may not need to issue many events if it disables manual or
external object creation and device property manipulation while a session is open. While a
session is open, a Responder must send an event whenever an image, ancillary data, or store
is added or removed and when any device property or the DeviceInfo capabilities are
modified.

PIMA 15740: 2000

108
© 2000 PIMA, Inc. – All Rights Reserved

Table 36: Event Implementation Conformance

EventCode Event Name Required?

0x4001 CancelTransaction
Only if transport implementation

specification specifies using this formal
event for canceling transactions

0x4002 ObjectAdded Only if objects can be added from an
external source during session

0x4003 ObjectRemoved Only if objects can be removed by external
sources during session

0x4004 StoreAdded Only if device has stores that may become
available/unavailable during a session

0x4005 StoreRemoved Only if device has stores that may become
available/unavailable during a session

0x4006 DevicePropChanged

Only if device properties are supported
and some properties are inter-dependent or

can be changed due to an external or
indirect source

0x4007 ObjectInfoChanged Only if it possible for the objects’
ObjectInfo to change during a session

0x4008 DeviceInfoChanged
Only if device supports changes in

functionality during an open session such
as sleep modes or functional modes

0x4009 RequestObjectTransfer Only if this functionality is desired

0x400A StoreFull
Only if objects can be sent to the device or

it supports InitiateCapture or
InitiateOpenCapture

0x400B DeviceReset Only if it is possible for the device to be
reset by something other than the Initiator

0x400C StorageInfoChanged

Only if it is possible for one of the fields in
StorageInfo to change (e.g.

FreeSpaceInImages due to an ImageSize
DeviceProperty change)

0x400D UnreportedStatus

Only if the transport implementation
supports suspend without self-resume
capability and other events may occur

during a suspend period

PIMA 15740: 2000

109
© 2000 PIMA, Inc. – All Rights Reserved

Annex A: Goals of this Standard

A.1 Transport independence
The requirements for communicating with digital still photography devices do not change
between transports. The needs to successfully fulfill certain user-scenarios can successfully
be abstracted with operations like GetObject that may be implemented in transport-specific
ways for maximum efficiency. This protocol is intended to work on a wide variety of bus
protocols, including IR, USB, RF, and 1394. The transport protocol needs to provide some
basic services such as device discovery, enumeration, and reliable data delivery. For buses
that do not provide all of these services (such as RS-232C), a future annex to this standard
may contain additional transport-specific extensions. The transport also defines the start and
end of a “session” by identifying when a connection between two devices is established and
when it is broken. Although the standard should not limit itself to the lowest common
denominator transport, it should recognize limitations on the transports and try to work
within them.

A.2 Extensibility
The standard must be extensible both by the standard committee as well as by an individual
hardware manufacturer. The extensions must be able to pass seamlessly through the driver
layer so that an application can deal with them directly. Extensions include new operations,
new device properties, and new file types.

A.3 Simplicity
The protocol must be easy to understand and implement. It will also assume only a minimum
of processing capability for some devices, while still being able to scale up to more powerful
devices.

A.4 Robustness
 Although the transport is providing a reliable connection, faulty software or hardware can
still corrupt a connection. At any point during a transaction, the devices on each end need to
be able to recover gracefully from errors.

PIMA 15740: 2000

110
© 2000 PIMA, Inc. – All Rights Reserved

Annex B: Filesystem Implementation Examples
(informative)

This clause shows examples of how to implement support for filesystems.

B.1 ObjectHandle Assignment
Regardless of the filesystem used for a particular storage device, files stored in the file
system may be assigned any handle. The simplest method for ObjectHandle creation is to
traverse the file system hierarchy in a breadth-first or depth-first fashion assigning
ObjectHandles to each directory and file using consecutively numbered values starting with
0x00000001.

Objects may be created to represent associations that do not exist as folders in the file system,
according to the convention used by the particular device. For example, this type of
association might be determined from the naming convention used for the individual files
that are part of the association. An example would be a store that contained only three files
that were part of a burst association as indicated by the filenames burst001.jpg, burst002.jpg,
and burst003.jpg. In this case, four ObjectHandles would be assigned; one for each of the
images in the association (e.g. 0x00000001, 0x00000002, 0x00000003), and an extra handle
to represent the virtual association that is the burst relationship (e.g. 0x00000004). The
ObjectInfo datasets returned for each of the image objects should contain a ParentObject field
with a value equal to the ObjectHandle of the virtual folder (i.e. 0x00000004). No GetObject
would be necessary for the object with handle 0x00000004 because associations may be fully
described and reproduced in the most appropriate form by examining the ObjectInfo dataset
of the association.

PIMA 15740: 2000

111
© 2000 PIMA, Inc. – All Rights Reserved

B.2 DCF Filesystem Association Example

Associations may be used to represent filesystems. The following is an example showing a
typical filsystem on a DSPD that conforms with DCF. This example shows examples of how
a DPOF file would be handled, as well as generic folder associations, a burst association, and
ancillary data associations, including both an audio file associated with a single EXIF, as well
as a text file associated with an entire burst sequence.

DCF Filesystem Directory Example:
\MISC\AUTPRINT.MRK // DPOF text file
\DCIM\100MODEL\ // DSPD-model-specific folder
\DCIM\100MODEL\DCP_0001.JPG // EXIF Image #1
\DCIM\100MODEL\DCP_0002.JPG // EXIF image #2
\DCIM\100MODEL\DCP_0002.WAV // WAVE file assoc’ed with EXIF #2
\DCIM\100MODEL\B01_0003.JPG // Burst Set #1 (1/3) EXIF #3
\DCIM\100MODEL\B01_0004.JPG // Burst Set #1 (2/3) EXIF #4
\DCIM\100MODEL\B01_0005.JPG // Burst Set #1 (3/3) EXIF #5
\DCIM\100MODEL\B01_0003.TXT // Text file associated w/ burst seq

Figure B.1: DCF Filesystem Example

Object
Handle Object Description ObjFormat

Code
Parent
Object

Seq
Number

0x00000001 \MISC folder 0x3001 0x00000000 0x00000000
0x00000002 \MISC\AUTPRINT.MRK 0x3006 0x00000001 0x00000000
0x00000003 \DCIM folder 0x3001 0x00000000 0x00000000
0x00000004 \DCIM\100MODEL folder 0x3001 0x00000003 0x00000000
0x00000005 \DCIM\100MODEL\DCP_0001.JPG 0x3801 0x00000004 0x00000000
0x00000006 Ancillary Data Assoc for EXIF#2/WAV 0x3001 0x00000004 0x00000000
0x00000007 \DCIM\100MODEL\DCP_0002.JPG 0x3801 0x00000006 0x00000000
0x00000008 \DCIM\100MODEL\DCP_0002.WAV 0x3008 0x00000006 0x00000000
0x00000009 Burst Association for Burst Seq #1 0x3001 0x00000004 0x00000000
0x0000000A \DCIM\100MODEL\B01_0003.JPG 0x3801 0x00000009 0x00000001
0x0000000B \DCIM\100MODEL\B01_0004.JPG 0x3801 0x00000009 0x00000002
0x0000000C \DCIM\100MODEL\B01_0005.JPG 0x3801 0x00000009 0x00000003
0x0000000D \DCIM\100MODEL\B01_0003.TXT 0x3004 0x00000009 0x00000000

PIMA 15740: 2000

112
© 2000 PIMA, Inc. – All Rights Reserved

Annex C: Optional Device Features

(informative)

This clause describes the features that may be implemented at the vendor’s discretion. These
features are not required for a device to conform to this standard.

C.1 Open Write Store
Devices are not required to possess the ability to write images or other data directly to its
internal storage areas via an external data transfer. Devices that are read-only may still fully
conform to this standard. Devices might only be able to record images via a manual press of
the shutter button or as a response to an InitiateCapture or InitiateOpenCapture operation.

C.2 Hierarchical Storage System
Devices are not required to possess anything other than a flat-file system for storing image
data, but should be able to take advantage of a hierarchical filesystem if it is present.

C.3 Multisession Capability
 Although devices are not required to support more than one simultaneous physical or logical
session, they are not explicitly prohibited from doing so by this standard. A particular device
may effectively deny concurrent service. The current version of this standard provides no
method for avoiding the pitfalls of data corruption caused by multisession operation.

C.4 Out-of-Session Image Handle Persistence
According to Clause 8.2.1, devices must keep assigned image handles persistent within a
particular session. However, devices may optionally wish to extend this persistence in the
following ways:

A. Powered Handle Persistence
Devices that exhibit powered handle persistence retain the same ObjectHandles across all
connection sessions while the device is actively powered, only re-enumerating image
handles on power-up or when specifically requested to do so.

B. Permanent Handle Persistence
Devices that exhibit permanent handle persistence retain the same ObjectHandles
permanently, across all connection sessions and power-on sessions, only re-enumerating
image handles when specifically requested to do so.

C.5 Multiple Image Formats
Devices shall support image format as described in Clause 6. Devices may or may not
support multiple image formats, bit depths, heights, widths, and aspect ratios.

C.6 Multiple Thumbnail Formats

PIMA 15740: 2000

113
© 2000 PIMA, Inc. – All Rights Reserved

Devices shall support thumbnail formats as described in Clause 6.1. Devices may or may not
provide multiple thumbnail formats, bit depths, heights, widths, and aspect ratios.

C.7 Write-Protection Mechanism
Devices may optionally possess a write-protection mechanism for the images that they
contain, but they are not required to do so.

C.8 Sub-Image Transfers
Devices may optionally transfer images subsampled on the fly to a lower resolution, or may
allow specification by subsection. These features are not supported by the standard
GetObject operation, but could be enabled by using a vendor extended operation.

C.9 Non-standard Functional Modes
Devices may optionally take on non-standard modes of operation such as sleep modes, or
advanced functionality modes. A change in mode either requires all sessions to be closed, or
requires support for the DeviceInfoChanged event, to indicate the changes in supported
capabilities while in the new mode.

PIMA 15740: 2000

114
© 2000 PIMA, Inc. – All Rights Reserved

Annex D: USB Implementation of PIMA15740

D.1 Introduction

D.1.1 Purpose
This annex describes how devices supporting the Universal Serial Bus shall implement
PIMA15740 in a platform-independent manner.

D.1.2 Terms and Abbreviations

Table D.1: USB Terms and Abbreviations

Term Description

Configuration A collection of one or more interfaces that may be selected on a USB
device

Descriptor Data structure used to describe a USB device capability or characteristic
Device A USB peripheral

Driver Host software that connects other drivers, DLLs or applications to
USBDI.

Endpoint Source or sink of data on a USB device

HCD Acronym for Host Controller Driver, the Driver used to manage a host
controller

HCDI Acronym for HCD Interface, the programming interface used by USBD to
interact with HCD

Host A computer system where a Host Controller is installed
Host Controller Hardware that connects a Host to USB

Host Software Generic term for a collection of drivers, DLLs and/or applications that
provide operating system support for a Device

IHV Acronym for Independent Hardware Vendor
Interface Collection of zero or more endpoints that present functionality to a host

OHCI Acronym for Open Host Controller Interface, a hardware register
specification defined by Compaq and Microsoft for a Host Controller

UHCI Acronym for Universal Host Controller Interface, a hardware register
specification defined by Intel for a Host Controller

USB Acronym for Universal Serial Bus, a bus used to connect devices to a host

USBD Acronym for Universal Serial Bus Driver, the Driver used to manage and
use Devices among multiple Device Drivers

USBDI Acronym for USBD Interface, the USBD programming interface

PIMA 15740: 2000

115
© 2000 PIMA, Inc. – All Rights Reserved

D.2 Overview
USB Still Image Capture Devices also use the bulk pipe to adjust device properties (i.e.
controls). Specific PIMA15740 operations, GetDevicePropDesc, GetDevicePropValue, and
SetDeviceProp, are used to manage the controls and mode settings of the device.

When an asynchronous event occurs in the device, such as a low battery indication or the
removal of a memory card, the asynchronous event is reported over an interrupt pipe.

Figure D.1: Device Configuration ����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

������������������
������������������
������������������
������������������
������������������

��
��
������������������������

�����������������������
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

��������������������
��������������������
��������������������
��������������������
��������������������

���
���
�������������������������

�������������������������
���

���
���
���

��
��
��

��
���
��

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

������������������
������������������
������������������
������������������
������������������

��
��
������������������������

�����������������������
��

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

��������������������
��������������������
��������������������
��������������������
��������������������

���
���
�������������������������

�������������������������
���

���
���
���

��
��
��

��
���
��

����������������������������������
����������������������������������
����������������������������������
����������������������������������

������������������
������������������
������������������
������������������
������������������

��
������������������������

�����������������������
��
��

���
���
���

��
��
��
��

���
��

���
��

HOST DEVICE

Control Pipe (default)

Data in/out Pipe

Interrupt Pipe

Receiving & responding to USB Requests
Servicing DeviceClass Specific Requests

Transferring Images or Data to/from
the Still Image Capture Device

Transfer of Asynchronous Event Data

PIMA 15740: 2000

116
© 2000 PIMA, Inc. – All Rights Reserved

D.3 Assumptions and Constraints

D.3.1 Compliance
This section describes assumptions and constraints related to compliance.

D.3.1.1 USB Specification

The device shall be compliant with the USB Specification.

D.3.1.2 Device Framework

The device shall support standard and device-specific requests as described in the USB
Specification.

D.3.2 Functional Overview
D.3.2.1 Image Data

Image data from the device is delivered to the host system through a bulk pipe. The format of
the data is identified by an ObjectFormat data item in the ObjectInfo Dataset.

D.3.2.2 Device Controls and Status

Device controls and operational modes are managed by the GetDevicePropDesc,
GetDevicePropValue, and SetDeviceProp operations defined in PIMA15740.

PIMA 15740: 2000

117
© 2000 PIMA, Inc. – All Rights Reserved

D.4 Device Characteristics

D.4.1 Configuration
The device configuration shall support at least one interface for image and data transfer. The
device class code, device sub-class code, and the device protocol code in the Device
Descriptor shall all be set to zero.

D.4.2 Interface
As noted above, the Still Image Capture Device shall support at least one interface for image
and data transfer. As with all USB devices, the default endpoint shall be included in all
interfaces by implication.

The Still Image Capture Device Interface Descriptor shall use a class code of Image D, a sub-
class code of Still Image Capture Device D and a protocol code of D to identify that the
device uses protocol defined in this class specification.

D.4.3 Endpoints
The device shall contain at least four endpoints: default, Data-In, Data-Out, and an Interrupt
endpoint.

D.4.3.1 Default

The default endpoint shall use control transfers as defined in the USB Specification. The
default endpoint shall be used to send standard, class and vendor-specific requests to the
device, an interface or an endpoint. The endpoint number must be zero (0x00).

D.4.3.2 Data-In

The Data-In endpoint shall be used to receive image and non-image data (such as a script)
from the device intended for delivery to an imaging application on the host. The Data-In
endpoint shall use bulk transfers. The endpoint number may be any value between one (1)
and fifteen (15) that is not used by another endpoint on the device. The direction shall be IN.
The maximum packet size is implementation specific and may vary for different alternate
settings.

D.4.3.3 Data-Out

The Data-Out endpoint shall be used to send image and non-image data from the host to the
device. The Data-Out endpoint shall use bulk transfers. The endpoint number may be any
value between (1) and fifteen (15) that is not used by another endpoint on the device. The
direction shall be OUT. The maximum packet size is implementation specific and may vary
for different alternate settings.

PIMA 15740: 2000

118
© 2000 PIMA, Inc. – All Rights Reserved

D.4.3.4 Interrupt

The Interrupt endpoint associated with the Still Image Interface shall be used to send event
data to the host from the device. The Interrupt endpoint shall use interrupt transfers. The
endpoint number may be any value between one (1) and fifteen (15) that is not used by
another endpoint on the device. The direction shall be IN. The maximum packet size is
implementation specific.

D.4.4 Data Characteristics
The USB still image capture device may support one or more image data formats. The data
formats are identified in the PIMA 15740 DeviceInfo Dataset.

D.4.5 PIMA15740 Event Handling
USB Suspend and Resume signaling will affect the way a Still Image Capture Device that
supports PIMA 15740 will handle PIMA15740 Events. Likewise the handling of events will
be affected if the device supports the Remote Wakeup feature and whether or not the Remote
Wakeup feature is disabled.

PIMA Events shall be handled as described by the cases that follow:

Case 1. USB not suspended, Normal PIMA 15740 Event handling
1. PIMA Events are reported to the host via an interrupt where the data format is described in

Clause 7.3.1 of this document.

Case 2. USB Suspended, the Remote Wakeup feature is enabled
1. Device signals remote wakeup upon PIMA15740 Event detection

2. Device issues PIMA Events when bus signaling has resumed.

Case 3. USB Suspended, the Remote Wakeup feature is disabled, and no PIMA 15740
Events occur

1. When host or upstream hubs resume, the device continues, the PIMA15470 session is
undisturbed.

Case 4. USB Suspended, the Remote Wakeup feature is disabled, and PIMA15740 events do
occur

1. When host or upstream hubs resume, the device then posts the PIMA15740 "UnreportedStatus"
Event. The PIMA15740 session remains open.

2. The host (Initiator) must examine the device. This includes checking the DeviceInfo dataset,
checking object handles and ObjectInfo datasets, and checking the device status. The host
(Initiator) may optionally close the session and restart.

The host may disable the remote wakeup feature at any time. However if a session is open,
the awkward "UnreportedStatus" Event might occur.

PIMA 15740: 2000

119
© 2000 PIMA, Inc. – All Rights Reserved

This approach does not require the device to queue events, avoiding memory depth problems.
After a suspension there will be at most one event.

PIMA 15740: 2000

120
© 2000 PIMA, Inc. – All Rights Reserved

D.5 Device Requests

D.5.1 Standard Requests
The Device shall support the standard USB device requests as described below. The device
shall return STALL if any unrecognized or unsupported standard request is received.

D.5.1.1 Clear Feature

The Device shall return STALL for any unrecognized or unsupported Get Feature request.

D.5.1.2 Get Configuration

The Device shall support the Get Configuration request. The Device shall return zero if the
device is unconfigured or the bConfiguration value is undefined in the Configuration
Descriptor.

D.5.1.3 Get Descriptor

The Device shall support Get Descriptor requests for standard descriptors (Device,
Configuration and String). The Device may support Get Descriptor requests for Class or
Vendor-specific descriptors. The Device shall return STALL if a Get Descriptor request is
made for an unrecognized or unsupported descriptor.

D.5.1.4 Get Interface

The Device shall support a Get Interface request for Interface 0 when configured by returning
an Alternate Setting of zero. The Device shall return STALL for a Get Interface request for
any other Interface or any Get Interface request before the Device is configured.

D.5.1.5 Get Status

The Device shall support a Get Status request directed at the device, Interface 0 or any
defined endpoint (default, Data-In, or Data-Out). The Device shall return STALL if a Get
Status request is received for Interface 0 or any defined Endpoint before the Device is
configured. The Device shall return STALL if a Get Status request is received for any
unrecognized or unsupported recipient.

D.5.1.6 Set Address

The Device shall support a Set Address request to change the Device Address from the
default address (zero) to a unique address. The Device may return STALL if any subsequent
Set Address request is received to change the Device Address from a non-zero value to any
value (including zero).

PIMA 15740: 2000

121
© 2000 PIMA, Inc. – All Rights Reserved

D.5.1.7 Set Configuration

The Device shall support the Set Configuration request to set the Device Configuration to
zero (unconfigured) or the bConfiguration value defined in the Configuration Descriptor. The
Device shall return STALL if a Set Configuration request is received with any other value.

D.5.1.8 Set Descriptor

The Device may support Set Descriptor requests for any defined Descriptor (Device,
Configuration, Interface, Endpoint, String, Class or Vendor-Specific). The Device shall
return STALL if a Descriptor may not be updated, is unrecognized, or is unsupported.

D.5.1.9 Set Feature

The Device shall return STALL for any unrecognized or unsupported Set Feature request.

D.5.1.10 Set Interface

When configured, the Device shall support a Set Interface request to Interface 0 for defined
Alternate Settings.

D.5.1.11 Synch Frame

The Device shall return STALL for any Synch Frame request.

PIMA 15740: 2000

122
© 2000 PIMA, Inc. – All Rights Reserved

D.5.2 Class-Specific Requests
The Device may support class-specific requests. The device shall return STALL if an
unrecognized or unsupported device-specific request is received.

D.5.2.1 Cancel Request

The Still Image Capture device shall accept the Cancel Request from the host, which is a
control write sequence to the device’s control endpoint. The data stage transfers to the device
information that identifies the transaction over the Bulk Pipe that was cancelled by the host.

D.5.2.1.1 Cancel Set Up

The host is responsible for establishing the values passed in the fields listed in Table D.2.
The setup data packet has eight bytes.

Table D.2: Format of Setup Data for the Cancel Request

Offset Field Size Value Description

0 bmRequestType 1 bitmap 00100001 Host-to-Device, Class-
Specific, Recipient-Interface

1 bRequest 1 code Cancel_Request (0x64, for this
request)

2 wValue 2 value value equal to zero.
4 wIndex 2 value value equal to zero.
6 wLength 2 count Value = 0x0006

D.5.2.1.2 Format of Cancel Data

The data stage of the Cancel Request has the following format.

Table D.3: Format of Cancel Request Data

Offset Field Size Value Description

0 Cancellation Code 2 code Value=0x4001, identifier for
cancellation

2 TransactionID 4 number
An unsigned 32-bit field
containing the PIMA15740
TransactionID

PIMA 15740: 2000

123
© 2000 PIMA, Inc. – All Rights Reserved

D.5.2.2 Get Extended Event Data

The Still Image Capture device shall accept the Get Extended Event Data Request from the
host, which is a control, read sequence from the device’s control endpoint. The data stage
transfers to the host extended information regarding an asynchronous event or vendor
condition.

D.5.2.2.1 Get Event Set Up

Table D.4 defines the 8-byte set up data for the Get_Extended_Event_Data request.

Table D.4: Format of Setup Data to retrieve the Extended Event Data

Offset Field Size Value Description

0 bmRequestType 1 bitmap 10100001 Device-to-Host, Class-
Specific, Recipient-Interface

1 bRequest 1 code Get_Extended_Event_Data (0x65, code
for this request)

2 wValue 2 value value equal to zero
4 wIndex 2 value value equal to zero

6 wLength 2 count Size of the host buffer allocated for the
Extended Event Data

D.5.2.2.2 Format of Event Data

The data stage of the Get Event Data Request has the following format.

Table D.5: Data Format of Get Extended Event Data Request

Offset Field Size Value Description
0 Event Code 2 code The PIMA15740 Event Code or Vendor Code

2 TransactionID 4 number
An unsigned 32-bit field containing the PIMA15740
TransactionID. This field is 0x00000000 if a
TransactionID does not apply to this event.

6 Number of
Parameters 2 number This field contains a number that indicates the number

of event parameters associated with the event code

8 Size of
Parameter 1 2 number This field contains a number that indicates the size in

bytes of the corresponding event parameter.

10 Parameter 1 ?? value
This field contains the actual event parameter. The
format and meaning of the parameter is described in
the description of the event.

?? Size of
Parameter N 2 number This field contains a number that indicates the size in

bytes of the corresponding event parameter.

?? Parameter N ?? value
This field contains the actual event parameter. The
format and meaning of the parameter is described in
the description of the event.

PIMA 15740: 2000

124
© 2000 PIMA, Inc. – All Rights Reserved

D.5.2.3 Device Reset Request

The Still Image Capture device shall accept the Device Reset Request from the host, which is
a no-data control sequence to the device’s control endpoint. The Device Reset Request is
used by the host to return the Still Image Capture Device to the Idle state after the Bulk-pipe
has stalled. The request may also be used to clear any vendor specified suspend conditions.

D.5.2.3.1 Device Reset Set Up

The host is responsible for establishing the values passed in the fields listed in Table D.6.
The setup data packet has eight bytes.

Table D.6: Format of Setup Data for the Device Reset Request

Offset Field Size Value Description

0 bmRequestType 1 bitmap 00100001 Host-to-Device, Class-
Specific, Recipient-Interface

1 bRequest 1 code Device_Reset_Request (0x66, for
this request)

2 wValue 2 value value equal to zero.
4 wIndex 2 value value equal to zero.

6 wLength 2 count Value of 0x0000, there is no data
associated with this request

D.5.2.4 Get Device Status Request

The Still Image Capture device shall accept the Get Device Status Request from the host,
which is a control, read sequence from the device’s control endpoint. The data stage transfers
to the host information regarding the status or protocol state of the device. This request is
used by the host to retrieve information needed to clear halted endpoints that result from a
device initiated data transfer cancellation.

D.5.2.4.1 Get Device Status Set Up

Table D.7 defines the 8-byte set up data for the Get Device Status Request.

Table D.7: Format of Setup Data to retrieve the Extended Event Data

Offset Field Size Value Description

0 bmRequestType 1 bitmap 10100001 Device-to-Host, Class-
Specific, Recipient-Interface

1 bRequest 1 code Get_Device_Status
(0x67, code for this request)

2 wValue 2 value value equal to zero
4 wIndex 2 value value equal to zero

6 wLength 2 count Size of the host buffer allocated for
the Extended Event Data

PIMA 15740: 2000

125
© 2000 PIMA, Inc. – All Rights Reserved

D.5.2.4.2 Format of Device Status Data

The data stage of the Get Event Data Request has the following format.

Table D.8: Data Format of Get Device Status Request

Offset Field Size Value Description

0 wLength 2 number This field specifies the total length
of the status data

2 Code 2 code

The PIMA15740 Response Code or
Vendor Code:

 0x2001 Status OK
 0x2019 Device Busy

 0x201F Transaction Cancelled

4 Parameter 1 ?? value
The format and meaning of the
parameter depends on the Status Code.
For device initiated cancels this
parameter contains an endpoint number.

?? Parameter N ?? value

The format and meaning of the
parameter depends on the Status Code.
For device initiated cancels this
parameter contains an endpoint number.

D.5.3 Vendor-Specific Requests
The Device may support vendor-specific requests. The device shall return STALL if an
unrecognized or unsupported device-specific request is received.

PIMA 15740: 2000

126
© 2000 PIMA, Inc. – All Rights Reserved

D.6 Descriptors
The following figure shows the relationship among the descriptors in the Still Image Capture
Device Class.

Figure D.2: Descriptor Tree

Manufacturer ID

Configuration

Standard Descriptors

Class-Specific
Descriptors

Product Code
Serial Number

String
Descriptors

Device

Language ID

String
Descriptor

still image interface

Data-out Endpoint

Interrupt Endpoint

Data-in Endpoint

Still Image Interface

D.6.1 Standard Descriptors
The Device shall support the standard USB descriptors as described below. The device shall
return STALL if a request is received for any unrecognized or unsupported standard
descriptor.

PIMA 15740: 2000

127
© 2000 PIMA, Inc. – All Rights Reserved

D.6.1.1 Device

The device shall return a Device Descriptor with the following values:

Table D.9: Device Descriptor

Offset Field Size Value Description
0 bLength 1 0x12 The length of this descriptor
1 bDescriptorType 1 0x01 Device Descriptor Type
2 bcdUSB 2 0x110 USB Specification Release Number

4 bDeviceClass 1 0x00 Class information may be found at the
interface level

5 bDeviceSubClass 1 0x00 bDeviceSubClass is zero
6 bDeviceProtocol 1 0x00 bDeviceProtocol is zero

7 bMaxPacketSize0 1 number Implementation specific, may be set to
8, 16, 32 or 64

8 idVendor 2 ID Vendor ID assigned to IHV by USB-IF
10 idProduct 2 ID Product ID assigned by IHV

12 bcdDevice 2 BCD
Device release number in BCD
assigned by IHV to this release of
model

14 iManufacturer 1 index
Index of string descriptor describing
IHV. If set to zero (0), there is no man
ufacturer string.

15 iProduct 1 index
Index of string describing this product.
If set to zero (0), there is no product
string.

16 iSerialNumber 1 index

Index of string descriptor with this spe
cific device’s serial number. If set to
zero (0), this device does not have a
serial number.

17 bNumConfigurations 1 number Device has this number of configura
tions.

PIMA 15740: 2000

128
© 2000 PIMA, Inc. – All Rights Reserved

D.6.1.2 Configuration Descriptor

The device shall return one or more Configuration Descriptors and other configuration
related descriptors as described below:

Table D.10: Configuration Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 The length of this descriptor
1 bDescriptorType 1 0x02 Configuration Descriptor Type

2 wTotalLength 2 number
Total length of data returned for this
configuration. Includes this descriptor and all
of the descriptors that follow (interface,
endpoint and vendor spe cific, if present).

4 bNumInterfaces 1 number This configuration has <#> interfaces

5 bConfigurationVa lue 1 number
Implementation specific value used as an
argument to Set Configuration to select this
configuration

6 iConfiguration 1 index
Index of string describing this configu ration.
If set to zero (0), there is no configuration
string.

7 bmAttributes 1 bitmap Configuration characteristics as defined by
USB Specification

8 MaxPower 1 mA Maximum power draw from the bus by this
device when this configuration is selected.

D.6.1.3 Still Image Interface Descriptor

Table D.11: Still Image Interface Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 The length of this descriptor
1 bDescriptorType 1 0x04 Interface Descriptor Type
2 bInterfaceNumber 1 number Number of interface in configuration
3 bAlternateSetting 1 0x00 Default setting for this interface

4 bNumEndpoints 1 number Number of endpoints in this interface, not
including the default endpoint.

5 bInterfaceClass 1 TBD* Image interface
6 bInterfaceSubClass 1 TBD* Still Image Capture Device

7 bInterfaceProtocol 1 TBD*
This field indicates the protocol sup ported
by this device. PIMA 15740 compliant
devices use Bulk-only protocol

8 iInterface 1 index Index of string describing this inter face. If
set to zero (0), there is no inter face string.

*These fields will be assigned by the USB Working Group prior to the USB Still Image Device Class obtaining
version 1.0 status. Until these numbers are assigned, the values used in these fields should be 0x00, and host
implementations will need to rely upon external context for driver association.

PIMA 15740: 2000

129
© 2000 PIMA, Inc. – All Rights Reserved

D.6.1.4 Data-In Endpoint Descriptor

Table D.12: Data-In Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 7 The length of this descriptor
1 bDescriptorType 1 5 Endpoint Descriptor Type

2 bEndpointAddress 1 0x8? Any endpoint number not used by another
endpoint. The direction shall be set to IN.

3 bmAttributes 1 0x02 The endpoint uses bulk transfers

4 wMaxPacketSize 2 number
Maximum packet size used by this
endpoint. This must be less than or equal
to 64 bytes.

6 bInterval 1 number Ignored

D.6.1.5 Data-Out Endpoint Descriptor

Table D.13: Data-Out Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 0x07 The length of this descriptor
1 bDescriptorType 1 0x05 Endpoint Descriptor Type

2 bEndpointAddress 1 0x0?
Any endpoint number not used by
another endpoint. The direction shall
be set to OUT.

3 bmAttributes 1 0x02 The endpoint uses bulk transfers

4 wMaxPacketSize 2 number
Maximum packet size used by this
endpoint. This must be less than or
equal to 64 bytes.

6 bInterval 1 number Ignored

D.6.1.6 Interrupt Endpoint Descriptor

Table D.14: Interrupt Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 0x07 The length of this descriptor
1 bDescriptorType 1 0x05 Endpoint Descriptor Type

2 bEndpointAddress 1 0x8?
Any endpoint number not used by
another endpoint. The direction shall
be set to IN.

3 bmAttributes 0x03 The endpoint uses interrupt transfers

4 wMaxPacketSize 2 number
Maximum packet size used by this
endpoint. This must be less than or
equal to 64 bytes.

6 bInterval 1 number Interval for polling endpoint for data
transfers

PIMA 15740: 2000

130
© 2000 PIMA, Inc. – All Rights Reserved

D.6.1.7 String Descriptors

The device may include strings describing the manufacturer, product, serial number,
configuration and interface. All string descriptors use the following format:

The Still Image Capture Device uses the following string descriptors to support the descriptor
of a Still Image Capture Device.

D.6.1.7.1 Manufacturer ID Code Descriptor

The string descriptor of Index=iManufacturer shall support up to 120 UNICODE characters
which describe the manufacturer’s code name. Each character in the UNICODE string shall
be alphanumeric and printable.

Table D.15: Manufacturer ID Code Descriptor

Offset Field Size Value Description
0 bLength 1 0xF2 The length of this descriptor
1 bDescriptorType 1 3 String Descriptor Type

2 wString1 2 uchar Man ID Code UNICODE
character 1

4 wString2 2 uchar Man ID Code UNICODE
character 2

240 wString120 2 uchar Man ID Code UNICODE
character 120

D.6.1.7.2 Product ID Code Descriptor

The string descriptor of Index=iProduct shall support up to 122 UNICODE characters that
describe the Model name.

Table D.16: Product ID Code Descriptor

Offset Field Size Value Description
0 bLength 1 0xF2 The length of this descriptor
1 bDescriptorType 1 3 String Descriptor Type
2 wString1 2 uchar Model UNICODE character 1
4 wString2 2 uchar Model UNICODE character 2

122 wString120 2 uchar Model UNICODE character 120

PIMA 15740: 2000

131
© 2000 PIMA, Inc. – All Rights Reserved

D.6.1.7.3 Serial Number Descriptor

The string descriptor of Index=iSerialNumber shall support up to 126 UNICODE characters
which encode the serial number in a vendor specific format. Each character in the in the
UNICODE string shall be alphanumeric and printable.

Table D.17: Serial Number Descriptor

Offset Field Size Value Description
0 bLength 1 0xFE The length of this descriptor
1 bDescriptorType 1 3 String Descriptor Type
2 wString1 2 uchar Serial Num UNICODE character 1
4 wString2 2 uchar Serial Num UNICODE character 2

252 wString126 2 uchar Serial Num UNICODE character 126

D.6.1.7.4 Language ID Descriptor

The string descriptor of Index=0, a Language ID Descriptor with a valid Language ID code,
is mandatory for PIMA15740 compatible devices. String Descriptors are used to describe
information required by PIMA15740.

Table D.18: Language ID Descriptor

Offset Field Size Value Description
0 bLength 1 0xFE The length of this descriptor
1 bDescriptorType 1 3 String Descriptor Type
2 wLangID[0] 2 code Language ID code 0

N+2 wLangID[N] 2 code Language ID code N

D.6.1.7.5 Vendor Information Descriptor

The string descriptor of Index=iVendorInformation shall be used support PIMA15740
Vendor Dependent Information. A vendor may use up to 126 UNICODE characters in a
vendor specific format. Typically, this field is used for firmware version information. Each of
the UNICODE characters shall be alpha numeric and printable.

Table D.19: Vendor Information Descriptor

Offset Field Size Value Description
0 bLength 1 0xFE The length of this descriptor
1 bDescriptorType 1 3 String Descriptor Type
2 wString1 2 uchar Vendor UNICODE character 1
4 wString2 2 uchar Vendor UNICODE character 2

252 wString126 2 uchar Vendor UNICODE character 126

PIMA 15740: 2000

132
© 2000 PIMA, Inc. – All Rights Reserved

D.6.2 Class-Specific Descriptors
There are no Class-Specific Descriptors defined for a Still Image Capture Device.

D.6.3 Vendor-Specific Descriptors
The device may support vendor-specific descriptors. The device shall return STALL if a
request is received for an unrecognized or unsupported vendor-specific descriptor.

PIMA 15740: 2000

133
© 2000 PIMA, Inc. – All Rights Reserved

D.7 Still Image Capture Device Class-Specific Protocol
Still Image Capture Devices that are compatible to this annex support a Bulk-pipe interface
used for image transfer or data transfer. This interface is used to provide transfer of coherent
data objects such as image thumbnails, descriptors of the data objects, an image file, a code
file, meta-data file, or any opaque data file. This interface is also used to manage stores and
other items that affect data access in the device and it is used to manage the controls and
modes of operation of the device. This contrasts with block data access provided by a mass
storage interface.

A Still Image Capture Device that is compatible to PIMA15740 adheres to a protocol model
that involves three phases of operation execution. These are Command, Data, and Response.
This three-phase operation execution model applies to the Bulk-Only Protocol defined in this
Class specification.

Figure D.3: Operation Phase State Diagram
����������������������������
����������������������������
����������������������������
����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����

���������������������������
���������������������������
���������������������������
���������������������������

����������������������������
����������������������������
����������������������������
����������������������������

����

�������������������������
�������������������������
�������������������������
�������������������������

��������������������������
��������������������������
��������������������������
��������������������������

��

�������������������������
�������������������������
�������������������������
�������������������������

��������������������������
��������������������������
��������������������������
��������������������������

��

����������������������������
����������������������������
����������������������������
����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����

���������
���������

�
�
����
����

����������
��������� �

���������
���������

������
���������������

�����
�������
�������

����������
�������

��������
��������
���
���
�������
�������

�������������������� ������������������

�����������������

������
���
��
���
���

��������������
���������������������������������������

���������������
�������������

��������
��������
�����
�����
��������
��������

��������������������������������
������������������������������
������������������������������
���

Device In
Configured

State

Command
Phase

Data
Phase

Response
Phase

Idle
waiting for
Command

In the Command phase the host transfers to the Still Image Capture Device a Command Block
that defines the PIMA15740 operation that the host is requesting the device to perform. The
specific contents of the Command Block correspond to an operation defined in the
PIMA15740 specification. When a device is configured and idle, it is ready to receive a
command. A device enters the Command phase when a Command Block is sent to the device.
A device determines that a Command Block has been completely received when the device
accepts from the host the number of bytes specified in the first four bytes of the Command
Block that coincides with a short or null packet. A short packet or a NULL packet indicates
the end of a Command phase. If the number of bytes specified in the first four bytes of the
Command Block are an integral multiple of the wMaxPacketSize field of the Endpoint
Descriptor the Command phase will end in a NULL packet. If the number of bytes
transferred in the Command phase is less than that specified in the first four bytes of the
Command Block then the device has received an invalid command and should STALL the
Bulk-Pipe (refer to Clause 7.2).

After accepting and interpreting a command, a device optionally enters the Data phase. In the
Data phase the data to be transferred is contained in a Data Block. The first four bytes of a
Data Block describe the length in bytes of the data to be transferred. The operation code in
the Command Block determines if the operation requires data transfer. The operation code

PIMA 15740: 2000

134
© 2000 PIMA, Inc. – All Rights Reserved

also determines the direction of data transfer (host to device - data out, or device to host -
data in). The Data phase ends when the number of bytes transferred equals the number of
bytes specified in the first four bytes of the Data Block that coincide with a short or a NULL
packet. A short packet or a NULL packet indicates the end of the end of a Data phase. If the
number of bytes specified in the first four bytes of the Data Block are an integral multiple of
the wMaxPacketSize field of the Endpoint Descriptor the Data phase will end in a NULL
packet.

If the number of bytes transferred in the Data phase is less than that specified in the first four
bytes of the Data Block and the data receiver detects this condition before the initiation of the
Response phase the data transfer may be cancelled (refer to Clause 7.2).

After the Command phase in operations without data transfer, or after the Data phase in
operations with data transfer, the device enters the Response phase. The Response phase
returns operation completion information to the host in a container called the Response
Block. The first four bytes of a Response Block describe the length in bytes of the command
completion data to be transferred.

The host determines that a Response Block has been completely received when the device
sends a non-maximum length data packet. The maximum packet size is determined by the
value set in the wMaxPacketSize field of the Endpoint Descriptor corresponding to the
endpoint utilized in the status information transfer. Additionally, the host may also determine
that a Response Block has been completely received when the device sends a NULL packet.
This method will be used when the Response Block size in bytes is an integral number of
maximum data packets.

Endpoint Utilization in Still Image Bulk-only Protocol

The Bulk-Only Protocol defined in this annex bundles together a Bulk-out Endpoint and a
Bulk-in Endpoint into a single logical entity that services a thread of PIMA 15740 operations.
This configuration may be abstracted to have a "Data-in Stream" that transfers bytes from the
device to the host and a "Data-out Stream" that transfers bytes from the host to the device as
shown in Figure D.7.0-2.

Figure D.4: Bulk-Only Protocol Streams
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������

��

��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������

��

Bulk-in
Endpoint

Bulk-out
Endpoint

���
���

�
�
�
�
�
�
�
�
�
�
��

���
���
���
���
���
���
���
���
���
���
���

Bundled Endpoints

��
��

������
������

��
��

������
��������

���
���

�������������
�������������

����������
���������

��
��

���������
�����������

�����
�����

���
������������������ �

�
�������������
�������������

������������
������������
������������
������������
������������

����

�������������
�������������
�������������
�������������
�������������

�

���

��

Data-in Stream

Data-out Stream

����
����
��

����
����������� ������������������������� ��������������

�����

����
��������

����������� �������������������������� ������������
��
��
�����

Bulk Pipe

on the Device
Host side

PIMA 15740: 2000

135
© 2000 PIMA, Inc. – All Rights Reserved

The Data-out Stream transfers operations, operation parameters, and any data from the
host to the device (Command Blocks and Data(out) Blocks). The Data-in Stream transfers
operation responses and any data from the device to the host (Data(in) Blocks and
Response Blocks). A short packet or a NULL packet sent by the data source indicates the
end of the transfer’s phase.

Figure D.5: A USB Still Image Capture Device
����
��������
����
����

���

�����������
�����������
�����������
�����������
�����������

����
�������
����

������
������
�����������
������

����������
���������
���������
���������
�����������
��
��
��

������������������
������������������
��������������������

��������������������
��
��

����������������

�����������������
�������������
�������������
�������������
�����������������������

����������
����

��������
��������

���������������������������������
���������������������������������

��������������������������������
��������������������������������

�������������������������
�������������������������
�������������������������

��������������������������
��������������������������
��������������������������

��
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������

��
��������������������������
��������������������������
��������������������������

���������������������������
���������������������������
���������������������������

���
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���Control
Endpoint Endpoint Endpoint Endpoint

Bulk-Out Bulk-In Interrupt

����
��������
����
����

���

�����������
�����������
�����������
�����������
�����������

���
������
��� Event DataData-OutCommand Blocks

�������������������
�������������������
����������������������

����������������������
����
����Data-In

��������������������������������������
��������������������������������������
��

��
���
��� Command Buffer

���������

����
������������������������

����������������������
���������������������

�������
�� ��

���
���
���

��
��

����
����
���� Storage

�������
�������

�����

������
�������������

������������
��

�����
���������
����
����

�����

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

����
��������
����

���������������������������������
���������������������������������Response Blocks

������
��������
������
������������

�������������
������
���

�����
�����
����������
�����

������������
�����������
�����������
�����������
����������������

�
�����
�����

���������������������
���������������������
����������������������

����������������������
�����
�����Requests

���������������������
���������������������
����������������������

����������������������
����
����(Events)

�������������������������������������
�������������������������������������
��������������������������������������

��������������������������������������
��
�� Response Buffer

�����
�����
�����
�����
�����
�����

����
�����

����������
�������������������

�����
�����
����������������������������

D.7.1 Bulk-Pipe Containers
In a Still Image Capture Device the bulk pipe is used for the PIMA15740 operations that deal
with file transfer and management. The bulk pipe has an input stream and an output stream
connected to a common endpoint address. This common endpoint address is what leads to the
abstraction of bundled endpoints. The PIMA15740 information is encapsulated into the
streams using containers. A container has four types; Command Block, Data Block, Response
Block, and Event Block. The Event Blocks are not used on the Bulk-Pipe but rather the Interrupt
Pipe for encapsulating asynchronous event data.

PIMA 15740: 2000

136
© 2000 PIMA, Inc. – All Rights Reserved

D.7.1.1 Generic Container Structure

The generic structure of the containers used by a PIMA15740 compatible Still Image Capture
Device follows.

Table D.20: Generic Container Structure

Byte
Offset

Length
(Bytes) Field Name Description

0 4 Container Length
This field encodes as an unsigned integer the number
of bytes in this container. A Still Image Capture
Device uses this field to determine the size of the
container.

4 2 Container Type

This field describes the type of the container:
 0 undefined
 1 Command Block
 2 Data Block
 3 Response Block

4 Event Block
 otherwise reserved

6 2 Code
This field contains the PIMA15740 OperationCode,
ResponseCode, or EventCode. The Data Block will
use the OperationCode from the Command Block

8 4 TransactionID This is a host generated number that associates all
phases of an PIMA15740 operation.

12 ?? Payload The contents of this field depend on the operation and
phase of the PIMA15740 operation.

Notes:

1. The OUT Stream can have Command Blocks and Data Blocks. The IN Stream can
have Data Blocks and Response Blocks.

2. The Still Image Bulk-only Protocol, which is based on the PIMA15740 protocol, does
not allow queuing of operations. Consequently when a Command Block optionally
followed by a Data Block is sent by the host on the OUT Stream, a Response Block
must be returned from the device on the IN Stream before the next Command Block
can be set by the host to the device on the OUT Stream.

3. The data in the containers is in little endian format.

PIMA 15740: 2000

137
© 2000 PIMA, Inc. – All Rights Reserved

D.7.1.2 Command Block Payload Structure

The structure of the payload of a Command Block used by a Still Image Capture Device
compatible with this annex follows.

Table D.21: Command Block Payload Structure

Relative
Byte

Offset

Length
(Bytes) Field Name Description

0 4 Parameter 1
This field contains an operation parameter. The format
and meaning of the parameter is described in the
operation description of each operation (PIMA15740
Operation)..

?? 4 Parameter N
This field contains an operation parameter. The format
and meaning of the parameter is described in the
operation description of each operation (PIMA15740
Operation).

Notes:

1. Parameters are always 4 bytes in length. The number of parameters can be
determined from the Container length. (Length – 12)/4

2. The Command Block payload does not have a transfer length parameter. This prevents
the responding device from knowing a priori the amount of any data associated with
an operation.

D.7.1.3 Data Block Payload Structure

The structure of the payload of a Data Block used by a Still Image Capture Device
compatible with this annex is not defined. The actual structure of the data in a Data phase
depends on the operation associated with the data.

PIMA 15740: 2000

138
© 2000 PIMA, Inc. – All Rights Reserved

D.7.1.4 Response Block Payload Structure

The structure of the payload of a Response Block used by a Still Image Capture Device
compatible with this annex follows.

Table D.22: Response Block Payload Structure

Relative
Byte

Offset

Length
(Bytes) Field Name Description

0 4 Parameter 1
This field contains a response parameter. The format
and meaning of the parameter is described in the
response description of each operation (PIMA15740
Operation).

?? 4 Parameter N
This field contains a response parameter. The format
and meaning of the parameter is described in the
response description of each operation (PIMA15740
Operation).

Notes:

1. Parameters are always 4 bytes in length. The number of parameters can be
determined from the Container length. (Length – 12)/4

PIMA 15740: 2000

139
© 2000 PIMA, Inc. – All Rights Reserved

D.7.2 Still Image Bulk-only Protocol
This clause describes the implementation of Bulk-only protocol on a Still Image Capture
Device.

Still Image Capture Devices defined in this annex support only a single thread of operations.
The devices have one command buffer that processes commands sequentially. The
bInterfaceProtocol field in the Still Image Interface Descriptor shall indicate Bulk-Only
protocol.

D.7.2.1 Data Transfer Cancellation in Still Image Bulk-only Protocol
The information transfer over the Bulk-pipe can be cancelled at any time by either the host or
the Still Image Capture Device. Normally only the Data phase is cancelled as the Command
phase and the Response phase are short. An exception is when the device receives an invalid
operation that will cause it to STALL the Bulk-Pipe. Consequently, a container may be only
partially transferred by a stream or the data transfer may stop between containers. The Still
Image Bulk-only Protocol enables detection of a cancelled information transfer condition
allowing for recovery.

D.7.2.1.1 Rule Set
The cancellation data transfer over the Bulk-Pipe involves the use of two methods. One
method is used by device-initiated cancels and the other method is used by host-initiated
cancels.

The Still Image Device shall cancel a data transfer by stalling the Bulk-Pipe endpoints. The
host shall then determine the reason for the STALL (ENDPOINT_HALT condition) and the
stalled endpoint numbers by issuing the class-specific Get_Device_Status Request (refer to
Clause 5.2.4). The host shall then issue standard Clear_Feature Requests to clear the
ENDPOINT_HALT condition on the affected endpoints. After the Clear_Feature Requests
the device shall return OK status on subsequent Get_Device_Status Requests to indicate to
the host that the device is ready to resume operations. The OK status corresponds to
PIMA15740 Response Code 0x2001.

The host shall cancel a data transfer by no longer issuing tokens on the Bulk-Pipe and then
issuing a class-specific Cancel Request to the device. The host shall then poll the device with
Get_Device_Status Requests and when the device returns OK status commands may be
resumed.

PIMA 15740: 2000

140
© 2000 PIMA, Inc. – All Rights Reserved

D.7.2.1.2 Device Behavior

The following flowchart describes the behavior of a device that implements Still Image Bulk-
only Protocol.

Figure D.6: Still Image Protocol Device Behavior

Start

IDLE/COMMAND ENABLED
Bulk-out Endpoint Enabled

Command
Container Data

Packets from Host
to Device

Data-out Tokens

Host knows token count
by MaxPacketSize and
a priori knowledge

RESPONSE ENABLED
Bulk-in Endpoint Enabled

DATA-IN ENABLED
Bulk-in Endpoint Enabled

DATA-OUT ENABLED
Bulk-out Endpoint Enabled

Data Container
Data Packets from

Device to Host

Data Container
Data Packets from

Host to Device

Response
Container Data
Packets from

Device to Host

Wait for
Get_Device_Status

Request

Is an Endpoint Stalled?

No

Data-out Tokens

Data-in Tokens

Data-in Tokens

Valid Command

STALL
Bulk-in & Bulk-out

Endpoints
Unexecutable

Command

Valid Command

Host knows token
count by
MaxPacketSize
and reveived
Container Length

Host knows token count
by MaxPacketSize and
reveived Container
Length

All Data Sent to Host

NAK Data-in
Tokens

NAK Data-out
Tokens

NAK Data-out
Tokens

NAK Data-in
Tokens

Host knows token
count by MaxPacketSize
and a priori knowledge

STALL
Bulk-in & Bulk-out

Endpoints

Error
or

User Cancel

STALL
Bulk-in & Bulk-out

Endpoints

Error
or

User Cancel

Valid Command

All Data Received
from Host

Is Host
Cancel Request

in progress?

Return Stalled
Endpoint Numbers

and reason

Return
Device Busy

Return OK

Yes

Yes

Wait for
 Clear Feature

Request

Clear specified
Endpoint_Halt

condition

All
Endpoints
Cleared?

No

Wait for Device
Reset Request

Flush Buffers
Close Sessions

Device Reset
Request?

Yes

No

Wait for User
initiated Device
Cancel of Data

Transfer

STALL
appropriate
endpoints

Device
Cancel?

Yes

No

Flush Buffers
Go to IDLE State

Yes

PIMA 15740: 2000

141
© 2000 PIMA, Inc. – All Rights Reserved

D.7.2.1.3 Host Behavior

The following flowchart describes the behavior of a host that implements Still Image Bulk-
only Protocol.

Figure D.7: Still Image Protocol Host Behavior

Start

Issue Command

Issue Data-in
Tokens for

Response Data

Is Host Cancelling
Transaction?

Issue Data-in
Token and

Receive Data-in
Packet

Is Host Cancelling
Transaction?

Issue Data-out
Container Data

Packet

Wait for I/O
Request

No No

Stop Issuing
Tokens for Current

Transaction

Issue Class-
specific Cancel

Request

Yes

Yes

Data-in Phase Required

All Data Received by Host All Data Sent by Host

Transaction Complete

Get Device Status
Determine Stalled
Endpoint Numbers

and Reason

Unrecoverable
Error?

Clear STALL on
affected Endpoints

No

Wait for Host
Initiated Cancel

Host Initiated
Cancel?

No

Initiate Host
Cancel of

Transaction

Yes

Data-out Phase
Required

The Host should check the validity of
the Data-in Container and if invalid
issue a Class-specific Cancel
Request.

The Host should check the validity of
the Response Container and if
invalid the transaction should be
declared in error.

Response Only
Required

Is
Bulk-in Endpoint

Stalled?

Is
Bulk-out Endpoint

Stalled?

No No

YesYes

Issue Device
Reset Request

Yes

Get Device StatusIs Device OK?

No

Yes

PIMA 15740: 2000

142
© 2000 PIMA, Inc. – All Rights Reserved

D.7.3 Asynchronous Event Notification
A Still Image Capture Device that is compliant to PIMA 15740 shall provide a means to
notify the host of the occurrence of certain events. Events such as the removal of a memory
card while the still image capture device is actively connected to the host is an example. A
USB Still Image Capture Device uses the interrupt endpoint associated with the Still Image
Interface for this purpose. The device returns to the host interrupt data with zero or more (up
to three) parameters that identify the asynchronous event by PIMA15740 Event Code. For
Asynchronous Events that require a large amount of data, the class-specific Get Extended
Event Data Request shall be used.

The Get Extended Event Data Request is issued by the host when a Check Device Condition
Asynchronous Event is received by via the Interrupt Pipe.

D.7.3.1 Asynchronous Event Interrupt Data Format

The device shall return PIMA15740 interrupt data formatted as follows:

Table D.23: Format of Asynchronous Event Interrupt Data

Offset Field Size
(Bytes) Value Description

0 Interrupt Data Length 4 number This field indicates the length in bytes of
the interrupt data.

4 Container Type 2 0x0004 Container Type = Event
6 Event Code 2 code The PIMA15740 Event Code.

8 TransactionID 4 code

An unsigned 32-bit field containing the
PIMA15740 TransactionID. This field is
0x00000000 if a TransactionID does not
apply to this event.

12 Event Parameter 1 4 variable This field contains the 1st parameter
associated with the event if needed.

16 Event Parameter 2 4 variable This field contains the 2nd parameter
associated with the event if needed.

20 Event Parameter 3 4 variable This field contains the 3rd parameter
associated with the event if needed.

Notes:

1. Event parameters are always 4 bytes in length. The number of parameters can be
determined from the Interrupt Data Length. (Length – 12)/4

PIMA 15740: 2000

143
© 2000 PIMA, Inc. – All Rights Reserved

D.8 Specific Structure of the PIMA15740 Datasets transferred in a
Data Block.

Four PIMA15740 datasets, namely the DeviceInfo Dataset, the ObjectInfo Dataset, the
Device Property Describing Dataset, and the StorageInfo Dataset are transferred on the Bulk-
pipe in data containers. All data items of these datasets are transferred together in one data
container in one operation. Therefore, the binary structure of these datasets needs to be
defined. One should refer to the PIMA15740 specification for the definitions and ordering of
the dataset fields, determining the offsets of individual fields within each dataset using the
relative order and length.

The PIMA15740 specification does not define byte significance within each field that is part
of a dataset. This is commonly known as "endianness". Little-endian systems place the least
significant byte of a multi-byte field first in a stream or at the lowest address in a memory
buffer. Big-endian systems place the most significant byte of a multi-byte field first in a
stream or at the lowest address of a memory buffer. The Universal Serial Bus is a little-
endian system. All fields are packed accordingly.

PIMA 15740: 2000

144
© 2000 PIMA, Inc. – All Rights Reserved

D.9 Still Image Bulk-only Protocol Cancellation Examples
This clause presents specific cancellation examples in the Still Image Bulk-only Protocol.
The different cases presented correspond to the indicated positions in the following figure
that depicts the three phases of the Still Image Bulk-only Protocol.

Figure D.8: Cancellation Cases

Time

Command Phase Response Phase

����������������
����������������
����������������
����������������

Case 1
& Case 8

Time

Command Phase Data In Phase

����������������
����������������
����������������
����������������

Response Phase

��������������
��������������
��������������
��������������

Time

Command Phase Data Out Phase

����������������
����������������
����������������
����������������

Response Phase

��������������
��������������
��������������
��������������

Case 2
& Case 9

Case 7
& Case 14

Case 1
& Case 8

Case 2
& Case 9

Case 5
& Case 12

Case 6
& Case 13

Case 1
& Case 8

Case 2
& Case 9

Case 3
& Case 10

Case 4
& Case 11

Case 7
& Case 14

Case 7
& Case 14

Note: "just finished receiving" means "just received a short or NULL data packet" which
terminates a Block.

Case 1: The HOST cancels when the DEVICE is receiving the Command Block, or

Case 2: The HOST cancels when the DEVICE has just finished receiving the Command Block,
or

Case 3: The HOST cancels when the DEVICE is receiving the Data(out) Block, or

Case 4: The HOST cancels when the DEVICE has just finished receiving the Data(out) Block,
or

Case 5: The HOST cancels when the HOST is receiving the Data(in) Block, or

Case 6: The HOST cancels when the HOST has just finished receiving the Data(in) Block.

PIMA 15740: 2000

145
© 2000 PIMA, Inc. – All Rights Reserved

Normally the Command Phase is not cancelled because it is short. If it is cancelled, then the
following occurs:

1. The HOST stops issuing tokens.

2. The HOST sends to the DEVICE the class-specific Cancel Request.

3. The DEVICE enters a DEVICE_BUSY condition that is reported when the HOST issues
a Get Device Status Request. DEVICE BUSY is reported by using the PIMA15740
Response Code 0.2019

4. The DEVICE clears its command buffer, goes to the Idle/Command Enabled state, and
enters an OK condition.

5. The HOST polls the DEVICE with the Get Device Status Request. When the DEVICE
returns OK status the cancel is complete.

Case 7: The HOST cancels when the HOST is receiving the Response Block.

1. The HOST does not cancel a Response Block as the Response Phase has the completion
information of a completed transaction.

Case 8: The DEVICE cancels when the DEVICE is receiving the Command Block, or

Case 9: The DEVICE cancels when the DEVICE has just finished receiving the Command
Block, or

Case 10: The DEVICE cancels when the DEVICE is receiving the Data(out) Block, or

Case 11: The DEVICE cancels when the DEVICE has just finished receiving the Data(out)
Block, or

Case 12: The DEVICE cancels when the HOST is receiving the Data(in) Block, or

Case 13: The DEVICE cancels when the HOST has just finished receiving the Data(in) Block.

Since the Command Block is short and may only be one data packet in length the DEVICE
usually does not cancel the Command Block. However, if an invalid command is received
the DEVICE may cancel in Command phase.

1. The DEVICE places an Endpoint_Halt condition as indicated by the PIMA15740
Response Code, TransactionCancelled, 0x201F, on both the Bulk-in and Bulk-out
endpoints. Consequently, any tokens issued by the HOST to these endpoints will return
STALL.

PIMA 15740: 2000

146
© 2000 PIMA, Inc. – All Rights Reserved

2. The HOST issues a Get Device Status Request to determine the reason for the STALL
and the endpoint numbers of the endpoints in an Endpoint_Halt condition.

3. The HOST may the issue Clear Feature Requests to clear the Endpoint_Halt condition on
the endpoints returning STALL.

4. The DEVICE clears its command buffer, goes to the Idle/Command Enabled state, and
enters an OK condition.

5. The HOST polls the DEVICE with the Get Device Status Request. When the DEVICE
returns OK status the cancel is complete.

alternatively

3. The HOST sends to the DEVICE the class-specific Device Reset Request

4. The DEVICE clears its command buffer, closes all open sessions, and returns to the Con-
figured State.

Case 14: The DEVICE cancels when the HOST is receiving the Response Block.

1. The Device shall not cancel a Response Block

PIMA 15740: 2000

147
© 2000 PIMA, Inc. – All Rights Reserved

Annex E: Bibliography
(informative)

Informative references relevant to the development of this standard are listed below.

[1] Design Rule for Camera File System, version 1.0, JEIDA-49-2-1998, Japan
Electronic Industry Development Association, Dec. 1998.

[2] USB specification available via world-wide web at: http://www.teleport.com/~usb/

[3] IEEE1394 information available via world-wide web at: http://www.1394ta.org

[4] FlashPix information available from: http://www.digitalimaging.org/

[5] G3 colour fax information available from
http://www.faximum.com/faqs/fax.info#1.2

[6] IrDA information available from http://www.irda.org

[7] ICC information available from http://www.color.org

[8] ISIS information available from http://www.pixtran.com

[9] TWAIN information available from http://www.twain.org

[10] IEEE P1394 Digital Camera Draft, Rev 1.03, Sony Corp, 1995.

[11] Melville, John, et. al., “An application programmer’s interface for digital cameras”,
Proc. IS&T’s 49th Annual Conference, May 1996, pp. 282-285.

[12] PNG information available at http://www.cdrom.com/pub/png/spec/

[13] PICT specification "Inside Macintosh: Imaging with QuickDraw," Addison Wesley
Publishing Company, 1994 ISBN: 020163242X. PDF at
http://developer.apple.com/techpubs/mac/QuickDraw/QuickDraw-2.html

http://www.teleport.com/~usb/
http://www.1394ta.org
http://www.digitalimaging.org/
http://www.faximum.com/faqs/fax.info#1.2
http://www.irda.org
http://www.color.org
http://www.pixtran.com
http://www.twain.org
http://www.cdrom.com/pub/png/spec/
http://developer.apple.com/techpubs/mac/QuickDraw/QuickDraw-2.html

	TOP of Document
	Foreword
	Introduction
	Purpose
	Contributors
	Table of Contents
	Index of Figures
	Index of Tables
	1 Scope
	2 Normative References
	3 Terms & Definitions
	4 Digital Still Photography Device Model
	4.1 Overview
	4.2 Baseline Requirements
	4.2.1 Implementation of a suitable transport
	4.2.2 Thumbnail Support
	4.2.3 Standard Image and Data Reference Behavior
	4.2.4 Asynchronous Event Support

	5 Data Format Specification
	5.1 General Format
	5.1.1 Multibyte Data
	5.1.2 Bit Format
	5.1.3 Hexadecimal Notation

	5.2 Datatype Summary
	Table 1: Datatype Summary
	5.2.1 Datacodes
	Table 2: Datacode Formats

	5.3 Simple Types
	Table 3: Datatype Codes
	5.3.1 Integers
	5.3.2 Handles
	5.3.3 Decimal Types
	5.3.4 Strings
	Table 4: String Format

	5.4 Arrays
	Table 5: Array Format

	5.5 Datasets
	5.5.1 DeviceInfo Dataset
	Table 6: DeviceInfo Dataset
	Table 7: FunctionalMode Values

	5.5.2 ObjectInfo Dataset
	Table 8: ObjectInfo Dataset
	Table 9: ObjectInfo ProtectionStatus Values

	5.5.3 StorageInfo Dataset
	Table 10: StorageInfo Dataset
	Table 11: Storage Types
	Table 12: FilesystemType Values
	Table 13: StorageInfo AccessCapability Values

	6 Image and Data Object Formats
	6.1 Thumbnail Formats
	6.1.1 Compressed JPEG thumbnail image files
	6.1.2 Uncompressed TIFF thumbnail image files

	6.2 ObjectFormatCodes
	Table 14: ObjectFormatCodes

	6.3 Object Format Version Identification
	6.4 Data Object Association
	6.4.1 Association Types
	Table 15: Association Types
	Figure 1: HorizontalPanoramic SequenceNumber Example
	Figure 2: VerticalPanoramic SequenceNumber Example
	Figure 3: 2DPanoramic SequenceNumber Example

	6.4.2 Associations as Filesystem Folders

	7 Transport Requirements
	7.1 Disconnection Events
	7.2 Reliable, Error Free Channel
	7.3 Asynchronous Event Support
	7.4 Device Discovery and Enumeration
	7.5 Specific Transports
	7.5.1 USB
	7.5.2 IrDA
	7.5.3 IEEE1394
	7.5.4 RS232C (Serial)

	8 Persistent Storage
	8.1 StorageID
	8.2 Data Object Referencing
	8.2.1 Referencing via ObjectHandles
	8.2.2 AccessCapability

	8.3 Receiver Object Placement

	9 Communication Protocol
	9.1 Device Roles
	9.2 Sessions
	9.3 Transactions
	9.3.1 TransactionID
	9.3.2 Operation Request Phase
	Table 16: OperationRequest Dataset

	9.3.3 Data Phase
	9.3.4 Response Phase
	Table 17: Response Dataset

	9.4 Operation Flow
	9.4.1 Pull Scenarios
	9.4.2 Push Scenarios

	9.5 Vendor Extensions

	10 Operations
	10.1 Operation Parameters
	10.2 OperationCode Format
	10.3 OperationCode Summary
	Table 18: Operation Summary

	10.4 Operation Descriptions
	10.4.1 GetDeviceInfo
	10.4.2 OpenSession
	10.4.3 CloseSession
	10.4.4 GetStorageIDs
	10.4.5 GetStorageInfo
	10.4.6 GetNumObjects
	10.4.7 GetObjectHandles
	10.4.8 GetObjectInfo
	10.4.9 GetObject
	10.4.10 GetThumb
	10.4.11 DeleteObject
	10.4.12 SendObjectInfo
	10.4.13 SendObject
	10.4.14 InitiateCapture
	Figure 6: Single Object InitiateCapture Sequence
	Figure 7: Multiple Object InitiateCapture Sequence

	10.4.15 FormatStore
	10.4.16 ResetDevice
	10.4.17 SelfTest
	Table 19: SelfTestType Values

	10.4.18 SetObjectProtection
	10.4.19 PowerDown
	10.4.20 GetDevicePropDesc
	10.4.21 GetDevicePropValue
	10.4.22 SetDevicePropValue
	10.4.23 ResetDevicePropValue
	10.4.24 TerminateOpenCapture
	10.4.25 MoveObject
	10.4.26 CopyObject
	10.4.27 GetPartialObject
	10.4.28 InitiateOpenCapture
	Figure 8: Single Object InitiateOpenCapture Sequence
	Figure 9: Multiple Object InitiateOpenCapture Sequence

	11 Responses
	11.1 ResponseCode Format
	11.2 ResponseCode Summary
	Table 20: ResponseCode Summary

	11.3 Response Descriptions
	11.3.1 OK
	11.3.2 General Error
	11.3.3 Session Not Open
	11.3.4 Invalid TransactionID
	11.3.5 Operation Not Supported
	11.3.6 Parameter Not Supported
	11.3.7 Incomplete Transfer
	11.3.8 Invalid StorageID
	11.3.9 Invalid ObjectHandle
	11.3.10 DeviceProp Not Supported
	11.3.11 Invalid ObjectFormatCode
	11.3.12 Store Full
	11.3.13 Object WriteProtected
	11.3.14 Store Read-Only
	11.3.15 Access Denied
	11.3.16 No Thumbnail Present
	11.3.17 Self Test Failed
	11.3.18 Partial Deletion
	11.3.19 Store Not Available
	11.3.20 Specification By Format Unsupported
	11.3.21 No Valid ObjectInfo
	11.3.22 Invalid Code Format
	11.3.23 Unknown Vendor Code
	11.3.24 Capture Already Terminated
	11.3.25 Device Busy
	11.3.26 Invalid ParentObject
	11.3.27 Invalid DeviceProp Format
	11.3.28 Invalid DeviceProp Value
	11.3.29 Invalid Parameter
	11.3.30 Session Already Open
	11.3.31 Transaction Cancelled
	11.3.32 Specification of Destination Unsupported

	12 Events
	12.1 Event Types
	12.1.1 Transports with In-Band Events
	12.1.2 Transports with Out-of-Band Events

	12.2 Event Dataset
	Table 21: Event Dataset

	12.3 EventCode Format
	12.4 EventCode Summary
	Table 22: EventCode Summary

	12.5 Event Descriptions
	12.5.1 CancelTransaction
	12.5.2 ObjectAdded
	12.5.3 ObjectRemoved
	12.5.4 StoreAdded
	12.5.5 StoreRemoved
	12.5.6 DevicePropChanged
	12.5.7 ObjectInfoChanged
	12.5.8 DeviceInfoChanged
	12.5.9 RequestObjectTransfer
	12.5.10 Store Full
	12.5.11 Device Reset
	12.5.12 StorageInfoChanged
	12.5.13 CaptureComplete
	12.5.14 UnreportedStatus

	13 Device Properties
	13.1 Values of a Device Property
	13.2 Device Property Management Requirements
	13.3 Device Property Identification
	13.3.1 Device Property Describing Requirements
	13.3.2 Device Property Describing Methods
	13.3.3 Device Property Describing Dataset
	Table 23: Device Property Describing Dataset (DevicePropDesc)
	Table 24: Property Describing Dataset, Range Form
	Table 25: Property Describing Dataset, Enumeration Form

	13.3.4 DevicePropCode Format
	13.3.5 DevicePropCode Summary
	Table 26: DevicePropCode Summary

	13.4 Device Property Descriptions
	13.4.1 BatteryLevel
	13.4.2 FunctionalMode
	13.4.3 ImageSize
	13.4.4 CompressionSetting
	13.4.5 WhiteBalance
	Table 27: White Balance Settings

	13.4.6 RGB Gain
	13.4.7 FNumber
	13.4.8 FocalLength
	13.4.9 FocusDistance
	13.4.10 FocusMode
	Table 28: FocusMode Settings

	13.4.11 ExposureMeteringMode
	Table 29: ExposureMeteringMode Settings

	13.4.12 FlashMode
	Table 30: FlashMode Settings

	13.4.13 ExposureTime
	13.4.14 ExposureProgramMode
	Table 31: ExposureProgramMode Settings

	13.4.15 ExposureIndex
	13.4.16 ExposureBiasCompensation
	13.4.17 DateTime
	13.4.18 CaptureDelay
	13.4.19 StillCaptureMode
	Table 32: StillCaptureMode Settings

	13.4.20 Contrast
	13.4.21 Sharpness
	13.4.22 DigitalZoom
	13.4.23 EffectMode
	Table 33: EffectMode Setting

	13.4.24 BurstNumber
	13.4.25 BurstInterval
	13.4.26 TimelapseNumber
	13.4.27 TimelapseInterval
	13.4.28 FocusMeteringMode
	Table 34: FocusMeteringMode Settings

	13.4.29 UploadURL
	13.4.30 Artist
	13.4.31 Copyright

	14 Conformance Section
	Table 35: Operation Implementation Conformance
	Table 36: Event Implementation Conformance

	Annex A: Goals of this Standard
	A.1 Transport independence
	A.2 Extensibility
	A.3 Simplicity
	A.4 Robustness

	Annex B: Filesystem Implementation Examples
	B.1 ObjectHandle Assignment
	B.2 DCF Filesystem Association Example
	Figure B.1: DCF Filesystem Example

	Annex C: Optional Device Features
	Annex C: Optional Device Features
	C.1 Open Write Store
	C.2 Hierarchical Storage System
	C.3 Multisession Capability
	C.4 Out-of-Session Image Handle Persistence
	C.5 Multiple Image Formats
	C.6 Multiple Thumbnail Formats
	C.7 Write-Protection Mechanism
	C.8 Sub-Image Transfers
	C.9 Non-standard Functional Modes

	Annex D: USB Implementation of PIMA15740
	D.1 Introduction
	Table D.1: USB Terms and Abbreviations

	D.2 Overview
	Figure D.1: Device Configuration

	D.3 Assumptions and Constraints
	D.3.1 Compliance
	D.3.2 Functional Overview

	D.4 Device Characteristics
	D.4.1 Configuration
	D.4.2 Interface
	D.4.3 Endpoints
	D.4.4 Data Characteristics
	D.4.5 PIMA15740 Event Handling

	D.5 Device Requests
	D.5.1 Standard Requests
	D.5.2 Class-Specific Requests
	Table D.2: Format of Setup Data for the Cancel Request
	Table D.3: Format of Cancel Request Data
	Table D.4: Format of Setup Data to retrieve the Extended Event Data
	Table D.5: Data Format of Get Extended Event Data Request
	Table D.6: Format of Setup Data for the Device Reset Request
	Table D.7: Format of Setup Data to retrieve the Extended Event Data
	Table D.8: Data Format of Get Device Status Request

	D.5.3 Vendor-Specific Requests

	D.6 Descriptors
	Figure D.2: Descriptor Tree
	D.6.1 Standard Descriptors
	Table D.9: Device Descriptor
	Table D.10: Configuration Descriptor
	Table D.11: Still Image Interface Descriptor

	Annex E: Bibliography

