
1

IMPLEMENTATION OF WIRELESS SENSOR ACTUATOR

NETWORK ON A SCALED SUSTAINABLE HVAC SYSTEM

By:

[Nirav Patel (NYP7) & Fisal Sayed (FAS57)]

ECE 4760 Final project

2

TABLE OF CONTENTS
Acknowledgement ... 3

Introduction ... 4

High level design: ... 4

Rationale .. 4

Principle of Operation of the Scaled HVAC System ... 5

PID controller ... 6

Saturation and Anti-windup .. 7

PID Controller Tuning Parameters ... 7

Multi Single input Single Output SISO PID loops ... 8

Communication standards/protocols.. 10

UART .. 10

Wireless ZigBee Protocol ... 10

First version: API version ... 11

Second Version: Transparent version.. 11

Hardware circuit design: .. 12

Temperature sensor circuit: .. 12

Actuator driving circuit .. 13

Microcontroller board ... 14

Peltier Module Power Measurement .. 15

Hardware Testing .. 16

Software Design & Testing .. 18

Final GUI Design ... 22

Improvements: GUI ... 22

Decoding within the Matlab GUI: .. 25

Decode Logic at Controller: ... 26

Design Results .. 27

Safety ... 29

Conclusions .. 32

Appendix A: controller commented code ... 34

Appendix B: Matlab GUI commented code ... 34

Appendix C: cost details.. 35

Appendix D: Pin References: ... 36

Appendix E: .. 37

References: .. 38

3

Acknowledgement

This report covers our work that we carried out towards our final ECE 4760 project. We

would like to express our deepest gratitude to Professor Bruce Land and Professor

Brandon Hencey for their valuable inputs and comments on the project.

We would also like to take this space to thank our team mates Justin Dobbs for his support

with the PI controller code and Jaina Mehta for her help explaining how Zigbee works. We

also want to thank our TA Michael Lyons for his valuable inputs about the project.

4

Introduction
This project creates a wireless sensor actuator network for a scaled Heating, Ventilation &

Air Conditioning controller rig that exists in Upson 126 in Professor Brandon Hencey’s Lab.

This project is meant to facilitate data collection from the HVAC rig to Matlab software on a

main PC by taking the full advantages of the wide spreading Xbee modules that operate on

Zigbee protocol. This collected data helps to do further data analysis, model calibration and

optimization without the need to wire a single component to the computer. This solid

wireless network enables users to send commands and change set points and tune PID

controllers to facilitate running experiments on the rig. Graphical User Interface GUI has

been designed and implemented in Matlab to facilitate interaction with the wireless set-up.

Decentralized multi-loop PID controllers have been implemented to control different

actuators such as Peltier Heater/Cooler, pumps and fans.

High level design:
Rationale:

Buildings operations account for 40% of the total US energy consumption. This

corresponds to about $170 Bn worth of cash. One third of this energy is wasted due to

inefficiency in buildings controllers. The average household spends about $2000 a year on

energy bills, over half of which goes to heating and cooling. To test new building

technologies and to bridge the gap between computer simulation and modeling and the full

scale buildings, a small scaled HVAC rig was built. This project is carried out to set baseline

PID controllers for the HVAC components as well as designing and implementing a wireless

sensor actuator network that facilitates two way communications between computer and

the rig. This project also simplifies interaction with the rig and acquiring data by

implementing a GUI in Matlab, a well-established statistical software package.

5

Principle of Operation of the Scaled HVAC System
In order to control the existing HVAC rig, one needs to understand the basic operation of

the HVAC. The scaled HVAC rig consists of two main loops; the chiller water loop and the

condenser loop. Peltier module has been used to remove heat from the chilled loop and

convey it to the condenser loop where heat is removed by passing through a forced air heat

exchanger in the condenser loop as shown in figure (1). The chiller water loop consists of a

water block attached to the cold side of the Peltier Module. The water flowing through the

water block acts as a heat source at the side of the thermoelectric module. The chilled

water CHW supplied from the water block goes through a cooling coil available in the

conditioned space. This CHW picks up heat in the conditioned space by having a fan

blowing air through the cooling coil. The hot water returning from the cooling coil is

pumped by a circulating pump to go through the water block (chiller) and this process

repeats itself.

Figure (1) Chiller & Condenser loops of HVAC

6

The condenser loop consists of water block attached to the hot side of the Peltier module.

Water flowing through the water block acts as a heat sink at the hot side of the

thermoelectric module. Heat is being removed from the condenser side of the Peltier and

being pumped through a double heat exchanger that cools it down using fans. The more

heat removed from this loop the better the Peltier performs, the more we can cool down

the chilled water loop

PID controller
The most common controller used in the HVAC industry is the proportional, integral,

Derivative PID controller. In brief, Proportional, Integral, Derivative PID controller is a

feedback controller that helps to attain a set point irrespective of disturbances or any

variation in characteristics of the plant of any form. It calculates its output based on the

measured error and the three controller gains; proportional gain Kp, integral gain Ki, and

derivative gain Kd. The proportional gain simply multiplies the error by a factor Kp. This

reacts based on how big the error is. The integral term is a multiplication of the integral

gain and the sum of the recent errors. The integral term helps in getting rid of the steady

state error and causes the system to catch up with the desired set point. The derivative

controller determines the reaction to the rate of which the error has been changing. In

most of the HVAC systems, it is not necessary to use the derivative part of the PID, hence in

this project, only PI controller has been designed and used. The final output of the

controller (U) is calculated using the following equation:

𝑈 = 𝐾𝑝 ∗ 𝑒(𝑡) +𝐾𝑖 �𝑒 𝑑𝑡 + 𝐾𝑑
𝑑𝑒
𝑑𝑡

The signal value U is sent continuously to the driving circuit with every corresponding new

output begin measured as the process continues. Table () summarizes the pros and cons of

each term of the PID controller.

7

Controller Pros Cons
P • Easy to Implement • Long settling time

• Steady state error
PD • Easy to stabilize

• Faster response than just P
controller

• Can amplify high
frequency noise

PI • No steady state error • Narrower range of
stability

Saturation and Anti-windup
The wind up action happens when the output of the controller reaches saturation (255 for

8bit PWM). Due to the error is still positive, the integral part continues to increase causing

more inputs applied to the system. This causes the control signal to remain in saturation

and the feedback loop is basically broken. This windup action is avoided by restricting the

output signal of the controller (U) to be within the acceptable range of the actuator. Here,

we have restricted the output signal between 0 to 255 (8bit PWM signal).

PID Controller Tuning Parameters
There are a couple of strategies on how PID can be tuned; this includes trial and error

tuning method, Ziegler-Nichols tuning method etc. Our approach was calculating the

controller output function U such that the final output signal (U) applied to the actuating

circuit was divided by the number of shifts determined in PID structure. This is a

systematic way of changing the PID parameters. We started by 7 shifts to the right;

meaning we divided the output signal by 2^7 or the value 128. This way we are half way

through either increasing division factor by 128 or reducing it by 128. We started by

making an initial guess of the value of the Kp gain where Ki=Kd=0. We noticed that when

Kp had a large value, we had a faster rise time, but an increase in overshoot. To improve on

the effect of Kp, an additional Ki was also set to a small value. Adding integral gain had a

great effect on reducing steady state error between the desired temperature and the actual

temperature. The following table gave us a rough idea of how changing each PID parameter

could change our system response.

Table (1) : summary of the affect of changing PID functions

8

Table (2) PID controller parameter characteristics on a fan’s response

Multi Single input Single Output SISO PID loops
After establishing a functioning single input, single output PI control which was the

simplest in design since we used data from one sensor to control one actuator, we moved

to designing a single input, multiple output SIMO PI control as shown in figure (2). In this

case we used one data from one temperature sensor to control both the Peltier Heater and

the fans on the heat exchanger in the condenser loop. In this case, both controllers were

aiming to meet one set point, the advantage of such a method is that we could reach to the

set-point faster than before but amount of overshoot set point increased. To overcome such

a problem, we detuned PI gain parameters and after tuning both controllers, we were able

to get a very good response.

Parameter
Increase Rise time Overshoot Settling Time Steady-state

error

Kp Small Change

Ki Great reduce

Kd Small Change Small Change

Figure (2) Two SIMO PID loops

9

Table 3 summarizes the best gains at which we got the best response with less oscillation

and faster rise time.

 PID type Kp Ki Max Min

Peltier controller PI 20 1 255 10

Fan Controller PI 20 1 255 0

Table (3) PI controller final gain values

After establishing a working SIMO control, we decided to implement two decoupled PI

loops i.e. MIMO control. We worked on controlling the temperature of the chiller water

supply loop. The first PI loop was to control the temperature of the Chilled water supply

T_CHWS by controlling the Peltier Module. The second PI control loop was to control the

temperature of the air supply AS by controlling the chilled side pump. The slower the flow

rate, the longer the water stays in the cooling coil, the hotter the CHWR return temperature

gets, This CHWSR acts as a load on the Peltier cold side, resulting in conveying more heat

to the hot side of the Peltier. Figure (3) shows MIMO PI loops where one loop acts as

disturbance. Such a system is difficult to tune specially, when one controller acts as a

disturbance to the other controller.

Figure (3) Two MIMO PID loops

10

Communication standards/protocols

UART
The UART stands for Universal Asynchronous Receive/Transmit. UART is used in reference

to the standard protocols like RS 232, Rs 422 or RS 485. The most common RS-232

protocol has been defined to operate at a high voltage level relative to the supply to the

controller. This was in conjunction to the industry requirements so that it is immune to

noise. Hence it needs a separate driver circuitry which translates the low voltage output of

the UART of the controller to a recognized level for RS-232 communications.

Wireless ZigBee Protocol:

For the wireless communication, we used the Zigbee Protocol. This protocol is used with

low power wireless radio in communication systems which require low data rate, high

battery life and secure networking. The Xbee module manufactured by Digikey implements

this protocol. We have been using the Xbee modules which are directly compatible with the

Arduino boards and work on a standard UART interface. Hence communication with the PC

at the receiving end is also very straightforward. Also sending data from the controller is

also as simple as putting data on the UART transmitter line of the controller. The module

takes care of the implementation of the protocol and transmits the data. All the modules

having the same Personal Area Network ID can form a mesh network. Hence the user does

not need to actually care about connecting several nodes to a master node. This is the

biggest advantage of using this module.

The Zibgee protocol is somewhat new in the communication Arena, compared to the RS

232. This protocol was designed for digital radios which worked at low power and low data

rates that can be used for Wireless Personal Area Networks (WPAN). It has a data rate of

250 kbps, probably sufficient for sensors designed for intermittent data transmission. The

operating frequency is 915 MHz in the US. The implementation of this protocol is cheaper

than some of its counterparts for WPAN like Bluetooth. The advantage of using Zigbee is

that it can automatically create an ad-hoc network amongst the nodes. Hence the user does

not have to worry about setting up a network; just setting the correct parameters in the

11

module is all that it takes for the node discovery and network formation. The typical

protocol frames for some modes we have used/tested are discussed in the appendix.

First version: API version
The Zigbee modules work in different modes. API mode is one of them. This mode sets the

module to accept and put out data on the UART in a predefined frame which is basically

defined by the protocol. This gives more encapsulation to the actual data and is really

useful in setting up a mesh network wherein we have to deal with data from multiple

nodes. The details of this protocol are defined in the appendix. The drawback to this

protocol is that the decoding of data becomes complex at the receiving end. But the

advantage is that each frame has a payload which consists of information on the senders

address, number of data bytes in the frame and checksum for error checks. Hence there is a

tradeoff between the complexity of the design and the features offered by the design.

Second Version: Transparent version
The transparent version, as the name suggests is more of a user friendly form of

communications. In this mode, it just puts out the data it received from another node on to

the UART. Vice versa, it accepts the data from the serial terminal without having to form

any framing operations manually. This makes the decoding tasks at the receiver really

simple and straightforward. Nevertheless in this mode, the Zigbees’ communicate within

them using the appropriate protocol, just that now its hidden from the user. The drawback

here is that the module truncates all the frame information which is provided in the API

mode, and instead just puts out the actual data transmitted on the serial. This reduces the

complexity but hides the sender information from us. Hence to implement a mesh network,

we may need to send out the address of the sending node before transmitting the actual

data.

We tried using both the API and the transparent (AT) mode. This project is a research

project which needs to be followed up for a few semesters. We had to keep in mind the

changes which will be made to the system over the coming semesters by different students.

Hence using the transparent mode will help them make these changes a bit smoothly

compared to the API mode. So we propose using the AT mode keeping in mind the future

developments necessary in the system.

12

Hardware circuit design:

Temperature sensor circuit:
Thermistors have used as a low cost temperature sensor which is constructed of solid

semiconductor material which exhibit a positive or negative temperature coefficient. We

have used a 10k NTC Thermistors. Since Thermistors are basically thermal resistive

devices, a signal conditioning circuit is necessary to convert the change in resistance into a

change in voltage. All Thermistor sensors have been connected in series with a 4k7Ω. The

output of the voltage divider is then filtered and isolated using a buffer which has a very

high input impedance and low output impedance to isolate the voltage divider circuit from

the microcontroller. MCP6004-I/P Quad Op Amp was chosen because it has four op-amps

on one chip. This made it easier to build and made the circuit layout smaller. A look up

table in the microcontroller was used to convert each temperature. Temperature sensors

had to be calibrated before being used.

Voltage
divider

Low pass RC
filter

Op-amp
Buffer

Microcontroller
ADC

Figure (4) signal conditioning circuit

13

Actuator driving circuit
In this project, there were six actuators to be controlled; three fans, 2 pumps and Peltier

Heater/cooler. All of these actuators have motors in them and require a high current to be

driven. A low side gate driver IXDN604PI has been used to drive a power MOSFET. This

gate driver has two outputs can sink 4A of current which producing voltage rise and fall

times of less than 10ns. The input to these drivers is virtually immune and provides sort of

protection to the microcontroller. To slow down the fast switching of the gate driver, a 10Ω

resistor is connected at the gate of the driver. When signal is applied to the gate driver, it

turns on the MOSFET which in turn pulls the load down to ground. The input channels of

the gate driver have to be pulled down by a resistor to keep it from floating around.

MOSFET (IRLB3034) has been used to drive the actuators; this MOSFET was chosen

because it can sustain up to 195A through the drain and it’s RDS (on) =1.4mΩ; dissipating

about 1Watt when ID is 28A (the Imax required by the Peltier). Two MOSFETs have been

connected in parallel to provide the required current of the Peltier heater/cooler

Figure (5) Actuator Driving Circuit

14

Microcontroller board
We have used the Arduino Fio board for satisfying the Microcontroller requirement as shown in

figure (6). It houses a Mega328 controller. Various features offered by the board, especially the

interface with the Xbee modules for wireless communication is a very advantageous feature for

us. Also it has all essential peripherals like the ADC channels, PWM channels and UART lines

drawn out from the board. Hence it acts as a tiny module with all the features essential to our

project. Although this board provides a good hardware platform, it comes with a bootloader

program which enables us to use a very simple programming language. This language is meant

for beginners and is very user friendly, but is highly inefficient. We have been using C to

program the board but on several occasions it created a compatibility issue and caused the

system to perform randomly. This was a trade-off where we had to combine the use of the

Arduino language and C in order to maintain compatibility and efficiency. Also, since it is a

development board, we do not have access to all the port pins on the controller. Hence in cases

where we need to use the pins which are not directly available on the board, it can fail to meet

our requirements. Also the crystal on the board is configured as 8 MHz, which can is well below

the maximum limit on clock frequency. So it means that we are not utilizing the full capabilities

of the controller.

Figure (6) Controller board

15

Peltier Module Power Measurement
Measuring the power consumed by the Peltier Heater/Cooler is a feature that we decided

to add to the hardware design of the system. The maximum current the Peltier module

requires at 12V is 28A, with this in mind, we decided to use ASC 712 current sensor which

has a current sensing range of ±30A and it is based on the Hall Effect Current

Sensing. Figure (7) shows the schematic diagram of IC connection. This IC requires 5V

supply. We had to add a linear voltage regulator to provide the necessary voltage. The

output of sensor had to be stepped down to a range of 0-3.3V using a voltage divider circuit.

To accurately measure the power consumed by the Peltier module, we had to take

instantaneous measurements of current and voltage. Voltage measurements were taken

exactly at the terminals of the Peltier module to take into account any voltage drop across

the Peltier wires. Both voltage and current were sampled only when the Peltier is on and to

be able to do that, we had to synchronize the ADC measurement in the microcontroller

such that it starts sampling when the PWM signal is on as shown in figure (8)

Figure (7) current sensor circuit

16

Hardware Testing
Stage 1

This project involved a lot of hardware testing and debugging since the circuit has 4

different voltage levels; these are 3.3V, 5V, 12V and 24V. These voltage levels existed to

meet the voltage supply needs by different components in the circuit. To get 24V needed by

the Peltier Heater, we had to connect 12 fat power supplies in series. These two power

supplies introduced a considerable amount of noise to the system. Having different voltage

levels on one circuit board was a big challenge in getting the circuit to work. After we

finished the design of the layout of individual circuits, we started thinking about the

complete layout of the circuit. The layout of the circuit was done such that different high

power components were separated from the low voltage part of the circuit. All Actuators

were connected to the circuit board from one side using Molex connectors. Depending on

current required by each actuator, 2, 4 and 6 pin connectors were used. Soldering the

circuit was done on different stages to make sure that each part of the circuit worked fine.

Each actuator output was tested by connecting a resistive load to it. This was done to make

sure that there was no short circuit existed and that the gate driver and the MOSFET

function as expected. In addition, we did not want to blow out any of the actuators until the

circuit is completely tested.

Figure (8): PWM & ADC synchronization

17

Temperature sensors signal conditioning circuit and the controller board were each

soldered on a separate piece of board that was mounted on the main actuators board. This

was done to meet the modularity requirement of the project and to facilitate the

replacement of the controller.

Even though these circuits were meant as prototyping and only as a mean to get the HVAC

rig functioning, we paid our best efforts to avoid any nasty connections. Temperature

sensors circuit conditioning circuit was soldered using a Kester 331 flux solder which is

free from any toxic metal and it is a water soluble flux core solder which is used with a flux

bottle which worked well for soldering up the board without rosin residue. This flux gave a

much cleaner result because it completely washes away under the tap. The only downside

is that we had to dry the circuit board with compressed air before we can test it.

Stage2

The second stage of the hardware testing involved connecting actual loads to the circuit.

These loads are 3 fans, 2 centrifugal pumps and 1 peltier Heater/cooler module. Most of

these loads are inductive and switching inductive loads generate transient voltages and

spikes of many times the steady state value. These transients can destroy the controller

especially in our case, they share the same ground. scotchy diodes were connected across

both pumps. These diodes were reverse biased such that they will allow current to pass

through them when the pumps are turned off.

Since we had a noisy power supply, a highly voltage rated electrolytic capacitor was

connected across the supply to filter out some of the noise. A think ground plane was made

especially for the Peltier heater since it passes 28A through the ground plane and that

causes ground bouncing. Figure (9) shows a ground bouncing at the controller terminal

which was caused by the high power switching. This causes wrong readings, and can cause

the controller to fail.

Having a fat low inductance ground plane helps tremendously. We connected 0.1uF

decoupling capacitors for every IC between Vcc and ground to bypass the supply

inductance. Also, since the Op Amp signals from the signal conditioning circuit travel a

18

distance to be connected to the microcontroller ADC channels, a 10Ω resistor is connected

at the Op Amp output so that the capacitance of the cable does not load the Op Amp and

cause it to oscillate.

Software Design & Testing
In the software part of this project, we first started by setting up the microcontroller to

measure temperature readings. To accomplish this, we had to configure the Analog to

Digital Converter ADC. We started by reading one ADC channel and afterwards, we scanned

all ADC channels. We were able to convert resistance change of thermistor to temperature

using an equation that we got from the curve fitting the resistance change verse

temperature plot. This was inefficient as it involved a lot of floating point calculation which

takes longer time to calculate and overloads the microcontroller; instead we established

fixed point arithmetic where we used a look up table that looks up a corresponding

temperature based on the ADC 10 bit value. After being able to measure temperature, we

then configured timer0 to generate a time interrupt of 1ms. This helped us in calculating

Figure (9) Ground bouncing

19

the flow rate of each loop based on the frequency measurement we got from the flow

sensors. Flow sensors were connected to digital pins D12, D13, so each time there is a

change in the status of any of the pins, we incremented a variable which after 1000 times

interrupts, we convert these pulses into frequency. Having both temperature and flow rate

measured facilitated us introducing a single input single output PI controller for the chiller

loop pump to control the follow speed in that loop. We were also able to run a single

temperature PI controller on the chiller loop to control the temperature of the air supply.

Stage1:This stage was pretty straight forward as we integrated the configuration of ADC,

timer interrupt, and PI loop together. In addition, we started tuning the temperature PI

controller to give the best response with minimum overshooting. Setting the PI parameters

were a compromise of how fast we wanted to get to the set point verses oscillation around

the set point. During this stage, we have also implemented safety checks such that if the

Peltier Heater temperature exceeds 90ᵒC, then we switch it off as well as if there is no flow

in the condenser loop; we switch the pump off to protect it against running dry. The

following flow chart indicates the high level design of the software.

20

Figure (10) Controller flow chart

21

Stage 2: In this stage we started the implementation of wireless communication between

the PC and the controller. To implement this feature, we later on designed a GUI in Matlab

and also an interrupt driven UART for the controller as well. In the first stage of our design,

we needed to reprogram the controller to observe the response of the system under

various settings. This also introduced a risk of destroying the controller from the physical

or electrical damage (static charge that our bodies hold). The implementation of wireless

communication helped us overcome this difficulty. In this stage we utilized a serial terminal

program, TeraTerm to transmit and receive data wirelessly using Zigbees. Though it was

helpful, we did not have any control over incoming data. Nevertheless it was the first step

towards designing the GUI.

Stage 3: To overcome the limitations of stage 2 design, we designed a GUI in Matlab. In the

primary design, we implemented a control over the amount of data we receive. We did this

by restricting the Matlab code to a certain number of user entered reads. It was not optimal

compared to controlling the data flow from the controller itself, but it proved to be a good

tool for debugging the performance of the system. In the later part of this design stage, we

added a feature to transmit the user entered setpoint to the system.

Stage 4: Achieving total control over the data transmitted and received was the goal of this

part of the design stage. All these features enhanced the control any user had over the

system.

The features we added in this stage are:

• Number of reads and interval between reads request sent to the controller

• Introducing acknowledgement signals from the receiver to confirm a successful data

transfer

• Implementation of failure checks and display of appropriate error messages.

22

Final GUI Design

Improvements: GUI
To make the wireless interactions between the controller and the computer more user

friendly, we decided to design a GUI which implements the functions. Initially we had

functions which needed to be called from the command line in MATLAB which was a

tedious task for a user unknown to the system. Hence we plan to have a GUI designed

which implements the commands to acquire data wirelessly and also command the

controller to reach a desired set point on the system.

The GUI was designed using the GUIDE – a layout editor available in Matlab. The key

features of the design are pointed out in figure (10) and explained briefly.

Figure (10) : GUI design layout

23

Setting the COM port of the connected Zigbee Module: As the serial port is now obsolete

in most personal computers and laptops, the use of USB-Serial converters is increasing.

These devices on the USB emulate a serial port and hence do not have an assigned COM

port address (eg COM1, COM2 and so on). Hence on different computers we may have

different port addresses. To make the GUI more user friendly, we included an option where

in the user can enter the comport value and then open the serial communication using the

‘Open Serial Port’ button.

Setting the Destination Address: The Zigbee module can hold a single destination

address. In a mesh network where we have multiple nodes and want to communicate with

all of them, we can change the destination address on the Zigbee and hence communicate

with the desired node.

Setting the number of data points required: To implement a controlled communication,

we added this feature of supplying the number of data points required. This feature

commands the controller to send the data only when asked by the user and also in the

quantity asked by the user.

Setting the time interval between reads: Since we are dealing with controlling the

temperature here, sending out data every couple of milliseconds just accumulates

redundant data. Hence to control the interval between successively transmitted data point,

we provide the user with the feature to enter this value.

Setting the temperature: This feature sets the desired temperature for the PI control

loops. It has been implemented using the slider bar and the text box. So a user can update

the value at any of these objects. The range of temperature that has been provided is from

24˚C to 37˚C in steps of 0.1˚C.

Setting the gains: Changing the gains and seeing the response of the system in essential in

choosing the best combination of gain values. Before we had this feature, we needed to

reprogram the controller to change the gains and see the effect of this change. This was a

very tedious task and involved removing the controller from the board and inserting it

24

again. Hence we decided to add this facility which enables any user to change the gains and

observe the effect of this change.

Plotting the data after it has been received: Once the data has been received and saved

to a mat file, we have the feature of plotting the data against time. The two plot functions

we have plot the two temperatures against the time based on the user defined iterations

and intervals between the iterations.

Power: Based on the readings of the current and voltage sensor, we calibrated the ADC to

resemble the instantaneous power consumed by the system. After extracting the data, we

calculate the power consumed at that instant and display it on the GUI window.

Protocol Used for communication: Since we are using the Zigbee Module in the

transparent mode, the format data received is identical to the one received in the standard

serial communications. Hence to distinguish the different data points from each other we

have a start byte (126 = 0x7E) and an end byte (126 = 0x7E). Hence each data point is

encapsulated within the pair of start and end bytes. A typical data frame would look

something like (0x7E)(Data)(0x7E). Data is sent out by the microcontroller in a

preprogrammed sequence and hence can be decoded and sorted out at the receiving end.

We use an interrupt driven UART at the controller which can decode the commands sent by

the user from the GUI.

25

Decoding within the Matlab GUI:

 Figure (11): MATLAB GUI DECODING

26

Decode Logic at Controller:

Figure (12): Logic decoding in Arduino Controller

27

Design Results
The results obtained from this project were a completely functioning scaled HVAC system

that can be controlled wirelessly using Zigbee protocol. A wirelessly tunable decentralized

multiple input, multiple output PI controllers were successfully implemented and tested.

The details of the results obtained are as follows:

• Temperature sensor calibration

To accurately measure the temperature of the HVAC setup, all Thermistor sensors were

calibrated and compared to their datasheets. We calibrated the sensors by immersing each

sensor in to a cup that has boiling water in it and as water cools down, we take

measurements of the temperature of the water using an accurate thermocouple

temperature sensor and we measure the corresponding resistance of the Thermistor at

that temperature. Due to the fact that we had many temperature sensors in the system, we

only used one look up table for all of them.

• Peltier Power Measurement

To accurate measure the power consumed by the Peltier Heater, we synchronized the

measurements of the Peltier’s voltage and current such that we only sample the ADC when

the PWM (OC2RA) goes high. In addition, we measured the voltage of the Peltier exactly at

its input terminals to avoid any voltage drops across its wires. This gave us a fairly accurate

instantaneous power measurement of this power hungry component.

• Proportional, Integral Controller Response

The response of the PI controllers were very satisfactory since we were able to obtain the

set point with in ±0.7ᵒC. Figure (13b) shows the response of implementing one PI

controller on the Peltier heater. We were able to get a better response when two PI loops

were implemented as shown in Figure (13a). Using GUI interface greatly helped us tuning

the PI controllers wirelessly.

28

Measured data from both the condenser loop pump and the chiller loop pump were

collected to be compared and contrasted with the pump models that have been designed

using Modelica language. Further analysis will be carried on this project to calibrate HVAC

models and build a Model Predictive Controller that will take into account systems

dynamics to optimize best set point to be sent to the local PI controllers.

Figure (13a): Two PI loops response Vs one PI
loop

Figure (13b): Peltier PI controller response

Figure (14a) Power vs speed of MCP655
pump

Figure (14b)Power vs PWM ratio of x35
pump

29

0 2 4 6 8 10 12 14 16 18 20
150

200

250

300

350

400

450

500

550

0 2 4 6 8 10 12 14 16 18 20
29

29.2

29.4

29.6

29.8

30

30.2

Time (s)

Power
(W)

Time (s)

Temperature
(⁰C)

Figure (15a) Power consumption of Peltier Module

Figure (15b) Temperature Transient response of Peltier

30

Safety
This project involves a high DC power application. Hence it is very important to keep the

safety concerns in mind while interacting with the system.

Peltier Heater, Pump and the Heat exchanger fans in the hot loop: This component is

sensitive to the current. Hence the duty cycle of the PWM applied defines the average

power being relayed to the device. Whenever the control for the Peltier heater is revised in

the controller code, it is a safe practice to check the output of the controller pin controlling

the device on the oscilloscope by connecting a simple resistive load. This gives an idea

about the performance of the system and helps us determine how the actual device will

react to such an input. Even a minor programming error can lead to overheating the heater

and destroy the peripherals as well.

Not only malfunctions related to the Peltier can cause it to overheat. The performance and

control over the peripherals can also cause the system to go haywire. For instance in the

pump in the hot loop is not working, the peltier will not be able to transfer the heat to the

heat exchanger and hence heat up very quickly. Same is the case with the failure in the

control of the heat exchanger fans. So as a standard procedure it is good to check the

control signals on the oscilloscope before hooking up the devices.

Solution we have:

• We check for the temperature at the Peltier heater. If it exceeds the limit of 90˚C, we

turn off the peltier. It cannot restart until reset manually. This enables the user of

the system to know that there is some problem in the system.

• The second check is whether the pump in the loop is working or not. If it is working

without any fluids, it may burn out the coil of the pump. Hence we check the flow in

the loop and if it is zero we turn off the pump and since the pump is off, the peltier

will be heated and so we need to turn that off as well.

As the previous check, this is a manual reset operation to alert the user about any

issues with the system.

31

Current Sensor IC ACS 712: This is a surface mount component designed to carry 30 A

current. But the connectors on which it rests may not be as capable as the IC. So there is a

need to cool down the IC to avoid burn out.

Solution we have: Currently we have the cooling fans within the power source we are

using, directed towards the circuit board. This basically cools down everything there in and

works as a temporary solution.

Multi-value Voltage supplies for various components: On this board, we have

components working at 3.3 V, 5 V, 12 V and 24 V. Hence it is very important to take care not

to short out two different voltage values while trying to use oscilloscope, multimeter or

something as simple as hook up wires.

Solution we have:

• We have designed the connectors in such a way that the user can connect them only

in one possible way. Hence there are no chances of shorting the Vcc and ground

terminals.

• Avoiding the shorting of different voltage sources is up to the skills and care taken

by the user.

32

Conclusions
The results of this project were very satisfactory. We established a very responsive HVAC

system that is wirelessly controllable. We established a very good understanding of

multivariable feedback controllers design and tuning. There were some issues with

hardware debugging and ground bouncing and this gave us very rich hands on experience

especially when we are pulse modulating high power components and inductive loads. We

were able to identify some hardware limitations which are listed in the future

improvements of the system. The implementation of the wireless network gave us a

concrete understanding of different protocols and the drawbacks of each one.

Important Design Considerations & possible design improvements

Grounding:

When dealing with switched mode operation on devices, it is necessary to have a

sufficiently large ground plane to suppress the transients. Especially in high power circuits

like the one we have, needs a large area to ground the current flowing in the circuit. If the

ground plane is not sufficiently large, frequent switching causes the ground level to bounce

and hence affect the performance of the microcontroller. There is also a possibility of

unpredictable behavior of the controller or its peripherals.

Optical Isolation:

As discussed above, grounding can be an issue on the performance of the low power

devices (controller, sensors etc) when using along with high power switching devices

(pumps, heaters etc). Hence it would be a good idea to isolate the low power and high

power devices to stabilize the performance of both. An opto-isolator (capable of

accommodating the desired bandwidth of the switching signal) would serve this purpose

by transferring the low power switching signal optically at the high power end. This would

practically isolate the two power levels. IC’s are readily available for this purpose. Current

design does not have this feature but it would be good to have it during future

improvements.

33

Possible Improvements

Even though we did our best in building the hardware, it is still considered as a prototype

and may not be very robust if a lot of students will use it. The current connectors between

the controller and its inputs, output is not robust. All connector wires and jumpers should

be replaced with a soldered wires or use ribbon cables to get a solid connection. The circuit

needs to be contained in a transparent box to protect it from water leakage in the system

and a fan is required to cool down the current IC sensor and the Peltier power connector.

We are currently using one look up table to get the temperature readings for all thermistor

sensors, instead one could have included a look up table for each sensor, however

execution time and memory space needs to be considered. Finally, to protect the actuators

from any sudden current transients, one could use fuses in line with each actuator to

protect it from surge currents.

34

Appendix A: controller commented code

Appendix B: Matlab GUI commented code

35

No. Part Unit Cost Quantity URL

1 Arduino Boards $25.00 3 http://www.sparkfun.com/products/10116

2
Xbee Wireless

Modems
$22.00 3 http://www.sparkfun.com/products/8665

3
INS- FM18 Flow meter

sensor $30 2
http://www.koolance.com/water-

cooling/product_info.php?product_id=1170

4 Peltier Heater/Cooler $56.50 2
http://www.shop.customthermoelectric.com/searchquick-

submit.sc;jsessionid=49BADFC26E6C47EDBF65E2A8D246654D.qscstrfr
nt01?keywords=400

5 Swiftech MCP655
circulating Pump

$76.00 1 http://www.sidewindercomputers.com/swmc12vdcpu.html

6
Swiftech MCP-35X

pump
$110.00 1 http://www.sidewindercomputers.com/swmc12vdcpu1.html

7 LCD display screen $13 1 http://www.sparkfun.com/products/255

8
Power Supply for

Peltier Cooler 24 V
$210.00 2 http://www.trcelectronics.com/Meanwell/se-1000-12.shtml

9 $2 $2.00 4
http://www.datasheetcatalog.com/datasheets_pdf/M/C/P/6/MCP60

04.shtml

10
lm2937et Current

regulator
$1.00 1

http://www.datasheetcatalog.com/datasheets_pdf/L/M/2/9/LM2937
ET-12.shtml

11 Water Blocks $79 2 http://www.customthermoelectric.com/Water_blocks.html

12
IC Gate Driver non-

inverting 8Dip $2 2 IXDN604PI

13 MOSFET $4 5 IRLB3034PBF
14 3.3 voltage regulator $1 www.digikey.com
15 7805 voltage regulator $1 www.digikey.com
16 12V votlage regulator. $1 www.digikey.com
17 ASC current sensor $4 www.digikey.com

18
Condenser radiator $70 1

http://www.koolance.com/water-
cooling/product_info.php?product_id=813

19
Chiller loop exchanger $39 1

http://www.frozencpu.com/products/5323/ex-rad-
106/Black_Ice_GT_Stealth_120_Radiator_-_Blue.html?tl=g30c95

Appendix C: cost details

36

Appendix D: Pin References:

Connected Actuator/Sensor Pin on the Arduino Board Pin on the Controller

Peltier Heater D11 PORTB.3
Pump in the hot loop D4 PORTD.4

Heat Exchanger Fans (hot loop) D9 PORTB.1
Pump in the cold loop Any of the available pins

Fan in the cold loop D3 PORTD.3
Peltier Outlet Temperature A3 PORTA.3

Heat Exchanger (hot loop) outlet
Temperature A4 PORTA.4

Peltier Hot Side Temperature A1 PORTA.1
Fan Out temperature (cold loop) A0 PORTA.0

Current Sensor A6 PORTA.6
Voltage Sensor A7 PORTA.7

Flow Sensor (hot loop) D12 PORTB.4
Flow Sensor (cold loop) D13 PORTB.5

37

Appendix E:
Troubleshooting and Understanding the GUI:

COMPORT – Enter the address of the Comport after looking it up in the device manager.

Possible Errors:

1. Invalid ComPort. Enter a valid Comport

If no COMPORT value is entered or a non-existing COMPORT is entered, you may get this

error message.

Look up the correct name of the port from the ‘Device Manager’ under properties of

‘Computer’. Try to open the Serial Port after the change.

Destination Address – Enter the address of the wireless node you want the data from.

Possible Errors:

1. ‘Enter 8 Hex Characters of the MSB’:

If you enter less or more than 8 characters, this error will appear in a message box. Revise

the address and enter it again in the edit box.

Number of Reads and Read Interval – The user enters the number of data point he wants

and the time interval between consecutive data points.

Possible Errors:

1. Entering non integer values:

Entering floating point values here would cause an error message to pop up. Rectify the

entered number.

2. Entering zero:

Entering Zero will give an error message and would default the number of reads to 20.

3. Entering alphabets in the edit box:

If the input is alphanumeric or alphabetic, an error message will pop up. Please rectify the

input and retry.

Gains Kp and Ki – The user enter the gains for the PI loop controlling the Peltier heater.

Possible Errors:

38

1. Floating point of alphanumeric or alphabetic input by the user:

If such values are entered it will cause the GUI to throw an error message pop-up. Rectify

the values based on the instruction and retry.

Default Settings: The default settings have been configured for the following:

1. Number of iterations is 20 if invalid value is entered and used

2. The read interval is set to 1000 ms if invalid value is entered and used.

3. Temperature is set to 24˚C.

Before using the Set Gain Function in the GUI, one must take care to enter valid values. If
valid values are not used, it may lead to unpredictable behavior of the system

References:

Books/ Datasheets:

• Robert Faludi “Building Wireless Sensor Networks” 1st edition, December 2010.

• Oludayo John Oguntoyinbo “PID CONTROL OF BRUSHLESS DC MOTOR AND ROBOT

TRAJECTORY PLANNING AND SIMULATION WITH MATLAB/SIMULINK” , 2009

• Atemga 328p datasheet: http://www.atmel.com/Images/8271S.pdf

• Datasheets for ACS712, lm 7805, LD33V, IRLB3034, IXDN604PI

Background sites:

• www.Avrfreaks.net

• www.arduino.cc

• Zigbee general information: http ://en.wikipedia.org/wiki/ZigBee

• Matlab GUI using GUIDE:

http://www.mathworks.com/help/techdoc/creating_guis/f8-998197.html

http://www.atmel.com/Images/8271S.pdf
http://www.avrfreaks.net/
http://www.arduino.cc/
http://www.mathworks.com/help/techdoc/creating_guis/f8-998197.html

	Acknowledgement
	Introduction
	High level design:
	Principle of Operation of the Scaled HVAC System

	PID controller
	Saturation and Anti-windup
	PID Controller Tuning Parameters
	Multi Single input Single Output SISO PID loops

	Communication standards/protocols
	UART
	First version: API version
	Second Version: Transparent version

	Hardware circuit design:
	Temperature sensor circuit:
	Actuator driving circuit
	Microcontroller board
	Peltier Module Power Measurement

	/
	Hardware Testing
	Software Design & Testing
	Final GUI Design
	Improvements: GUI
	Decoding within the Matlab GUI:
	Decode Logic at Controller:

	Design Results
	/
	Safety
	Conclusions
	Appendix A: controller commented code
	Appendix B: Matlab GUI commented code
	Appendix C: cost details
	Appendix D: Pin References:
	Appendix E:
	References:

