NPN General Purpose Amplifier

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier.

Absolute Maximum Ratings* \(T_A = 25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CEO})</td>
<td>Collector-Emitter Voltage</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CBO})</td>
<td>Collector-Base Voltage</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EBO})</td>
<td>Emitter-Base Voltage</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>(I_C)</td>
<td>Collector Current - Continuous</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>(T_J, T_{stg})</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to +150</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics \(T_A = 25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_D)</td>
<td>Total Device Dissipation</td>
<td>625</td>
<td>PZT3904</td>
</tr>
<tr>
<td></td>
<td>Derate above 25(^\circ C)</td>
<td>5.0</td>
<td>PZT3904</td>
</tr>
<tr>
<td>(R_{JUC})</td>
<td>Thermal Resistance, Junction to Case</td>
<td>83.3</td>
<td>PZT3904</td>
</tr>
<tr>
<td>(R_{JUA})</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>200</td>
<td>PZT3904</td>
</tr>
</tbody>
</table>

* Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06. *
** Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm\(^2\).
Electrical Characteristics

Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(BR)CEO</td>
<td>Collector-Emitter Breakdown Voltage</td>
<td>IC = 1.0 mA, IB = 0</td>
<td>40</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V(BR)CBO</td>
<td>Collector-Base Breakdown Voltage</td>
<td>IC = 10 µA, IC = 0</td>
<td>60</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V(BR)EBO</td>
<td>Emitter-Base Breakdown Voltage</td>
<td>IE = 10 µA, IC = 0</td>
<td>6.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IBL</td>
<td>Base Cutoff Current</td>
<td>VCE = 30 V, VEB = 3V</td>
<td>50</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>ICEX</td>
<td>Collector Cutoff Current</td>
<td>VCE = 30 V, VEB = 3V</td>
<td>50</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>hFE</td>
<td>DC Current Gain</td>
<td>IC = 0.1 mA, VCE = 1.0 V</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC = 1.0 mA, VCE = 1.0 V</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC = 10 mA, VCE = 1.0 V</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC = 100 mA, VCE = 1.0 V</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(CESat)</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>IC = 10 mA, IB = 1.0 mA</td>
<td>0.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC = 50 mA, IB = 5.0 mA</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(BESat)</td>
<td>Base-Emitter Saturation Voltage</td>
<td>IC = 10 mA, IB = 1.0 mA</td>
<td>0.65</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC = 50 mA, IB = 5.0 mA</td>
<td>0.85</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

SMALL SIGNAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>fT</td>
<td>Current Gain - Bandwidth Product</td>
<td>IC = 10 mA, VCE = 20 V, f = 100 MHz</td>
<td>300</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Ccbo</td>
<td>Output Capacitance</td>
<td>VCE = 5.0 V, IC = 0, f = 1.0 MHz</td>
<td>4.0</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Crbo</td>
<td>Input Capacitance</td>
<td>VCE = 0.5 V, IC = 0, f = 1.0 MHz</td>
<td>8.0</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>NF</td>
<td>Noise Figure</td>
<td>IC = 100 µA, VCE = 5.0 V, Rs = 1.0 kΩ, f = 10 Hz to 15.7 kHz</td>
<td>5.0</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>td</td>
<td>Delay Time</td>
<td>VCC = 3.0 V, VBE = 0.5 V,</td>
<td>35</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tr</td>
<td>Rise Time</td>
<td>IC = 10 mA, IB1 = 1.0 mA</td>
<td>35</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>ts</td>
<td>Storage Time</td>
<td>VCC = 3.0 V, IC = 10mA</td>
<td>200</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tf</td>
<td>Fall Time</td>
<td>IB1 = IB2 = 1.0 mA</td>
<td>50</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%
Typical Characteristics

Typical Pulsed Current Gain vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Base-Emitter Saturation Voltage vs Collector Current

Base-Emitter ON Voltage vs Collector Current

Collector-Cutoff Current vs Ambient Temperature

Capacitance vs Reverse Bias Voltage
Typical Characteristics (continued)

- **Noise Figure vs Frequency**
 - Graph showing NF vs frequency for different collector currents and source resistances.

- **Noise Figure vs Source Resistance**
 - Graph showing NF vs source resistance for different collector currents.

- **Current Gain and Phase Angle vs Frequency**
 - Graph showing current gain and phase angle vs frequency for different collector currents.

- **Power Dissipation vs Ambient Temperature**
 - Graph showing power dissipation vs ambient temperature for different packages.

- **Turn-On Time vs Collector Current**
 - Graph showing turn-on time vs collector current for different voltages.

- **Rise Time vs Collector Current**
 - Graph showing rise time vs collector current for different voltages and temperatures.
Typical Characteristics (continued)

Storage Time vs Collector Current
- \(I = I = I_{B1} = I_{B2} = 10 \) mA
- \(T_J = 25°C \)
- \(T_J = 30°C \)

Fall Time vs Collector Current
- \(I = I = I_{B1} = I_{B2} = 10 \) mA
- \(V_{CC} = 40V \)
- \(T_J = 25°C \)

Current Gain
- \(V_{CE} = 10V \)
- \(f = 1.0 \) kHz
- \(T_A = 25°C \)

Output Admittance
- \(V_{CE} = 10V \)
- \(f = 1.0 \) kHz
- \(T_A = 25°C \)

Input Impedance
- \(V_{CE} = 10V \)
- \(f = 1.0 \) kHz
- \(T_A = 25°C \)

Voltage Feedback Ratio
- \(V_{CE} = 10V \)
- \(f = 1.0 \) kHz
- \(T_A = 25°C \)
FIGURE 1: Delay and Rise Time Equivalent Test Circuit

FIGURE 2: Storage and Fall Time Equivalent Test Circuit
TO-92 Tape and Reel Data

TO-92 Packaging
Configuration: Figure 1.0

TO-92 TNR/AMMO PACKING INFORMATION

<table>
<thead>
<tr>
<th>Packing Style</th>
<th>Quantity</th>
<th>EOL code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel A</td>
<td>2,000</td>
<td>D8Z</td>
</tr>
<tr>
<td>E</td>
<td>2,000</td>
<td>D7Z</td>
</tr>
<tr>
<td>Ammo P</td>
<td>2,000</td>
<td>D7Z</td>
</tr>
</tbody>
</table>

Unit weight:
- Reel weight with components: 0.22 gm
- Ammo weight with components: 1.04 kg
- Max quantity per intermediate box: 10,000 units

BULK OPTION

See Bulk Packing Information table

EOL BULK PACKING INFORMATION

<table>
<thead>
<tr>
<th>EOL Code</th>
<th>Description</th>
<th>Leadclip Dimension</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>J18Z</td>
<td>TO-18 option std</td>
<td>No lead clip</td>
<td>2000</td>
</tr>
<tr>
<td>J5SZ</td>
<td>TO-5 option std</td>
<td>No lead clip</td>
<td>1500</td>
</tr>
<tr>
<td>NO EOL</td>
<td>TO-92 standard</td>
<td>No lead clip</td>
<td>2000</td>
</tr>
<tr>
<td>L18Z</td>
<td>TO-92 standard</td>
<td>No lead clip</td>
<td>2000</td>
</tr>
</tbody>
</table>

©2001 Fairchild Semiconductor Corporation

March 2001, Rev. B1
TO-92 Reeling Style
Configuration: Figure 2.0

Machine Option “A” (H)
Style “A”, D26Z, D70Z (s/h)

Machine Option “E” (J)
Style “E”, D27Z, D71Z (s/h)

TO-92 Radial Ammo Packaging
Configuration: Figure 3.0

First Wire Off is Collector
Adhesive Tape is on the Top Side
Flat of Transistor is on Top

ORDER STYLE
D74Z (M)

First Wire Off is Emitter (on pkg. 92)
Adhesive Tape is on Bottom Side
Flat of Transistor is on Bottom

ORDER STYLE
D75Z (P)

First Wire Off is Collector (on pkg. 92)
Adhesive Tape is on Bottom Side
Flat of Transistor is on Top
TO-92 Tape and Reel Data, continued

TO-92 Tape and Reel Taping
Dimension Configuration: Figure 4.0

User Direction of Feed

TO-92 Reel
Configuration: Figure 5.0

Note: All dimensions are in inches.

ITEM DESCRIPTION	SYMBOL	DIMENSION
Base of Package to Lead Bend | b | 0.038 (max)
Component Height | H6 | 0.938 (+ 0.025)
Lead Clinch Height | H0 | 0.630 (+ 0.020)
Component Base Height | H1 | 0.746 (+ 0.020)
Component Alignment (side/side) | Pd | 0.040 (max)
Component Alignment (front/back) | HD | 0.031 (max)
Component Pitch | P | 0.040 (+ 0.025)
Feed Hole Pitch | PO | 0.520 (+ 0.020)
Hole Center to First Lead | P1 | 0.150 (+0.009, -0.010)
Hole Center to Component Center | P2 | 0.240 (+ 0.007)
Lead Spread | F1:F2 | 0.104 (+ 0.010)
Lead Thickness | d | 0.016 (+0.002, -0.003)
Cut Lead Length | L | 0.420 (max)
Taped Lead Length | L1 | 0.200 (+0.051, -0.052)
Taped Lead Thickness | t | 0.032 (+ 0.006)
Carrier Tape Thickness | t1 | 0.031 (+ 0.006)
Carrier Tape Width | W | 0.708 (+ 0.030, -0.010)
Hold - down Tape Width | W0 | 0.225 (+ 0.012)
Hold - down Tape position | W1 | 0.035 (max)
Feed Hole Position | W2 | 0.200 (+ 0.025)
Socked Hole Diameter | DO | 0.157 (+0.007, -0.007)
Lead Spring Out | S | 0.024 (max)

Note: All dimensions are in inches.

ITEM DESCRIPTION	SYMBOL	MINIMUM	MAXIMUM
Reel Diameter | D1 | 13.975 | 14.025
Axial Hole Diameter (Standard) | D2 | 1.160 | 1.300
Axial Hole Diameter (Small Hole) | D2 | 0.600 | 0.700
Core Diameter | D3 | 3.100 | 3.300
Hub Recess Inner Diameter | D4 | 2.700 | 3.100
Hub Recess Depth | W1 | 0.370 | 0.570
Flange to Flange Inner Width | W2 | 1.420 | 1.600
Hub to Hub Center Width | W3 | 2.030

Note: All dimensions are in inches.

July 1999, Rev. A
TO-92 Package Dimensions

TO-92 (FS PKG Code 92, 94, 96)

Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]
Part Weight per unit (gram): 0.1977
SOT-23 Tape and Reel Data

SOT-23 Packaging
Configuration: Figure 10

Packaging Description:
SOT-23 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature primarily composed of polyolefin film, adhesive layer, sealant, and anti-static sprayed agent). These sealed parts in standard option are shipped with 3,000 units per 7” or 177cm diameter reel. The reels are dark blue in color and made of polystyrene (anti-static coated). Other option comes in 10,000 units per 13” or 330cm diameter reel. This and some other options are described in the Packaging Information table.

These full reels are individually labeled and placed inside a standard intermediate made of recyclable corrugated brown paper with a Fairchild logo printing. One pizza box contains eight reels maximum. And these intermediate boxes are placed inside a labeled shipping box which comes in different sizes depending on the number of parts shipped.

SOT-23 Tape Leader and Trailer
Configuration: Figure 20

<table>
<thead>
<tr>
<th>SOT-23 Packaging/Information</th>
<th>Standard (no flow code)</th>
<th>D87Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging Option</td>
<td>TNR</td>
<td>TNR</td>
</tr>
<tr>
<td>Qty per Reel/Tote/Bag</td>
<td>3000</td>
<td>10000</td>
</tr>
<tr>
<td>Reel Type</td>
<td>7” Dra</td>
<td>13”</td>
</tr>
<tr>
<td>Box Dimension (mm)</td>
<td>187x107x183</td>
<td>343x343x64</td>
</tr>
<tr>
<td>Max qty per box</td>
<td>24,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Weight per unit (gm)</td>
<td>0.0082</td>
<td>0.0082</td>
</tr>
<tr>
<td>Weight per Reel (kg)</td>
<td>0.1775</td>
<td>0.4066</td>
</tr>
<tr>
<td>Note/Comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOT-23 Tape and Reel Data, continued

SOT-23 Embossed Carrier Tape
Configuration: Figure 3.0

Dimensions are in millimeter

<table>
<thead>
<tr>
<th>Pkg type</th>
<th>A0</th>
<th>B0</th>
<th>W</th>
<th>D0</th>
<th>D1</th>
<th>E1</th>
<th>E2</th>
<th>F</th>
<th>P1</th>
<th>P0</th>
<th>K0</th>
<th>T</th>
<th>Wc</th>
<th>Tc</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT-23</td>
<td>3.15</td>
<td>+0.10</td>
<td>2.77</td>
<td>+0.10</td>
<td>9.0</td>
<td>+0.3</td>
<td>1.55</td>
<td>+0.05</td>
<td>1.125</td>
<td>+0.125</td>
<td>1.75</td>
<td>+0.10</td>
<td>6.25</td>
<td>+0.05</td>
</tr>
<tr>
<td>(8mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.25</td>
<td>+0.05</td>
<td>4.8</td>
<td>+0.10</td>
<td>0.238</td>
<td>+0.013</td>
</tr>
</tbody>
</table>

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

20 deg maximum component rotation

Sketch A (Side or Front Sectional View)
Component Rotation

Sketch B (Top View)
Component Rotation

Sketch C (Top View)
Component lateral movement

SOT-23 Reel Configuration: Figure 4.0

Dimensions are in inches and millimeters

<table>
<thead>
<tr>
<th>Tape Size</th>
<th>Reel Diameter</th>
<th>Dim A</th>
<th>Dim B</th>
<th>Dim C</th>
<th>Dim D</th>
<th>Dim E</th>
<th>Dim W1</th>
<th>Dim W2</th>
<th>Dim W3 (LSL-USL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8mm</td>
<td>7" Dia</td>
<td>0.059</td>
<td>1.5</td>
<td>0.020</td>
<td>0.008</td>
<td>0.000</td>
<td>5.4</td>
<td>3.5</td>
<td>0.311 – 0.429</td>
</tr>
<tr>
<td></td>
<td>13" Dia</td>
<td>0.059</td>
<td>1.5</td>
<td>0.020</td>
<td>0.008</td>
<td>0.000</td>
<td>5.4</td>
<td>3.5</td>
<td>0.311 – 0.429</td>
</tr>
</tbody>
</table>

See detail AA

September 1999, Rev. C
SOT-23 Package Dimensions

SOT-23 (FS PKG Code 49)

Part Weight per unit (gram): 0.0082

Dimensions shown below are in:

- Inches [millimeters]

Scale 1:1 on letter size paper

NOTE: UNLESS OTHERWISE SPECIFIED
1. STANDARD LEAD FINISH: 150 MICROINCHES / 3.81 MICROMETERS
 MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
2. REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE G, DATED JUL 1993
SOT-223 Tape and Reel Data

SOT-223 Packaging Configuration: Figure 1.0

Packaging Description:
SOT-223 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polymer film, adhesive layer, waxant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13” or 330cm diameter reel. The reels are dark blue in color and is made of polystyrene plastic (anti-static coated). Other option comes in 500 units per 7” or 177cm diameter reel. This and some other options are further described in the Packaging Information table.

These full reels are individually barcode labeled and placed inside a standard intermediate box illustrated in figure 1.0 made of recyclable corrugated kraft paper. Each box contains two reels maximum. And these boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped.

SOT-223 Tape Leader and Trailer Configuration: Figure 2.0

Packaging Option
- Standard
- D84Z

Packaging type
- Reel Size
 - TNR 13” Dia
 - TNR 7” Dia

Qty per Reel/Tube/Bag
- 2,500
- 500

Box Dimension (mm)
- 343x64x343
- 184x184x47

Max qty per Box
- 5,000
- 1,000

Weight per unit (gm)
- 0.1246
- 0.1246

Weight per Reel (kg)
- 0.7250
- 0.1532

F63TNR Label
184mm x 184mm x 47mm
Pizza Box for D84Z Option

©2000 Fairchild Semiconductor International

September 1999, Rev. B
SOT-223 Tape and Reel Data, continued

SOT-223 Embossed Carrier Tape
Configuration: Figure 3.0

Dimensions are in millimeter

<table>
<thead>
<tr>
<th>Pkg type</th>
<th>A0</th>
<th>B0</th>
<th>W</th>
<th>D0</th>
<th>D1</th>
<th>E1</th>
<th>E2</th>
<th>F</th>
<th>P1</th>
<th>P0</th>
<th>K0</th>
<th>T</th>
<th>Wc</th>
<th>Tc</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT-223 (12mm)</td>
<td>6.83 ± 0.10</td>
<td>7.42 ± 0.10</td>
<td>12.0 ± 0.3</td>
<td>1.55 ± 0.05</td>
<td>1.75 ± 0.10</td>
<td>10.25 ± 0.05</td>
<td>5.50 ± 0.05</td>
<td>9.00 ± 0.10</td>
<td>4.00 ± 0.10</td>
<td>1.68 ± 0.10</td>
<td>0.292 ± 0.0130</td>
<td>0.50 ± 0.0025</td>
<td>0.06 ± 0.0022</td>
<td></td>
</tr>
</tbody>
</table>

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

SOT-223 Reel Configuration: Figure 4.0

Dimensions are in inches and millimeters

<table>
<thead>
<tr>
<th>Tape Size</th>
<th>Reel Option</th>
<th>Dim A</th>
<th>Dim B</th>
<th>Dim C</th>
<th>Dim D</th>
<th>Dim N</th>
<th>Dim W1</th>
<th>Dim W2</th>
<th>Dim W3 (LSL-USL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12mm</td>
<td>7" Dia</td>
<td>0.059</td>
<td>0.065</td>
<td>0.512</td>
<td>0.795</td>
<td>5.936</td>
<td>0.498</td>
<td>18.4</td>
<td>0.493 – 0.606</td>
</tr>
<tr>
<td></td>
<td>13" Dia</td>
<td>0.059</td>
<td>0.065</td>
<td>0.512</td>
<td>0.795</td>
<td>5.936</td>
<td>0.498</td>
<td>18.4</td>
<td>11.3 – 15.4</td>
</tr>
</tbody>
</table>

July 1999, Rev. B
SOT-223 (FS PKG Code 47)

Scale 1:1 on letter size paper

Part Weight per unit (gram): 0.1246

NOTES:
1. Standard lead finish to be 150 microinches/3.81 micrometers minimum tin/lead (solder) on copper.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACE™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E®CMOS™ EnSigna™ FACT™ FACT Quiet Series™ FAST®

PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER® SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or</td>
<td>This datasheet contains the design specifications for product development.</td>
</tr>
<tr>
<td></td>
<td>In Design</td>
<td>Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data will be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>published at a later date. Fairchild Semiconductor reserves the right to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reserves the right to make changes at any time without notice in order to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been</td>
</tr>
<tr>
<td></td>
<td></td>
<td>discontinued by Fairchild semiconductor. The datasheet is printed for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reference information only.</td>
</tr>
</tbody>
</table>
This datasheet has been downloaded from:

www.datasheetcatalog.com

Datasheets for electronics components.