	Nitin Gupta (ng35) and Chris Pelosi (ckp5)
	ECE 476: Wed. Lab

	Final Project Report
	Due: 5/1/2002

GPS (Global Positioning System) Device

Introduction:

The goal of this project was to design a GPS device capable of outputting directions via interstates to any major city in the continental United States. The device was designed to interface with any GPS receiver capable of outputting NMEA v0183 RMC sentences via RS232 connection. Our motivation behind this project was to create an expandable design capable of using a larger database of cities and connecting roads. The device was programmed with a small database consisting of major cities and connecting interstates. Please see below map of cities and connections included in our database. This database is used to map out directions between any two major cities in the database. This design could easily be expanded and made portable for use in automobiles or other vehicles. This project was intended to demonstrate some ideas that could be used to create a commercially available Global Positioning Device.

High Level Design:

The basic structure of the device is to take input from a 4 x 4 keypad and display all output on a 4 x 20 character LCD screen. Upon startup, a main menu is displayed on the LCD, listing all options/features available to the user. The menu options are as follows:

1.) Date and Time – This option displays a submenu of date and time options. From this submenu, the user can view and set the date and time, or return to the main menu.

2.) Nearest City – This option displays the nearest city to the user along with the distance and direction, based on the user’s current coordinates. These coordinates are either inputted manually by the user upon selecting this option, or are automatically obtained if the user is in NMEA mode (see option 6).

3.) Directions to a City – This option displays a listing of directions between the user’s nearest city and a major city that will be selected by the user. Once again, the user’s coordinates are either entered manually or are obtained automatically via an external GPS receiver. These coordinates are used to determine the nearest city to the user. The user is then prompted to select a destination from a given list of major cities. Upon selecting a destination, the directions will be computed and displayed. The user will be able to scroll through each step of the directions. Each step consists of a departure city, an arrival city, and the distance and interstate connecting them.

4.) Distance Between Cities – This option displays the absolute distance between any two cities in the database. When this option is selected, the user is prompted to choose a departure and arrival city.

5.) Directions Between Cities – This option is identical to option 3, except that the user is prompted to choose both an arrival city and a departure city, as opposed to only an arrival city. A nearest city is not computed for this option since the user selects the departure city.

6.) Select Input Mode – This option allows the user to select between NMEA mode and Manual mode. When in NMEA mode, the user’s coordinates will be continually inputted through the UART from a GPS receiver. The UART will be expecting NMEA v0183 RMC sentences. When in Manual mode, the user will be prompted to enter his/her current coordinates when necessary.

7.) Display Coordinates – This option displays the user’s current coordinates. When in NMEA mode, these coordinates will be continually updated. When in Manual mode, the coordinates shown will be the last coordinates entered by the user.

To implement these features, we designed state machines to control different aspects of the system. The state machines and database were programmed onto an Atmel Mega163 microcontroller chip. An STK500 development board was used to connect the various hardware elements needed for the device.

Hardware Design:

The hardware used to create the device are as follows:

1 Atmel Mega163 microcontroller chip

1 Atmel STK500 development board

1 4x4 keypad

1 Optrex DMC-20434 4x20 character LCD

1 breadboard

(optional) 1 GPS receiver (or simulator) capable of outputting NMEA v0183 RMC sentences via RS232 connection

The keypad connected to the MCU was a 16-button keypad that consists of 8 pins that are used to decode a button push. These pins are connected to PORTB of the MCU in the manner specified below. When a button is pushed, only one pin on the keypad is high from Pins 1-4 and one pin is high from Pins 5-8. Based on this specification, we store a table of values (keytbl) that correspond to valid PORTB values. The numbers stored in this table correspond to only 1 pin being high for PORTB Pins 0-3 and only 1 pin being high for PORTB Pins 4-7. What we do to read a keypad button push is to first read the lower nibble of the button push and then the upper nibble of the button push. We do this by driving the upper nibble as output and reading the lower nibble as input, followed by driving the lower nibble as output and reading the upper nibble as input. By using this scheme, if a button is pushed, only 1 pin will be high in the lower nibble and 1 pin will be high in the upper nibble. We use this scheme to decode the numbers by looking them up in the keytbl and storing these keytbl values as the sequence of button pushes entered by the user.

The scheme that we used to convert the keypad button push to formatted ASCII was to write a function keypad_to_char that converted keypad values to ASCII characters. It would take in a keytbl value and perform a switch on this value. Based on which keypad value it was, it would return a different character.

On the keypad, the A button corresponded to the scroll-up button, the B button corresponded to the scroll-down button, the C button corresponded to the backspace button, and the D button corresponded to the select/enter button. The Pound and Star buttons were not used. The numerical buttons were used to input numbers for coordinates, time, or date.

The LCD used was an Optrex DMC-20434 4x20 character display. It was connected to PORTC of the MCU in the manner specified below.

If NMEA mode is enabled, a GPS receiver/simulator must be connected to the UART port on the STK500 board with the following settings:

4800 BAUD

8 Data Bits

1 Stop Bit

No Parity

No Flow Control

Software Design:

Interrupts:

The general structure of the program is to force a timer0 overflow interrupt at a certain time interval for the purpose of executing four tasks. By setting the prescalar to 64 with an 8 MHz clock and preloading TCNT0 on the MCU to 256-125, we force TCNT0 to overflow every 125 clock ticks, which corresponds to 1 millisecond. Every millisecond, the timer0 ISR is executed and checks if any of the tasks need to be performed. Each task has a given timer associated with it that is decremented every interrupt, except for task 3, whose timer acts as a flag, which is set to zero when the task needs to be executed. Once a timer for the task reaches 0, the task is performed and the timer is reset. There is also a timer1 interrupt routine that increments the system time by one second every interrupt. The interrupt is executed every time TCNT1 matches the value in the OCR1A register. By setting the prescalar to 256 with an 8 MHz clock and setting the clear on match bit, we force TCNT1 to increment every 256/8 = 32 microseconds and to reset back to 0 when it matches OCR1A. We initialize OCR1A to 1000000/(256/8) which is the number of times TCNT1 needs to increment to correspond to a match every second. Inside the TIM1_COMPA interrupt, the system time is updated by one second, and adjusting any overflow values (such as changing 60 seconds to 0 seconds and 1 minute). A third interrupt routine is need for the serial communication between a GPS receiver and the system. When the UART_RXC interrupt is enabled, it executes every time a character is received in the UDR. The interrupt stays enabled until the system receives a return character, at which point, the system packages the NMEA sentence and disables the interrupt. Until the system interprets the command/data, the interrupt will remain disabled. Once the system processes this input, the interrupt will be re-enabled and will proceed to package the next NMEA sentence.

Tasks:

Task1:

This task is executed every 30 milliseconds and processes keypad button pushes. Each time the task executes, it reads the keypad to see which button is being pushed. This state machine also debounces button pushes. Each time a button is pushed, the program calls update_menu(). This function is responsible for setting state variables, based on the current state and the button pushed. This function then calls display_menu(), which changes the LCD screen based on current state variables. One feature of the LCD was a wrap around scrolling feature used to scroll through the menu options. We implemented this by storing two state variables, scroll_number and select_number. Scroll_number kept track of which menu option appears on the top line, and select_number indicates which line is currently selected. See source code for a detailed explanation of implementation.

Task2:

This task is executed every 250 milliseconds and implements a blinking cursor. A blinking cursor is used when the user is entering his/her current coordinates or entering a new date or time. This task also refreshes the LCD screen if the current menu screen is the Nearest City screen or Display Coordinates screen, but only if the input mode is NMEA. The reason for this is that the user may be in transit, in which case his/her coordinates will be constantly changing. Thus, the distance/direction to the nearest city would be changing, or the nearest city itself.

Task3:

This task is only executed when the date needs to be changed due to an overflow of the time incrementing. When the day reaches the last day of the month, and the time transitions from 23:59:59 to 00:00:00, the timer3 flag is set to 0, indicating that task3 needs to be executed. This task then proceeds to update the day, month, and year as necessary.

Task4:

This task is executed every 250 milliseconds and checks to see if a NMEA sentence is waiting to be processed. If there is a NMEA sentence is waiting to be processed, then the task extracts the current latitude and longitude coordinates and sets the appropriate state variables.

Database:

In order to compute the shortest path and directions between cities, we needed to construct a small database of cities and interstate connections. This database consisted of 32 predetermined cities, each of which had at least one interstate connection to another city. Each city was assigned a number 0 through 31. Each time a computation involving a city was made, this number was used to identify the city. Whenever the city needed to be printed, we would use the city number as an index to an array that contained city names. We mapped out each of the connections and stored the information in a one-dimensional character array. The format of the array was as follows:

The array consisted of a set of connections for each city. Each city has one or more connections, which were stacked one next to the other in the array. And each city’s set of connections were stacked one next to the other to form one large array. To access a given city’s set of connections, we stored an array of integers, which stored the starting position for each city in the connection array.

The connection array is structured as follows:

|----------|----------|----------| |----------|----------|----------|

| city00 | city01 | city02 | | city29 | city30 | city31 |

|----------|----------|----------| |----------|----------|----------|

Each city (a multiple of 6 bytes) in the connection array is structured as follows:

|----------------|----------------|----------------|

| connection00 | connection01 | connection02 |

|----------------|----------------|----------------|

Each connection was represented as a set of 6 characters (bytes):

|-----------------|------------|-----------|----------|----------|----------|

| connecting city | interstate | direction | distance | distance | distance |

|-----------------|------------|-----------|----------|----------|----------|

The connecting city field corresponds to the city number of an adjacent city.

The interstate field is the interstate that connects the city to the connecting city.

The direction field is the direction to the connecting city.

The three distance fields sum up to the total distance between the two cities on the interstate.

The other arrays used in the program were indexed and referenced via city number. These arrays include the latitude and longitude coordinates of each city. For example, the latitude for city00 is stored in latitude[0]. For a complete listing of all city database data, see Appendix.

Algorithm:

To compute the directions between cities, we implemented a shortest path algorithm that used our city connection graph. The algorithm that we used was Dijkstra’s Algorithm. This algorithm is an O(n2) algorithm which steps through all the connecting cities and proceeds to compute the shortest path from a departure city to all other cities, including the arrival city. See Appendix for a detailed explanation of Dijkstra’s Algorithm.

To compute the geographical distance between two cities, we used a formula that computes the distance based on the latitude and longitude coordinates of each city. See Appendix for details.

Results:

Our design turned out to be very robust, yet very simple to understand. The scheme we used to control the menu selections was very structured, making it easy to add features and transition between different menu screens. By storing and manipulating a few global state variables, we were easily able to implement the different features of the device. Timing was not an issue with this project since none of the features were very time sensitive. The only feature that needed to be time accurate was the clock, which was controlled by timer1. Thus, the clock was accurate for our purposes.

Although our database consisted of a small set of cities and interstates, there is a large potential for usability of our project in a commercial setting. The database is easily expandable, subject to memory limitations, and the functionality is easily extendable.

We first tested our device in Manual mode and all of the features worked as expected. We did not notice any bugs or glitches in our implementation. In order to test our device in NMEA mode, we needed a GPS receiver capable of outputting NMEA sentences through an RS232 connection. In place of a GPS receiver, we obtained a GPS simulator software that outputted configurable NMEA sentences through the COM port of a PC. As a result, we were able to connect the PC to our device and test our features under a variety of circumstances, such as constantly changing position. Again, our device worked as expected and we are convinced that our device is compatible with any commercially available GPS receiver capable of producing output to the above specification.

One issue we encountered while developing our device was memory limitations. The memory available for implementing our device was limited, due to the large amount of information stored in the database. We made an initial guess as to how many cities we could afford to represent in our map and it turned out to be very close to the maximum number of cities we could store, given the set of features we wanted to implement. There was a point at which we ran out of RAM due to the information we needed to store. To rectify this, we reorganized our memory usage so that we could utilize available flash memory. Flash memory turned out to be an issue also as we implemented more and more features. Since the instructions are stored in flash and we had a lot of conditions to handle, we had to eliminate some of the features we originally intended so our program could fit on the chip.

Afterthoughts:

After completing this project, there are a few things we could have done differently. First, we could have used an external source of RAM to store a larger database so that our map could have been more detailed. Second, we could have used a larger LCD for displaying our output. The one we used was satisfactory, but was lacking due to the 20-character per line limit. In retrospect, we would try to use a pixilated display that could not only display text, but maps as well. Third, we would try to make our device completely portable and powered by battery. This would allow the device to be used in automobiles, increasing its usability.

