LM124, LM224, LM2902, LM324

LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers

Literature Number: SNOSC16B
LM124/LM224/LM324/LM2902
Low Power Quad Operational Amplifiers

General Description
The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15V power supplies.

Unique Characteristics
- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage
- The unity gain cross frequency is temperature compensated
- The input bias current is also temperature compensated

Advantages
- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and V_{OUT} also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features
- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range:
 - Single supply 3V to 32V
 - or dual supplies ±1.5V to ±16V
- Very low supply current drain (700 µA)—essentially independent of supply voltage
- Low input biasing current 45 nA (temperature compensated)
- Low input offset voltage 2 mV and offset current: 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0V to $V^+ − 1.5V$

Connection Diagrams

Dual-In-Line Package
See NS Package Number J14A, M14A or N14A)
LM124AWRQML and LM124AWRQMLV (Note 3)
See NS Package Number W14B
LM124AWGRQML and LM124AWGRQMLV (Note 3)
See NS Package Number WG14A

Note 1: LM124A available per JM38510/11006
Note 2: LM124 available per JM38510/11005
Note 3: See STD Mil DWG 5962R99504 for Radiation Tolerant Device

Schematic Diagram (Each Amplifier)
Absolute Maximum Ratings (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

LM124/LM224/LM324

LM124A/LM224A/LM324A

Supply Voltage, V+
32V
26V

Differential Input Voltage
32V
26V

Input Voltage
−0.3V to +32V
−0.3V to +26V

Input Current
(V_{IN} < −0.3V) (Note 6)
50 mA
50 mA

Power Dissipation (Note 4)

Molded DIP
1130 mW
1130 mW

Cavity DIP
1260 mW
1260 mW

Small Outline Package
800 mW
800 mW

Output Short-Circuit to GND
(One Amplifier) (Note 5)
Continuous
Continuous

Operating Temperature Range
LM324/LM324A
0˚C to +70˚C

LM224/LM224A
−25˚C to +85˚C

LM124/LM124A
−55˚C to +125˚C

Storage Temperature Range
−65˚C to +150˚C

Lead Temperature (Soldering, 10 seconds)
260˚C

Soldering Information

Dual-In-Line Package

Soldering (10 seconds)
260˚C

Small Outline Package

Vapor Phase (60 seconds)
215˚C

Infrared (15 seconds)
220˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

ESD Tolerance (Note 13)
250V
250V

Electrical Characteristics

V^+ = +5.0V, (Note 7), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM124A</th>
<th>LM224A</th>
<th>LM324A</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>(Note 8) T_A = 25˚C</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Input Bias Current (Note 9)</td>
<td>I_{IN(+) or I_{IN(-)}, V_{CM} = 0V, T_A = 25˚C}</td>
<td>20</td>
<td>50</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{IN(+) or I_{IN(-)}, V_{CM} = 0V, T_A = 25˚C}</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range (Note 10)</td>
<td>V^+ = 30V, (LM2902, V^+ = 26V), T_A = 25˚C</td>
<td>0</td>
<td>V^+−1.5</td>
<td>0</td>
<td>V^+−1.5</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_L = ∞ On All Op Amps</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>V^+ = 30V (LM2902 V^+ = 26V)</td>
<td>0.7</td>
<td>1.2</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V^+ = 15V, R_L ≥ 2kΩ, (V_O = 1V to 11V), T_A = 25˚C</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Common-Mode</td>
<td>DC, V_{CM} = 0V to V^+ − 1.5V,</td>
<td>70</td>
<td>85</td>
<td>70</td>
<td>85</td>
</tr>
</tbody>
</table>
Electrical Characteristics

V+ = +5.0V, (Note 7), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter Conditions</th>
<th>LM124A</th>
<th>LM224A</th>
<th>LM324A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejection Ratio</td>
<td>$T_A = 25^\circ\text{C}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>$V^+ = 5V$ to $30V$ (LM2902, $V^+ = 5V$ to $26V$), $T_A = 25^\circ\text{C}$</td>
<td>65 100</td>
<td>65 100</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling (Note 11)</td>
<td>$f = 1$ kHz to 20 kHz, $T_A = 25^\circ\text{C}$ (Input Referred)</td>
<td>-120</td>
<td>-120</td>
</tr>
<tr>
<td>Output Current Source</td>
<td>$V_{IN^+} = 1V$, $V_{IN^-} = 0V$, $V^+ = 15V$, $V_O = 2V$, $T_A = 25^\circ\text{C}$</td>
<td>20 40</td>
<td>20 40</td>
</tr>
<tr>
<td></td>
<td>$V_{IN^+} = 1V$, $V_{IN^-} = 0V$, $V^+ = 15V$, $V_O = 200 mV$, $T_A = 25^\circ\text{C}$</td>
<td>10 20</td>
<td>10 20</td>
</tr>
<tr>
<td></td>
<td>$V_{IN^-} = 1V$, $V_{IN^+} = 0V$, $V^+ = 15V$, $V_O = 200 mV$, $T_A = 25^\circ\text{C}$</td>
<td>12 50</td>
<td>12 50</td>
</tr>
<tr>
<td>Short Circuit to Ground</td>
<td>(Note 5) $V^+ = 15V$, $T_A = 25^\circ\text{C}$</td>
<td>40 60</td>
<td>40 60</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>(Note 8)</td>
<td>4 4 5</td>
<td>mV</td>
</tr>
<tr>
<td>V_{OS} Drift</td>
<td>$R_S = 0\Omega$</td>
<td>7 20</td>
<td>7 20</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>$I_{IN^+} - I_{IN^-}, V_{CM} = 0V$</td>
<td>30 30</td>
<td>75 nA</td>
</tr>
<tr>
<td>I_{OS} Drift</td>
<td>$R_S = 0\Omega$</td>
<td>10 200</td>
<td>10 200</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>$I_{IN^+} (\text{or} I_{IN^-}), V_{CM} = 0V$</td>
<td>40 100</td>
<td>40 100</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range (Note 10)</td>
<td>$V^+ = +30V$ (LM2902, $V^+ = 26V$)</td>
<td>0 V^-2</td>
<td>0 V^-2</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$V^+ = +15V$ ($V_{OS\text{Swing}} = 1V$ to $11V$) $R_L \geq 2k\Omega$</td>
<td>25 25 15</td>
<td>V/mV</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>$V^+ = 30V$ (LM2902, $V^+ = 26V$) $R_L = 2k\Omega$</td>
<td>26 26 26</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$R_L = 10k\Omega$</td>
<td>27 28 27 28 27 28</td>
<td></td>
</tr>
<tr>
<td>Output Current Source</td>
<td>$V_O = 2V$</td>
<td>10 20</td>
<td>10 20</td>
</tr>
<tr>
<td></td>
<td>$V_{IN^+} = +1V$, $V_{IN^-} = 0V$, $V^+ = 15V$</td>
<td>10 20</td>
<td>10 20</td>
</tr>
<tr>
<td>Sink</td>
<td>$V_{IN^+} = +1V$, $V_{IN^-} = 0V$, $V^+ = 15V$</td>
<td>10 15</td>
<td>5 8</td>
</tr>
</tbody>
</table>

Electrical Characteristics

V+ = +5.0V, (Note 7), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter Conditions</th>
<th>LM124/LM224/LM324/LM2902</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>$T_A = 25^\circ\text{C}$</td>
</tr>
<tr>
<td>Input Bias Current (Note 9)</td>
<td>$I_{IN^+} (\text{or} I_{IN^-}), V_{CM} = 0V$, $T_A = 25^\circ\text{C}$</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>$I_{IN^+} (\text{or} I_{IN^-}), V_{CM} = 0V$, $T_A = 25^\circ\text{C}$</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range (Note 10)</td>
<td>$V^+ = 30V$, (LM2902, $V^+ = 26V$), $T_A = 25^\circ\text{C}$</td>
</tr>
</tbody>
</table>
Electrical Characteristics (Continued)

V = +5.0V, (Note 7), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM124/LM224</th>
<th>LM324</th>
<th>LM2902</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range</td>
<td>R<sub>L</sub> = ∞ On All Op Amps</td>
<td>V<sup>+</sup> = 30V (LM2902 V<sup>+</sup> = 26V)</td>
<td>V<sup>+</sup> = 5V</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>1.2</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V<sup>+</sup> = 15V, R<sub>L</sub> ≥ 2kΩ, (V<sub>O</sub> = 1V to 11V), T<sub>A</sub> = 25°C</td>
<td>50</td>
<td>100</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>DC, V<sub>CM</sub> = 0V to V<sup>+</sup> − 1.5V, T<sub>A</sub> = 25°C</td>
<td>70</td>
<td>85</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>V<sup>+</sup> = 5V to 30V (LM2902, V<sup>+</sup> = 5V to 26V), T<sub>A</sub> = 25°C</td>
<td>65</td>
<td>100</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling (Note 11)</td>
<td>f = 1 kHz to 20 kHz, T<sub>A</sub> = 25°C (Input Referred)</td>
<td>−120</td>
<td>−120</td>
<td>−120</td>
<td>dB</td>
</tr>
<tr>
<td>Output Current</td>
<td>Source</td>
<td>V<sub>IN</sub> = +1V, V<sub>IN</sub> = 0V, V<sup>+</sup> = 15V, V<sub>O</sub> = 2V, T<sub>A</sub> = 25°C</td>
<td>20</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sink</td>
<td>V<sub>IN</sub> = +1V, V<sub>IN</sub> = 0V, V<sup>+</sup> = 15V, V<sub>O</sub> = 200 mV, T<sub>A</sub> = 25°C</td>
<td>12</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>Short Circuit to Ground</td>
<td>(Note 5) V<sup>+</sup> = 15V, T<sub>A</sub> = 25°C</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>(Note 8)</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>mV</td>
</tr>
<tr>
<td>V<sub>OS</sub> Drift</td>
<td>R<sub>S</sub> = 0Ω</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>µV/°C</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I<sub>IN</sub>(+), I<sub>IN</sub>(−), V<sub>CM</sub> = 0V</td>
<td>100</td>
<td>150</td>
<td>45</td>
<td>200</td>
</tr>
<tr>
<td>I<sub>OS</sub> Drift</td>
<td>R<sub>S</sub> = 0Ω</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>pA/°C</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I<sub>IN</sub>(+), I<sub>IN</sub>(−)</td>
<td>40</td>
<td>300</td>
<td>40</td>
<td>500</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range (Note 10)</td>
<td>V<sup>+</sup> = +30V (LM2902, V<sup>+</sup> = 26V)</td>
<td>0</td>
<td>V<sup>+</sup>−2</td>
<td>0</td>
<td>V<sup>+</sup>−2</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V<sup>+</sup> = +15V (V<sub>OS</sub>Swing = 1V to 11V)</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V<sub>OH</sub></td>
<td>V<sup>+</sup> = 30V (LM2902, V<sup>+</sup> = 26V)</td>
<td>26</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>V<sub>OH</sub> = 5V, R<sub>L</sub> = 10 kΩ</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Output Current</td>
<td>Source</td>
<td>V<sub>O</sub> = 2V</td>
<td>V<sub>IN</sub> = +1V, V<sup>+</sup> = 15V</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sink</td>
<td>V<sub>IN</sub> = +1V, V<sup>+</sup> = 15V</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Note 4: For operating at high temperatures, the LM324/LM324A/LM2902 must be derated based on a +125°C maximum junction temperature and a thermal resistance of 88°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224/LM224A and LM124/LM124A can be derated based on a +150°C maximum junction temperature. The dissipation is the total of all four amplifiers — use external resistors, where possible, to allow the amplifier to saturate to of to reduce the power which is dissipated in the integrated circuit.

Note 5: Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Note 6: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action.
Electrical Characteristics (Continued)
on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V^+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3V$ (at 25°C).

Note 7: These specifications are limited to $-55°C \leq T_A \leq +125°C$ for the LM124/LM124A. With the LM224/LM224A, all temperature specifications are limited to $-25°C \leq T_A \leq +85°C$, the LM324/LM324A temperature specifications are limited to $0°C \leq T_A \leq +70°C$, and the LM2902 specifications are limited to $-40°C \leq T_A \leq +85°C$.

Note 8: $V_O = 1.4V$, $R_S = 0Ω$ with V^+ from 5V to 30V, and over the full input common-mode range (0V to $V^+ - 1.5V$) for LM2902, V^+ from 5V to 26V.

Note 9: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 10: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is $V^+ - 1.5V$ (at 25°C), but either or both inputs can go to +32V without damage (+26V for LM2902), independent of the magnitude of V^+.

Note 11: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

Note 12: Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124 military specifications.

Note 13: Human body model, 1.5 kΩ in series with 100 pF.

Typical Performance Characteristics

Input Voltage Range

![Input Voltage Range Graph](https://example.com/graph1)

Supply Current

![Supply Current Graph](https://example.com/graph2)

Voltage Gain

![Voltage Gain Graph](https://example.com/graph3)
Typical Performance Characteristics (Continued)

Open Loop Frequency Response

![Open Loop Frequency Response Diagram](image1)

Common Mode Rejection Ratio

![Common Mode Rejection Ratio Diagram](image2)

Voltage Follower Pulse Response

![Voltage Follower Pulse Response Diagram](image3)

Voltage Follower Pulse Response (Small Signal)

![Voltage Follower Pulse Response (Small Signal) Diagram](image4)

Large Signal Frequency Response

![Large Signal Frequency Response Diagram](image5)

Output Characteristics Current Sourcing

![Output Characteristics Current Sourcing Diagram](image6)
Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 VDC. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 VDC.

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3\ V_{DC}$ (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion.

Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
Application Hints (Continued)

The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 3 VDC to 30 VDC.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V+/2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications (V+ = 5.0 VDC)

Non-Inverting DC Gain (0V Input = 0V Output)

DC Summing Amplifier
(VINs ≥ 0 VDC and VO ≥ VDC)

Power Amplifier

Where: VO = V1 + V2 - V3 - V4

(V1 + V2) ≥ (V3 + V4) to keep VO > 0 VDC

V0 = 0 VDC for VIN = 0 VDC

AV = 10
Typical Single-Supply Applications \((V^+ = 5.0\ \text{V}_{\text{DC}})\) (Continued)

LED Driver

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{led_driver}
\end{figure}

00929908

\begin{align*}
R_2 & = 20 \ \text{mA} \\
\text{NSL102}
\end{align*}

“BI-QUAD” RC Active Bandpass Filter

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{bi_quad}
\end{figure}

00929909

\begin{align*}
\text{fo} & = 1 \ \text{kHz} \\
Q & = 50 \\
A_{\text{v}} & = 100 (40 \ \text{dB})
\end{align*}

Fixed Current Sources

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fixed_current}
\end{figure}

00929910

\[I_2 = \left(\frac{R_1}{R_2} \right) I_1 \]

Lamp Driver

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{lamp_driver}
\end{figure}

00929911

\[I_2 \geq 20 \ \text{mA} \]

\[I_1 = 1 \ \text{mA} \]

\[I_2 = 30 \ \text{mA} \]

\[V^+ = 600 \ \text{mA} \]
Typical Single-Supply Applications

(V+ = 5.0 VDC) (Continued)

Current Monitor

\[V_o = \frac{1}{0.1} \left(V_L - V^+ \right) \]

\[V_L \leq V^+ - 2V \]

*(Increase R1 for \(V_L \) small)

Driving TTL

Squarewave Oscillator

Pulse Generator

Voltage Follower

Pulse Generator

LM124/LM224/LM324/LM2902

www.national.com
Typical Single-Supply Applications \((V^+ = 5.0 \text{ V}_{\text{DC}})\) (Continued)

High Compliance Current Sink

\[I_O = 1 \text{ amp/volt } V_{\text{IN}} \]
(Increase \(R_E \) for \(I_o \) small)

Low Drift Peak Detector

\[00929918 \]

\[00929919 \]
Typical Single-Supply Applications (V+= 5.0 VDC) (Continued)

Comparator with Hysteresis

-ground referencing a differential input signal

Voltage Controlled Oscillator Circuit

*Wide control voltage range: 0 VDC ≤ V_C ≤ 2 (V+ – 1.5 VDC)

Photo Voltaic-Cell Amplifier
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\) (Continued)

AC Coupled Inverting Amplifier

![AC Coupled Inverting Amplifier Diagram](image)

\[
A_V = \frac{R_1}{R_1} \quad \text{(As shown, } A_V = 10)\]

AC Coupled Non-Inverting Amplifier

![AC Coupled Non-Inverting Amplifier Diagram](image)

\[
A_V = 1 + \frac{R_2}{R_1} \\
A_V = 11 \quad \text{(As shown)}
\]
Typical Single-Supply Applications \((V^+ = 5.0 \, V_DC) \) (Continued)

DC Coupled Low-Pass RC Active Filter

- \(f_0 = 1 \, \text{kHz} \)
- \(Q = 1 \)
- \(AV = 2 \)

High Input Z, DC Differential Amplifier

\[
V_O = 1 + \frac{R_4}{R_3} (V_2 - V_1)
\]

As shown: \(V_O = 2(V_2 - V_1) \)
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC}) \) (Continued)

High Input Z Adjustable-Gain DC Instrumentation Amplifier

If \(R_1 = R_5 \) & \(R_3 = R_4 = R_6 = R_7 \) (CMRR depends on match)

\[
V_o = 1 + \frac{2R_1}{R_2} (V_2 - V_1)
\]
As shown \(V_o = 10 \left(V_2 - V_1 \right) \)

Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

Bridge Current Amplifier

For \(\delta \ll 1 \) and \(R_f \gg R \)

\[
V_o \approx V_{REF} \left(\frac{\delta R_f}{2} \right)
\]
Bandpass Active Filter

\[f_0 = 1 \text{ kHz} \]
\[Q = 25 \]
Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Dual-In-Line Package (J)
NS Package Number J14A

MX S.O. Package (M)
Order Number LM324M, LM324MX, LM324AM, LM324AMX, LM2902M or LM2902MX
NS Package Number M14A

www.national.com 18
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Dual-In-Line Package (N)
Order Number LM324N, LM324AN or LM2902N
NS Package Number N14A

Ceramic Flatpak Package
NS Package Number W14B
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Pin TSSOP
Order Number LM324MT or LM324MTX
NS Package Number MTC14

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no “Banned Substances” as defined in CSP-9-111S2.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information provided by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated